
K16083

IN
T

R
O

D
U

C
T

IO
N

 T
O

P
R

O
G

R
A

M
M

IN
G

 LA
N

G
U

A
G

E
S

B
an

sal

Using the different syntax of multiple programming languages, such as C++,
Java, PHP, and Python, for the same abstraction often confuses those new to
the field. Introduction to Programming Languages separates programming
language concepts from the restraints of multiple language syntax by discussing
the concepts at an abstract level.

To make the book self-contained, the author introduces the necessary concepts
of data structures and discrete structures from the perspective of programming
language theory. The text covers classical topics, such as imperative, object-
oriented, logic, and functional programming, as well as newer topics, including
dependency analysis, communicating sequential processes, concurrent
programming constructs, web and multimedia programming, and models for
mobile computing. Along with problems and further reading in each chapter, the
book includes in-depth examples and case studies using various languages that
help you understand syntax in practical contexts.

Features
• Explains the principles of programming language design and implementation
• Introduces programming language concepts at an abstract level, freeing

them from the restraints of multiple language syntax
• Illustrates the concepts using many examples from modern languages, such

as Java, C++, C#, Ada 2012, Ruby, Perl, Python, Scala, and Haskell
• Describes implementation models of various paradigms, including

imperative, functional, logic, and object-oriented programming
• Covers up-to-date topics in concurrent programming, web-based

programming, distributed computing, and other areas highly relevant in
today’s computing world

• Gives insight into low-level implementation behavior

Computer Science

K16083_Cover.indd 1 11/4/13 11:05 AM

INTRODUCTION TO
PROGRAMMING

LANGUAGES

Arvind Kumar Bansal
Kent State University

Ohio, USA

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2014 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Version Date: 20131104

International Standard Book Number-13: 978-1-4665-6515-9 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been
made to publish reliable data and information, but the author and publisher cannot assume responsibility for the valid-
ity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright
holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this
form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may
rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or uti-
lized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopy-
ing, microfilming, and recording, or in any information storage or retrieval system, without written permission from the
publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://
www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923,
978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For
organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for
identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

This book is dedicated to my parents for all
their love and care, who, despite their limitations

and financial hardships, taught their children to dream.

v

Contents

Preface, xxi

Chapter Outlines, xxiii

Classroom Use of This Book, xxix

Acknowledgments, xxxi

About the Author, xxxiii

Glossary of Symbols, xxxv

Chapter 1 ■ Introduction 1
1.1 MULTITUDE OF PROBLEM DOMAINS 2

1.2 MOTIVATION 3

1.3 LEARNING OUTCOMES 4

1.4 PROGRAM AND COMPONENTS 5

1.4.1 Abstractions in Programs 6
1.4.2 Program Comprehension and Jumps 10
1.4.3 Execution of Programs 12

1.5 INTEROPERABILITY OF PROGRAMMING LANGUAGES 16

1.6 SOFTWARE DEVELOPMENT CYCLE 17

1.7 CRITERIA FOR A GOOD PROGRAMMING LANGUAGE 19

1.8 HISTORY OF PROGRAMMING PARADIGMS AND LANGUAGES 20

1.8.1 Imperative Programming Paradigm 20
1.8.2 Declarative Programming Paradigm 22
1.8.3 Object-Oriented Programming Paradigm 23
1.8.4 Concurrent Programming Paradigm 24
1.8.5 Visual Programming Paradigm 25
1.8.6 Multimedia Programming Paradigm 25
1.8.7 Web-Based Programming Paradigm 26

vi    ◾    Contents

1.8.8 Event-Based Programming Paradigm 26
1.8.9 Integration of Programming Paradigms 27

1.9 CLASSIFICATION OF LANGUAGES 27

1.9.1 Programming Paradigms–Based Classification 28
1.9.2 Implementation-Based Classification 28
1.9.3 Other Classifications 30

1.10 SUMMARY 30

1.11 ASSESSMENT 31

1.11.1 Concepts and Definitions 31
1.11.2 Problem Solving 31
1.11.3 Extended Response 32

FURTHER READING 33

Chapter 2 ■ Background and Fundamental Concepts 35
2.1 VON NEUMANN MACHINE 35

2.1.1 Address Mechanisms 36
2.2 DISCRETE STRUCTURES CONCEPTS 39

2.2.1 Set Operations 39
2.2.2 Boolean Logic and Predicate Calculus 42
2.2.3 Recursion 45
2.2.4 Finite State Machines 47

2.3 DATA STRUCTURE CONCEPTS 48

2.3.1 Sequences 48
2.3.2 Stacks and Queues 49
2.3.3 Reference Mechanisms 51
2.3.4 Recursive Data Structures 52
2.3.5 Trees 53
2.3.6 Graphs 54
2.3.7 Exhaustive Search 55
2.3.8 Mapping Data Structures in Linear Memory 59
2.3.9 Hash Tables 60

2.4 ABSTRACT CONCEPTS IN COMPUTATION 61

2.4.1 Mutable versus Immutable Variables 63
2.4.2 Bindings and Scope Rules 63
2.4.3 Types of Variables 65
2.4.4 Environment and Store 66

Contents    ◾    vii

2.4.5 Functions and Procedures 67
2.4.6 Abstracting the Program Execution 68
2.4.7 Processes and Threads 70
2.4.8 Buffers 71

2.5 SUMMARY 72

2.6 ASSESSMENT 74

2.6.1 Concepts and Definitions 74
2.6.2 Problem Solving 75
2.6.3 Extended Response 76

FURTHER READING 76

Chapter 3 ■ Syntax and Semantics 77
3.1 INTRODUCTION TO SYNTAX AND SEMANTICS 77

3.2 GRAMMARS 79

3.2.1 Types of Grammars 80
3.2.2 Representing Grammar Using Backus–Naur Form 81
3.2.3 Extended Backus–Naur Form (EBNF) 83
3.2.4 Attribute Grammar 85
3.2.5 Hyper-Rules and Meta-Definitions 87
3.2.6 Abstract Syntax 87

3.3 SYNTAX DIAGRAMS 89

3.3.1 Translating Syntax Rules to Syntax Diagrams 91
3.3.2 Translating Syntax Diagrams to Syntax Rules 94

3.4 VALIDATING SENTENCE STRUCTURE 95

3.4.1 Lexical Analysis 95
3.4.2 Parsing 98
3.4.3 Handling Grammar Ambiguities 100
3.4.4 Abstract Syntax Tree 102
3.4.5 Automated Parsing 103

3.5 SEMANTICS 104

3.5.1 Operational Semantics 104
3.5.2 Axiomatic Semantics 106
3.5.3 Denotational Semantics 108
3.5.4 Action Semantics 113
3.5.5 Other Models of Semantics 114

3.6 SUMMARY 115

viii    ◾    Contents

3.7 ASSESSMENT 116

3.7.1 Concepts and Definitions 116
3.7.2 Problem Solving 117
3.7.3 Extended Response 118

FURTHER READING 119

Chapter 4 ■ Abstractions in Programs and Information Exchange 121
4.1 DATA ABSTRACTIONS 122

4.1.1 Single Data Entities 124
4.1.2 Composite Data Entities 124
4.1.3 Collection of Data Entities 126
4.1.4 Extensible Data Entities 126
4.1.5 Ordering and Accessing Data Entities 127
4.1.6 Interconnected Data Entities 128
4.1.7 Persistence 128
4.1.8 Declarations and Environment Change 129

4.2 CONTROL ABSTRACTIONS 130

4.2.1 Assignment and Command Sequence 131
4.2.2 Conditional Statements 133
4.2.3 Iterative Constructs and Iterators 135
4.2.4 Block Structure 137
4.2.5 Program Units and Invocations 138
4.2.6 Modules 141
4.2.7 Objects and Classes 142

4.3 INFORMATION EXCHANGE 143

4.3.1 Mechanisms of Information Exchange 144
4.4 PARAMETER PASSING 145

4.4.1 Call-by-Value and Variations 147
4.4.2 Call-by-Reference and Variations 148
4.4.3 Call-by-Result 151
4.4.4 Call-by-Value-Result 151
4.4.5 Call-by-Name 153
4.4.6 Call-by-Need 155
4.4.7 Passing Subprograms as Parameters 156
4.4.8 Parameter Passing for Distributed Computing 156

Contents    ◾    ix

4.5 SIDE EFFECTS 157

4.5.1 Aliasing and Side Effects 158
4.5.2 Regulating Side Effects 160
4.5.3 A Comprehensive Example 160

4.6 EXCEPTION HANDLING 162

4.7 NONDETERMINISTIC COMPUTATION 164

4.7.1 Guarded Commands 166
4.7.2 Stepwise Program Construction 167

4.8 PROGRAMS AS DATA 168

4.8.1 Functions as First-Class Objects 168
4.8.2 Meta-Programming and Reflexivity 169

4.9 SOFTWARE REUSE 169

4.9.1 Interoperability Revisited 170
4.10 CASE STUDY 170

4.10.1 Data Abstraction in Programming Languages 171
4.10.2 Control Abstractions in Programming Languages 177
4.10.3 Information Exchange in Programming Languages 178

4.11 SUMMARY 179

4.12 ASSESSMENT 182

4.12.1 Concepts and Definitions 182
4.12.2 Problem Solving 182
4.12.3 Extended Response 183

FURTHER READING 184

Chapter 5 ■ Implementation Models for Imperative Languages 185
5.1 ABSTRACT COMPUTING MACHINE 187

5.2 TRANSLATING CONTROL ABSTRACTIONS 190

5.2.1 Translating Expressions 190
5.2.2 Translating Assignment Statement 190
5.2.3 Translating If-Then-Else Construct 191
5.2.4 Translating Case Statement 191
5.2.5 Translating Iterative Constructs 192

5.3 STATIC ALLOCATION 194

5.4 HYBRID ALLOCATION 197

5.4.1 Roles of Various Pointers 198
5.4.2 Calling Subprograms 199
5.4.3 Generating Data and Code Areas 200

x    ◾    Contents

5.5 IMPLEMENTING PARAMETER PASSING 205

5.5.1 Implementing Call-by-Value 205
5.5.2 Implementing Call-by-Reference 206
5.5.3 Implementing Call-by-Value-Result 207

5.6 LOW-LEVEL BEHAVIOR OF RECURSIVE PROCEDURES 209

5.7 IMPLEMENTING EXCEPTION HANDLER 210

5.8 SUMMARY 210

5.9 ASSESSMENT 212

5.9.1 Concepts and Definitions 212
5.9.2 Problem Solving 212
5.9.3 Extended Response 213

FURTHER READING 214

Chapter 6 ■ Dynamic Memory Management 215
6.1 HEAP ORGANIZATION 216

6.2 ALLOCATION OF DYNAMIC DATA OBJECTS 218

6.3 DEALLOCATION OF DYNAMIC DATA OBJECTS 219

6.4 FRAGMENTATION 220

6.5 GARBAGE COLLECTION—RECYCLING HEAP MEMORY 221

6.5.1 Garbage Collection Approaches 222
6.6 START-AND-STOP GARBAGE COLLECTION 223

6.6.1 Mark-and-Scan Algorithm 224
6.6.2 Copying Garbage Collection 225
6.6.3 Cheney’s Modified Copying Garbage Collection 228
6.6.4 Generational Garbage Collection 229

6.7 INCREMENTAL GARBAGE COLLECTION 231

6.7.1 Baker’s Algorithm 232
6.8 CONTINUOUS REFERENCE-COUNT GARBAGE COLLECTION 233

6.9 CONCURRENT GARBAGE COLLECTION 235

6.9.1 Concurrent Copying Garbage Collection 235
6.9.2 Concurrent Real-Time Garbage Collection 236

6.10 ISSUES IN GARBAGE COLLECTION 236

6.11 SUMMARY 237

Contents    ◾    xi

6.12 ASSESSMENT 239

6.12.1 Concepts and Definitions 239
6.12.2 Problem Solving 239
6.12.3 Conceptual Type 240

FURTHER READING 241

Chapter 7 ■ Type Theory 243
7.1 ADVANTAGES OF TYPE DECLARATION 244

7.2 NOTION OF TYPE 246

7.2.1 Basic Data Types 247
7.3 SET OPERATIONS AND STRUCTURED TYPES 248

7.3.1 Ordinal Types 248
7.3.2 Cartesian Product and Tuples 249
7.3.3 Finite Mapping and Arrays 249
7.3.4 Power Set and Set Constructs 250
7.3.5 Disjoint Union and Variant Record 250
7.3.6 Set Operations for Recursive Data Types 251

7.4 LIMITATIONS OF TYPE THEORY 252

7.5 POLYMORPHISM 254

7.5.1 Parametric Polymorphism 255
7.5.2 Inclusion Polymorphism and Subtypes 256
7.5.3 Overloading 257
7.5.4 Coercion 258

7.6 TYPE SYSTEM IN MODERN PROGRAMMING LANGUAGES 259

7.6.1 Universal Reference Type 260
7.7 TYPE EQUIVALENCE 261

7.7.1 Structure versus Name Equivalence 262
7.8 IMPLEMENTATION OF TYPES 263

7.8.1 Type Inference and Checking 266
7.8.2 Implementing Polymorphic Type Languages 267

7.9 CASE STUDY 268

7.9.1 Type System in Ada 268
7.9.2 Type System in C++ 269
7.9.3 Type System in Modula-3 269

7.10 SUMMARY 269

xii    ◾    Contents

7.11 ASSESSMENT 272

7.11.1 Concepts and Definitions 272
7.11.2 Problem Solving 272
7.11.3 Extended Response 273

FURTHER READING 274

Chapter 8 ■ Concurrent Programming Paradigm 275
8.1 CONCURRENT EXECUTION AND ABSTRACTIONS 276

8.1.1 Race Conditions 277
8.1.2 Threads and Dependencies 278
8.1.3 Synchronization and Mutual Exclusion 279
8.1.4 Sequential Consistency 281

8.2 PROGRAM DEPENDENCY AND AUTOMATIC

 PARALLELIZATION 282

8.2.1 Control Dependency 283
8.2.2 Data Dependency 285
8.2.3 Program-Dependency Graph 288
8.2.4 Parallelization Techniques 288
8.2.5 Granularity and Execution Efficiency 291
8.2.6 Program Slicing 293

8.3 TASK AND DATA PARALLELISM 295

8.3.1 Task Parallelism 296
8.3.2 Data Parallelism 299
8.3.3 Integrating Task and Data Parallelism 300

8.4 DISTRIBUTED COMPUTING 301

8.4.1 Executing Remote Procedures 301
8.4.2 Parameter Passing in Remote Procedure Calls 302

8.5 COMMUNICATING SEQUENTIAL PROCESSES 303

8.5.1 CSP Algebra 304
8.5.2 Communicating Sequential Process Language 306

8.6 MEMORY MODELS FOR CONCURRENCY 307

8.6.1 Memory Model of C++ 309
8.7 CONCURRENT PROGRAMMING CONSTRUCTS 309

8.7.1 Coroutines 309
8.7.2 Cobegin–Coend 310

Contents    ◾    xiii

8.7.3 Fork-and-Join 310
8.7.4 Monitors 311

8.8 CASE STUDY 313
8.8.1 Concurrent Programming in Ada 313
8.8.2 Concurrent Programming in Java 314
8.8.3 Distributed Computing in Emerald 316

8.9 SUMMARY 316
8.10 ASSESSMENT 320

8.10.1 Concepts and Definitions 320
8.10.2 Problem Solving 320
8.10.3 Extended Response 321

FURTHER READING 322

Chapter 9 ■ Functional Programming Paradigm 325
9.1 EXPRESSIONS 327
9.2 EVALUATION OF λ-EXPRESSIONS 328

9.2.1 Applicative-Order versus Normal-Order Reductions 329
9.3 FPS—FUNCTIONAL PROGRAMMING SYSTEMS 331

9.3.1 Kernel Functions 331
9.3.2 Functional-Forms for Constructing Complex Functions 333
9.3.3 Programming in FPS 335
9.3.4 Comparing λ-Expressions and FPS 338

9.4 ABSTRACTIONS AND PROGRAMMING 338
9.4.1 Abstractions in Functional Programming Languages 338
9.4.2 Abstractions and Programming in the Lisp Family 340
9.4.3 Abstractions and Programming in Hope 343
9.4.4 Abstractions and Programming in Haskell 344
9.4.5 Abstractions and Functional Programming in Scala 347
9.4.6 Abstractions and Functional Programming in Ruby 350

9.5 IMPLEMENTATION MODELS FOR FUNCTIONAL
 LANGUAGES 352

9.5.1 SECD Machine and Eager Evaluation 352
9.5.2 Graph-Reduction Strategies 353
9.5.3 Implementing Lazy Evaluation 355

9.6 INTEGRATION WITH OTHER PROGRAMMING
 PARADIGMS 357

9.6.1 Concurrency in Functional Languages 357

xiv    ◾    Contents

9.7 SUMMARY 358
9.8 ASSESSMENT 362

9.8.1 Concepts and Definitions 362
9.8.2 Problem Solving 362
9.8.3 Conceptual Type 363

FURTHER READING 364

Chapter 10 ■ Logic Programming Paradigm 365
10.1 LOGIC PROGRAMMING FUNDAMENTALS 366

10.1.1 Facts and Rules 366
10.1.2 Forward and Backward Reasoning Systems 368
10.1.3 Data Representation 368
10.1.4 Unification—Bidirectional Information Flow 369
10.1.5 Representing Logic Programs 372
10.1.6 Properties of Logic Programs 373

10.2 ABSTRACT IMPLEMENTATION MODEL 374

10.2.1 Query Reduction 374
10.2.2 Mapping Query Reduction to AND-OR Tree 376
10.2.3 Backtracking 377
10.2.4 Warren Abstract Machine 379
10.2.5 Program Analysis 380

10.3 PROGRAMMING USING PROLOG 380

10.3.1 Cuts—Programmer-Directed Efficiency 382
10.3.2 Programming with Sets 383
10.3.3 Nondeterministic Programming 384
10.3.4 Abstractions and Meta-Programming 385
10.3.5 Limitations of Prolog 389

10.4 EXTENDING LOGIC PROGRAMMING PARADIGM 389

10.4.1 Temporal Logic Programming 390
10.4.2 Constraint Logic Programming 390
10.4.3 Inductive Logic Programming 392
10.4.4 Higher-Order Logic Programming 393

10.5 INTEGRATION WITH OTHER PARADIGMS 394

10.5.1 Integration with Functional Programming 394
10.5.2 Integration with Object-Oriented
 Programming 396
10.5.3 Concurrent Logic Programming 396

Contents    ◾    xv

10.6 SUMMARY 397

10.7 ASSESSMENT 399

10.7.1 Concepts and Definitions 399
10.7.2 Problem Solving 399
10.7.3 Extended Response 401

FURTHER READING 401

Chapter 11 ■ Object-Oriented Programming Paradigm 403
11.1 CLASSES AND OBJECTS 405

11.1.1 Object—An Instance of a Class 406
11.2 CLASS-HIERARCHY AND INHERITANCE 408

11.2.1 Subclasses 408
11.2.2 Virtual Methods 409
11.2.3 Multiple-Inheritance 411

11.3 VISIBILITY AND INFORMATION EXCHANGE 412

11.3.1 Visibility of Member Entities 412
11.3.2 Encapsulation 413
11.3.3 Information Exchange 413

11.4 POLYMORPHISM AND TYPE CONVERSION 414

11.4.1 Parametric Polymorphism and Generic
 Templates 414
11.4.2 Casting 415
11.4.3 Subclass versus Subtyping 416

11.5 CASE STUDIES 417

11.5.1 Abstractions and Programming in C++ 417
11.5.2 Abstractions and Programming in Java 419
11.5.3 Abstractions and Programming in Scala 420
11.5.4 Abstractions and Programming in Ruby 422

11.6 IMPLEMENTATION OF OBJECT-ORIENTED LANGUAGES 424

11.6.1 Storage Allocation and Deallocation 425
11.6.2 Implementing Casting 428
11.6.3 Implementing Multiple-Inheritance 429
11.6.4 Implementing Virtual Entities and Methods 429
11.6.5 Overhead Issues and Optimizations 431
11.6.6 Run-Time Behavior 431

xvi    ◾    Contents

11.7 DISTRIBUTED OBJECT-ORIENTED MODELS 433

11.7.1 Distributed Objects in Emerald 433
11.7.2 Distributed Objects in Java 434
11.7.3 Remote Method Invocation 434
11.7.4 RMI-Based Programming 435

11.8 SUMMARY 436

11.9 ASSESSMENT 438

11.9.1 Concepts and Definitions 438
11.9.2 Problem-Solving 438
11.9.3 Extended Response 439

FURTHER READING 440

Chapter 12 ■ Web and Multimedia Programming Paradigms 441
12.1 CODE AND DATA MOBILITY 442

12.1.1 Issues in Mobile Computing 443
12.2 WEB-BASED PROGRAMMING 445

12.2.1 HTML 446
12.2.2 XML as Middleware Interface Language 448
12.2.3 Web Scripting 453
12.2.4 Applets 455
12.2.5 Security in Web Programming 457

12.3 VIRTUAL MACHINES AND RUN-TIME INTERFACE 458

12.3.1 Java Virtual Machine 459
12.3.2 Just-in-Time Compilation 461

12.4 COMPONENTS OF MULTIMEDIA SYSTEMS 462

12.4.1 Representation and Transmission 463
12.4.2 Perceptual Distortion 465
12.4.3 Synchronization in Multimedia 466

12.5 MULTIMEDIA PROGRAMMING CONSTRUCTS 468

12.5.1 Synchronization Constructs 470
12.6 CASE STUDY 470

12.6.1 Abstractions and Programming in Alice 470
12.6.2 Abstractions and Programming in SMIL 472
12.6.3 Abstractions and Web Programming in Javascript 474
12.6.4 Abstractions and Web Programming in C# 475

Contents    ◾    xvii

12.7 SUMMARY 475

12.8 ASSESSMENT 479

12.8.1 Concepts and Definitions 479
12.8.2 Problem Solving 479
12.8.3 Extended Response 479

FURTHER READING 480

Chapter 13 ■ Other Programming Paradigms 483
13.1 EVENT-BASED PROGRAMMING 484

13.1.1 Event Model 485
13.1.2 Developing an Event-Based Program 486

13.2 AGENT-BASED PROGRAMMING 489

13.2.1 Components of an Agent-Based System 491
13.2.2 Agent Security 493
13.2.3 Fault Tolerance in Multi-Agent Systems 493

13.3 HIGH PRODUCTIVITY MASSIVE PARALLEL PROGRAMMING 494

13.3.1 Partitioned Global Address Space 495
13.3.2 Constructs for High-Productivity Computing 496

13.4 SYNCHRONOUS LANGUAGES 498

13.4.1 Synchronous Constructs in Estrel 499
13.5 SUMMARY 500

13.6 ASSESSMENT 503

13.6.1 Concepts and Definitions 503
13.6.2 Problem Solving 503
13.6.3 Extended Response 504

FURTHER READING 504

Chapter 14 ■ Scripting Languages 507
14.1 COMPONENTS OF SCRIPTING LANGUAGES 509

14.1.1 Shell-Based Programming 509
14.1.2 Data-Driven Programming 510
14.1.3 Command Scripts 510
14.1.4 Text and String Processing 511

14.2 ABSTRACTIONS IN SCRIPTING LANGUAGES 511

14.2.1 Control and Data Abstractions 512
14.2.2 Shell Variables 512

xviii    ◾    Contents

14.2.3 Type Conversions 513
14.2.4 Regular Expressions and Pattern Matching 513
14.2.5 Programming Example 513

14.3 CASE STUDY 515

14.3.1 Abstractions and Programming in Perl 515
14.3.2 Abstractions in PHP 517
14.3.3 Abstractions and Programming in Python 518
14.3.4 Script Programming in Prolog 522
14.3.5 Script Programming in Ruby 524
14.3.6 Other Scripting Languages 526

14.4 SUMMARY 526

14.5 ASSESSMENT 528

14.5.1 Concepts and Definitions 528
14.5.2 Problem Solving 528
14.5.3 Extended Response 528

FURTHER READING 529

Chapter 15 ■ Conclusion and Future of Programming Languages 531
15.1 EVOLUTION OF PROGRAMMING PARADIGMS AND

 LANGUAGES 531

15.2 EVOLUTION OF IMPLEMENTATION MODELS AND

 COMPILERS 536

15.3 CONSTRUCT DESIGN AND COMPREHENSION 538

15.4 FUTURE DEVELOPMENT OF PROGRAMMING LANGUAGES 538

FURTHER READING 540

APPENDIX I: Supported Paradigms in Languages, 541

APPENDIX II: Data Abstractions Summary, 543

APPENDIX III: Control Abstractions Summary, 545

APPENDIX IV: Websites for Languages, 547

APPENDIX V: Principle of Locality, 549

Contents    ◾    xix

© 2010 Taylor & Francis Group, LLC

APPENDIX VI: Virtual Memory and Page-Faults, 551

APPENDIX VII: Program Correctness and Completeness, 553

APPENDIX VIII: Complexity of Algorithms, 555

ADDITIONAL REFERENCES, 557

INDEX, 567

xxi

Preface

Programming language is a core topic in the undergraduate curricula of computer
 science. It integrates abstract concepts in computation, programming paradigms—

styles to express formal solutions to problems; compilers; low-level execution behavior
of programs; and operating systems. As students grow their understanding of computer
science, it becomes clear to them that instructions and data representations in various
programming languages have a common purpose and features that can be abstracted—
identified using their common properties. Once provided with a deeper understanding
of abstractions, students can superimpose the syntax on top of these abstractions to learn
quickly new programming languages in the fast-changing world of computer science.

There are multitudes of powerful programming languages. Educational institutions
teach the first course in programming, and data structures in multiple languages such as
C++, Java, PHP, Python, and C. The use of different syntax for the same abstraction tends
to confuse students who are fresh from core courses in computer science. The main pur-
pose of this book is to free students from the shackles of syntax variations in languages and
biases of specific programming paradigm(s).

This classroom-tested material introduces programming language concepts at an
abstract level, freeing them from the restraints of multiple language syntax. The text is
designed for computer science/IT courses focusing on the principles or concepts of pro-
gramming languages. The book is suitable as a textbook for a semester-long course at the
sophomore/junior levels to teach concepts of programming language design and imple-
mentation. It can also be used as a textbook for an introductory graduate-level course in
programming language or as a reference book for other graduate-level courses in program-
ming languages.

The book provides background on programming language concepts and discusses
the features of various paradigms. The book teaches: (1) the common features of the pro-
gramming languages at the abstract level rather than at a comparative level; (2) the imple-
mentation model and behavior of programming paradigms at an abstract levels so that
students understand the power and limitations of programming paradigms; (3) language
constructs at a paradigm level; and (4) a holistic view of the programming language design
and behavior.

In addition to the discussion of classical topics such as syntax and semantics, imperative
 programming, program structures, mechanisms for information exchange between sub-
programs, object-oriented programming, logic programming, and functional programming,

xxii    ◾    Preface

this book adds new topics such as dependency analysis, communicating sequential processes,
concurrent programming constructs, web and multimedia programming, event-based pro-
gramming, agent-based programming, synchronous languages, high-productivity program-
ming on massive parallel computers, and implementation models and abstract machines
used in different programming paradigms. Effort has been made to include distributed com-
puting topics such as models for mobile computing, remote procedure calls, remote method
invocation, and the corresponding parameter passing mechanisms. With multicore comput-
ers, distributed networks of computers and the pervasiveness of the Internet, many of these
topics have become relevant. Chapter 2 explains many background concepts at an abstract
level. My experience in teaching this course is that these background concepts are taught to
students at the program-writing level, when they lack the required abstract understanding.
Besides, various schools have differing syllabi. Students will find it useful to refresh their
understanding of the concepts through an abstract-level description.

This book illustrates programing constructs with intuitive reserved words instead
of dwelling on the specific syntax of some languages. However, examples from newer
 representative languages such as Ada 2012, C++, C#, Haskell, Java, Lisp, Modula-3, Ruby,
Scala, Scheme, Perl, Prolog, and Python have been included to illustrate the concepts.

xxiii

Chapter Outlines

The scope of this book has been limited to the material covered in a semester-long
course that teaches principles and theory of programming languages. However, the

book has sufficient material to be used as a reference for the first course in programming
 languages at the entry level in a graduate program.

It is assumed that students who read this book will have a background of two semes-
ters of programming, introductory courses in discrete structures and data structures, and
some intuition about operating systems. The book assumes that students will have knowl-
edge of at least one programming language, and capability of writing around 200 lines of
code in a program involving blocks, functions, procedures, parameter passing, and various
control structures such as if-then-else, case-statements, while-loop, do-while-loop, func-
tion, and procedure calls.

The book is divided into 15 chapters, including a concluding chapter. Concepts have
been explained in a simple, intuitive language at an abstract level. Examples and case stud-
ies using popular and newer languages have been included and explained enough to take
the sting out of understanding syntax. Owing to a multitude of languages being devel-
oped, a representative set has been chosen that in no way reflects any preference over other
languages.

Chapter 1 discusses the need for a course in programming languages and the learning
outcomes of this course. It also introduces the notion of a program, explains the differ-
ence between data and control abstractions, and explains the need for abstractions and
high-level modeling for specifying solutions to real-world problems. It describes various
problem domains and their differing requirements. It also describes briefly the software-
development cycle to emphasize the properties of good programming languages. The
conflicting natures of many of these properties are explained. A brief history of the evolu-
tion of programming languages at the programming paradigm level is explained. Finally,
the chapter describes various classifications used to categorize programming languages.

Chapter 2 describes the mathematics and abstract concepts in computation needed to
understand design and implementation models of programming languages. The chapter
describes briefly properties of the von Neumann machine and its effect on programming
style, related discrete structure concepts, related data structure concepts, related operating
system concepts, and some required abstract concepts in computation. Discrete structure
concepts described are sets and set operations, relations and functions, Boolean and predi-
cate logic, functions, and types of recursion. Related data structure concepts are stacks and

xxiv    ◾    Chapter Outlines

queues, depth-first and breadth-first search, trees and graphs, pointers and recursive data
structures. Concepts related to abstract computation are the notions of variable, expres-
sion and command, environment and store, computational state, and transitions between
computational states. Background concepts for concurrent programming such as concepts
of processes, threads, and buffers are discussed.

There is some overlap between the abstract model of computation discussed in Chapters 2
and 4. However, due to mutual dependency between syntax and semantics, explained in
Chapter 3, and abstractions in program structure and execution, part of the abstraction
needed for understanding syntax and semantics is introduced in Chapter 2.

Chapter 3 describes the syntax—techniques to validate programming constructs and
semantics—associating meanings to abstract programming constructs in programming
language. It introduces the definitions of syntax and semantics, explains how the grammar
for a programming language can be expressed and developed in the textual form needed
for parsing and the visual form needed for human comprehension. The chapter illustrates
the conversions between textual and visual forms. It describes different types of grammars,
ambiguity in grammars, their powers and limitations, and their usage in the compilation
process. It explains parsing—the process of validating sentence structure, its abstract
algorithm, and parse trees—the trees formed during the sentence structure validation.
The chapter also explains different types of semantics: operational semantics needed to
translate high-level language constructs to low-level abstract instruction sets, axiomatic
semantics (semantics based upon modeling a computational state as Boolean expressions),
denotational semantics (semantics based upon mapping syntax rules into corresponding
semantic rules in a domain), action semantics—(a practical integration of operational,
axiomatic, and denotational semantics used by the compilation process), and behavior
semantics (a semantics based upon high-level, state transition–based behavior of underly-
ing programming constructs).

Chapter 4 describes abstractions and information exchange mechanisms between pro-
gram units. The abstractions have been grouped as data abstractions and control abstrac-
tions. The chapter describes how this information can be transferred using scopes of the
variables, import/export mechanisms across modules, and parameter-passing mechanisms
between a calling and a called subprogram. The chapter also describes the mechanism of
exception-handling in programming languages for graceful handling of error conditions.
It describes the notion of nondeterministic programming style and languages. The chapter
introduces the notion of meta-programs—programs that can use other programs as data,
programs as first-class objects where a program can be developed as data at run time, and
the concept of side effect—changes in a computational state that can cause incorrectness
during program execution. The need and various techniques for interoperability between
programming languages are also discussed.

Chapter 5 describes the implementation models and an abstract machine for executing
imperative programs. The chapter describes two major models of implementation: static
implementation and an integrated model that combines static, stack-based, and heap-
based memory allocation. It discusses the limitations and advantages of the three memory
allocation models: static, stacks based, and heap based; and describes how an integrated

Chapter Outlines    ◾    xxv

model reduces limitations of individual memory-allocation schemes. The chapter also
describes how procedure calls and parameter passing can be modeled in von Neumann–
style abstract machines, and compares the implementation of different parameter-passing
mechanisms including parameter-passing mechanisms in functional programming and
distributed computing.

Chapter 6 describes the structure of a heap—a common memory space that is used to
allocate recursive and dynamic data objects. It also describes memory allocation and gar-
bage collection—the process of recycling released memory space for memory reallocation.
The chapter describes different types of garbage collection techniques grouped under four
major categories: stop-and-start garbage collection schemes that suspend programs once
garbage collection starts, incremental garbage collection schemes that allow program exe-
cution during garage collection, continuous, and concurrent garbage collection techniques.
It describes the advantages, abstract algorithms, and limitation of various approaches.

Chapter 7 describes the theory of types. It explains the relationship of data abstraction
described in Chapter 4 and set operations, and explains the advantages of type declarations
and limitations of type theory to handle run-time errors. It describes various run-time
errors that can be caused despite type declaration in compiled languages. The chapter also
describes polymorphism—the capability to handle multiple (possible indefinite) data types
by a generic function or operator. The chapter discusses the issue of type equivalence—
when two variables of different types can be equated. The chapter describes the internal
representation of type information during compilation for statically compiled languages.
The chapter also describes the implementation models and compile-time type-inference
mechanisms for polymorphic languages. It describes a case study of type-rich languages
such as Ada 2012, Hope, and C#.

Chapter 8 describes the theory of nondeterministic programming and models of con-
current programming. It describes the notion of automated parallelization of program;
program dependency graphs—a graph that shows dependency among program statements
based upon data flow and control flow; sequentiality introduced due to writing informa-
tion into shared data structures; the notion of coarse granularity—grouping the set of
statements to be executed on the same processor to reduce data transfer overhead across
processors and/or memory storage; and various programming constructs such as threads
and monitors needed for concurrent execution of programs. The chapter also discusses the
need for sequential consistency to regulate the run-time unpredictable behavior of concur-
rent programs caused by racing condition—a condition where the order of termination
of concurrent process is not predictable. The chapter discusses various synchronization
and mutual exclusion techniques including locks and transactional memory. Concepts are
illustrated using a case study of four representative languages: Ada, CSP, Emerald, and Java.

Chapter 9 describes functional programming paradigm; lambda expressions and
their evaluations; and programming constructs, implementation models for functional
 programming languages, and integration of functional programming with concur-
rent programming paradigm. The concept of λ-calculus—an underlying mathematical
model for the evaluation of mathematical expressions—is discussed. The concept of a
generic functional programming system (FPS) using generic kernel functions and generic

xxvi    ◾    Chapter Outlines

function-forming operators to form complex functions is also introduced. Various func-
tional programs are presented to illustrate the advantages and limitations of functional
programming style that uses immutable data entities, compared to imperative program-
ming style that supports destructive update of the variable-values. The data abstractions
and control abstractions in many functional programming languages such as Lisp, Haskell,
Hope, Ruby, and Scala are discussed. The chapter discusses SECD machine—a classical
abstract machine for executing functional programs, and a graph-based abstract imple-
mentation models. Finally, the chapter describes concurrent functional programming, and
the concurrency present in the Lisp family, Haskell, and Ruby.

Chapter 10 describes logic programming paradigm, abstractions in logic programs,
and the implementation model of logic programs. It introduces the concept of forward
chaining, backward chaining, the concept of unification to equate two logical terms and
a parameter-passing mechanism in logic programs. It describes AND-OR tree as a means
for the abstract implementation of logic programs, and shows how a logical-query can be
mapped to an AND-OR tree. It describes backtracking as means to traverse the search
space to generate multiple (possibly all) solutions to a problem. It introduces Prolog as an
example of backward chaining backtracking-based language and describes simple features
of Prolog. It describes briefly the WAM (Warren abstract machine)—the primary abstract
implementation model for the efficient implementation of the AND-OR tree. It describes
briefly various extensions of the logic programming paradigm such as temporal logic pro-
gramming, constraint logic programming paradigm, higher-order logic programming.
Finally it describes various attempts to integrate logic programming with functional pro-
gramming and concurrent programming.

Chapter 11 describes the abstract concepts in the object-oriented programming par-
adigm, and briefly describes schematics to implement object-oriented programming
languages. The chapter describes class hierarchy, inheritance, encapsulation, multiple
inheritances, virtual methods, overrides, and dynamic binding. It describes a schematic
of an abstract model to implement object-oriented languages that can handle dynamic
binding, virtual methods, and multiple inheritance. It discusses inherent limitations of
multiple inheritances. The chapter takes examples from Java, C++, Ruby, and Scala to
illustrate the object-oriented programming concepts.

Chapter 12 discusses the web and multimedia programming paradigm. It discusses
theoretical aspects of code and data mobility, the related security-related issues, compila-
tion issues with the mobile code, and the need for middle-level software such as XML,
JVM—Java Virtual Machine—and CLI: Common Language Interface. It describes XML
and .NET based specification mechanism. The chapter describes how dynamic XML can
be used to model dynamically changing graphs, 3D animated objects, and databases. It
discusses multimedia formats to represent multimedia objects such as images, texts, audio,
audio visuals, and streams. The issue of perception distortion due to the lack of synchro-
nization is discussed. Various multimedia synchronization mechanisms and constructs
are discussed. The last section provides case studies from three representative high-level
languages: Synchronous Multimedia Integration Language (SMIL); Alice—a language that
integrates visual programming paradigm and object-oriented programming paradigm to

Chapter Outlines    ◾    xxvii

model animated objects; and C#—a popular multiparadigm language that integrates web
computing, object-oriented programming, and event-based programming.

Chapter 13 discusses the concepts in the remaining programming paradigms: event-
based programming, agent-based programming, synchronous programming, and object-
based languages currently being developed for massive parallel computers. A detailed
example is taken from C# to illustrate the program development and internal working of
event-based programming. Agent-based programming is explained, and security issues
and fault tolerance issues for agent-based programming are discussed. Partitioned Global
Address space is discussed as a memory model for massive-parallel, high-productivity
computing. Parallel constructs in X10 and Chapel—two languages integrating object-
oriented programming and massive-parallel computing—are discussed. The concept of
synchronous computation based upon signal emissions and logical clock is explained
using abstract syntax for constructs taken from Estrel—a synchronous language.

Chapter 14 discusses the concepts of scripting languages. As application systems
evolved, there has been a need to integrate shell-based programming, control and data
abstractions, database programming, and web-based programming. Scripting languages
provide this glue and have incorporated multiple features from different programming
paradigms to provide a user-friendly programming style. The chapter discusses control
and data abstractions in scripting languages, their string- and text processing capability,
pattern-matching capabilities, integration with shell-based programming and web-based
scripting. The examples have been taken from Perl, Prolog Python, and Ruby. The final sec-
tion discusses various scripting features of Perl, PHP, Prolog, Python, and Ruby.

Chapter 15 summarizes all the discussions and describes the evolution of program-
ming languages with respect to evolution in paradigms and evolution in implementation
of languages. Possible future directions in the language development are also discussed.
The last section explains that as the cluster of massive parallel computers becomes
available to masses, there will be a need for programming languages that can integrate
 high-productivity massive parallel programming and user friendliness for robust software
maintenance.

xxix

Classroom Use of This Book

The suggested details of timing efforts for various chapters are given in the table below.
The teaching material takes approximately 28 lectures of 75 minutes each or 42 lectures

of 45 minutes each. Chapter 2 discusses the background material and is quite helpful, as
different schools have different course descriptions for data structure, discrete structures,
and operating systems. Except for Section 2.4, the remaining material in Chapter 2 can
be given as self-study or can be covered as needed. At the beginning of each chapter, the
required background concepts are mentioned. Section 2.4 can be taught in sequence with
other chapters.

Chapter
Time in
Minutes

75-Minute
Lectures

45-Minute
Lectures

Suggested Minimum Coverage for
Semester-Long Course

Chapter 1 105 1.5 2.5 Full
Chapter 2 40 0.5 1.0 Section 2.4; remaining self-study
Chapter 3 150 2.0 3.0 Full
Chapter 4 180 2.5 4.0 Full
Chapter 5 150 2.0 3.0 Full
Chapter 6 150 2.0 3.0 Full
Chapter 7 180 2.5 4.0 Full
Chapter 8 180 3.0 4.5 Sections 8.1 through 8.4, 8.7, and 8.8
Chapter 9 150 2.0 3.0 Sections 9.1 through 9.5.1 and 9.7
Chapter 10 150 2.0 3.0 10.1 through 10.3, 10.6
Chapter 11 100 2.0 3.0 11.1 through 11.4, 11.6; languages could

be self-study
Chapter 12 100 1.5 2.0 12.1 through 12.5; languages could be

self-study
Chapter 13 100 1.5 2.0 13.1 through 13.3
Chapter 14 100 1.0 1.5 14.1, 14.2; languages could be self-study
Chapter 15 50 0.5 1.0 15.1, 15.2
Total App. 1900 27 lectures 41 lectures

xxxi

Acknowledgments

I offer my prayers to Goddess Saraswati for the inspiration to write this book. I acknowl-
edge my parents who infused the love of reading in me and sacrificed a lot to help me

achieve my dreams. I acknowledge my elder brother, Professor Arun Agrawal, whom I tried
to emulate early in my life. I acknowledge all my students who have pointed out patiently
various errors in classroom slides for the last two decades. Even after teaching and correct-
ing the slides for the past two decades, I find errors and knowledge gaps every time I teach
in this ever-changing field. I acknowledge various researchers, instructors, and professors
who have improved, and will improve in subsequent editions, my knowledge of program-
ming language theory by their book reviews, insightful articles, presentations, and their
books. The artwork on the cover page is a generous gift from Prabha Singh—my senior
from high school days. I am especially grateful to all those people who have helped me
by editing, reviewing, proofreading, and printing this book, which was long overdue and
lived only in the form of overheads and my voice in my lectures. I thank Angela Guercio
who read a draft version page by page to correct many overlooked mistakes and offered
many useful insights. I acknowledge my children, Ambika and Ambuj, who put up with
my long working hours during the summer and fall of 2012. Finally, I acknowledge Randi
Cohen, the acquiring editor at CRC Press, who made this endeavor possible. Part of this
book was completed during a sabbatical from Kent State University.

xxxiii

About the Author

Arvind Bansal is a professor of computer science at Kent State University. He earned a
BTech (1979) in electrical engineering, an MTech (1983) in computer science from Indian
Institute of Technology at Kanpur, India, and a PhD (1988) in computer science from Case
Western Reserve University, Cleveland, Ohio. He has been a faculty member of computer
science at Kent State University, Kent, Ohio since 1988. Dr. Bansal has taught under-
graduate-level and graduate-level courses regularly in the areas of artificial intelligence,
multimedia systems, and programming languages. He has been teaching undergraduate
programming languages regularly for the past 23 years.

Professor Bansal's research contributions are in the areas of concurrent logic pro-
gramming, fault-tolerant agent-based systems, knowledge bases, program analysis, and
XML-based multimedia languages and systems. His other research contributions are in
bioinformatics, biological computing, and proteomics. He is a member of IEEE and ACM.
He has served in more than 50 international conferences as a program committee mem-
ber in the areas of artificial intelligence, logic programming, multimedia, parallel pro-
gramming, and programming languages, and has contributed as an area editor to the
 international journal Tools with Artificial Intelligence for many years.

xxxv

Glossary of Symbols

Symbol Meaning

∨ Logical-OR of two truth values
∧ Logical-AND of two truth values
… More similar information omitted for better readability
↦ Maps to. In defining store, the symbol has been used for memory location mapping to r-value

and identifier mapping to memory location. In type theory, it has been used to map a domain
element to a range element.

∪ Union of two sets
≺s Left-side entity is a subclass of the right-side entity
⊆ Left-side entity is a proper subset of right-side entity
⋂ Intersection of two sets
∈ Left-side entity is a member of right-hand side set
⊕
⊎

Insertion of an entity in a bag of entities
Disjoint union

≻
≺

Left-side entity succeeds right-side entity
Left-side entity precedes right-side entity

⊥ Bottom symbol used to show mapping to error condition in functions
→ Denotes (1) implication, (2) delimiter separating guards from commands in guarded

commands, and (3) transition between states from the current state to the next state.
×

{…}

It has been used for (1) multiplication of numbers in definitions of grammars, and
(2) Cartesian product in type theory.

Set of data-items
<…> (1) Nonterminal symbols in syntax grammars, (2) sequence of data items, and (3) generic

abstract symbol
[…] (1) Dimension in multidimensional arrays and (2) list in functional programming languages

Haskell and ML
(…) (1) Enumeration set in program examples and (2) dimension of an array in Ada or Scala

syntax

1

C h a p t e r 1

Introduction

Computer science has become an exciting field since its inception in the late 1950s.
What was conceived as a tool for large-scale scientific computing during its birth

is now being used in almost every aspect of life, including medical science, space explo-
ration, telecommunication, information exchange, remote collaboration, modeling,
computer-aided design, automated navigation, automated manufacturing, automated
surgery, planning, designing, productivity tools for presentation, electronic transactions
and commerce, transportation, and managing utility distributions. Now we cannot think
of our life without the use of an embedded or personal computer. Computers are embed-
ded in many modern-day gadgets such as automobiles, cell phones, airplanes, spacecrafts,
high-end washers and dryers, ovens, and home security systems. Now we talk of smart
homes that will have computers to process multiple sensor information and take care of
many routine aspects of the house.

Behind all these computer activities are the smart brains of programmers who have
solved many complex problems and presented the solutions using high-level instructions.
These instructions are translated to low-level machine instructions by automated language
translators. These low-level instructions drive the execution of programs in computers.
The machine-level instructions are limited in their expressive power and will not facilitate
modeling and modification of the high-level solutions with the evolution of requirements.
Clearly there is a need for high-level languages and language constructs to express solu-
tions to the complex problems and change these solutions as the requirements evolve. These
requirements come into existence due to restructuring of society caused by technological
advancement. This calls for incremental improvement and well-regulated modification of
software, so that modifying one part of the software does not adversely affect the other
part. To localize the effects, the software, should be made modular: different modules
with well-defined, non-overlapping functionality. These modules are loosely coupled with
 limited sharing of internal data structures and operations.

Modern-day problems are complex, and hundreds of thousands of lines of instructions
are required to solve these problems. Developing such solutions is not easy and involves
many man-years: the number of programmers multiplied with time in years. Such efforts

2    ◾    Introduction to Programming Language

mean large-scale commitment of organizational and financial resources. Such efforts
 cannot be duplicated and need to be augmented with evolutionary modification in the
software. Otherwise, the delay in the development and the cost of the development of soft-
ware would be tremendous and wasteful.

1.1 MULTITUDE OF PROBLEM DOMAINS
In the modern era, the problems to be solved by computers lie in different problem domains
such as scientific computing, text processing, database programming, business applications,
system programming, process automation, intelligent systems, web-based applications, and
real-time processing. All these domains are quite different from each other with different
requirements as follows.

An example of scientific computing is reasoning regarding the universe, where there
are billions of stars. In order to reason about their interaction with each other and with
our solar system, we have to process and analyze the data from computerized telescopes
that get trillions of bytes of data. Another example of scientific computing is the simula-
tion and tracking of atmospheric conditions such as tornadoes that cause devastation
in coastal areas. Another example of scientific computing is processing, analyzing, and
tracking seismic activities on earth. Processing scientific data and developing useful mod-
els to solve scientific problems require the capability to allocate and process large matrices
in the computer. The numbers have to be processed accurately. For example, computing
the trajectory of a spacecraft or a space shuttle requires precise calculations and high
accuracy.

Examples of text processing are word processors and productivity tools that we use
every day to write letters and prepare presentations. These kinds of problems require the
capability to represent and process large amount of strings, pictures, tables, video clips,
and other media objects in efficient ways. While large amount of computation is needed,
the computational need is not as large as that needed in the scientific computing domain.
However, it requires more interaction with humans and user friendliness.

Database programming requires organizing, processing, and searching huge amounts
of data in a logical manner so that they can be accessed immediately without unnecessary
duplications. Examples of database programming in real-time world are (1) processing stu-
dent data in a registrar’s office and (2) swiping a credit card at a gas pump. When students
walk in the registrar’s office and provide their student IDs, an accountant would know, in
a split second, detailed information about the student’s payments, apartment address, and
courses being taken.

Business applications require extensive generation of reports that can be presented to the
customers and upper division executives in a user-friendly manner. Business applications
require capabilities to integrate database programming with user-friendly report genera-
tion. However, a part of business application processing can be done in a batch mode; real-
time processing is not always needed.

System programming requires handling of multiple processes running concurrently,
providing virtual environments to improve programmers’ productivity, and interfacing
with low-level programming to improve the execution efficiency. System programming

Introduction    ◾    3  

requires stepping through computer memory, raising exceptions, giving out warnings if a
process misbehaves, and interfacing user-level calls to low-level system calls.

Real-time processing requires capturing and processing data in real time. Any account-
keeping job should not slow down the capture or processing of data, otherwise the cor-
responding real-time event may be missed with catastrophic outcomes. For example,
if a computer in a nuclear plant responds slowly to an overheating condition, then the
nuclear power plant may be damaged. If an onboard computer on a fighter aircraft is slow
to respond, the aircraft may be wiped out by an enemy missile. These examples require
providing high level of priority to real-time tasks, and taking quick, real-time decisions to
facilitate capturing and processing real-time events.

In recent years, intelligent systems have been placed in multiple walks of life such as
industrial robots, shop floor planning, airport scheduling, natural language understand-
ing system, game playing such as chess that can beat grandmasters, and analyzing images.
These systems have to work in a very large problem space and would need capabilities to
logically analyze and intelligently guess the solutions. Generally, these problems are guided
by heuristic programming—a sound intelligent guess based on mathematical modeling to
quickly move toward the solution state. The problem is complicated due to inherent uncer-
tainty in the behavior of the real-world phenomenon and lack of complete information.

In recent years, web-based programming combined with multimedia systems has put
a different requirement on programming languages. The programs should be retrievable
from remote websites (URLs) and executed on local machines. While retrieval from the
remote machines requires conversion of data structures to strings and vice versa, effi-
cient execution requires efficient translation to low-level instructions. Unfortunately,
the translation and execution of web-based programs occur concurrently, slowing down
the execution of programs, and needs just-in-time compilation techniques to speed up the
processing. In future, we will see domain-specific languages to handle different domains.

1.2 MOTIVATION
Given a set of requirements in a problem domain, programs can be developed for auto-
mating a process. However, communication of the solutions to the computers is diffi-
cult, because computers lack intelligence to comprehend our intentions, cannot correct
our mundane unintended errors, and lack capabilities to understand implications hidden
behind our communications. Everything has to be modeled and communicated explicitly
to the computers. The entities have to be modeled abstractly and precisely, and the solution
needs to be constructed stepwise, without incorporating any ambiguity.

A programming language is an organized way of communicating with a computer, such
that the computer behaves faithfully, according to the instructions given by the program-
mer. The instructions could use any media such as textual, visual, sign, gesture, audio, or
their combinations to specify the solutions. However, the important criteria are as follows:

 1. The solution of a problem can be easily and completely expressed.

 2. There has to be a potential for the evolution of the specification of the solution.

4    ◾    Introduction to Programming Language

 3. There has to be one to one unambiguous translation between the programmer’s intention
and the action taken by the computer. Since the solutions are specified at a high level,
there are indefinite possibilities of miscommunication between the programmer and the
computer, unless there are enough unambiguous constructs to express the solutions.

As the level of automation increases, the society restructures itself by absorbing the level
of automation, and new problem domains are developed. For example, when the com-
puters were invented in 1950s, the perceived requirement was scientific computing. The
requirements quickly evolved to text processing, consumer productivity tools, graphic
design, business automation, intelligent systems, web-based transactions, and web-based
collaborations.

Evolution of technology, societal restructuring, and the evolution of problem domains
are interleaved. As the technology and requirements grow, the solutions to the problems
become more intricate. Communicating these solutions need more human comprehen-
sible, yet computer translatable, programming languages that can be automatically trans-
lated to low-level instructions for better software maintenance. Internet-based languages
and web programming are barely 20 years old and are still evolving. High-level languages
for massive parallel computers are still evolving. New complex domains are evolving that
need integration with different styles of programming.

The design and the development of programming languages are guided by many aspects
such as the evolution of technology, the evolution of computer architecture, the evolution
of operating systems, the need to develop large-scale modular software, and the need to
maintain the software for a long period. With the development of new problem domains,
there will be new requirements, and thus the need for new programming languages.

1.3 LEARNING OUTCOMES
The learning outcomes of this course are as follows:

 1. Reducing the learning curve for new languages: The requirements are created by the
advancement of social infrastructure provided by the automation. The programming
language of the future will be more high level, will integrate multiple programming
paradigms, and will be used to develop complex software. The programmers would
have to learn new multiparadigm programming languages. It is not possible to retool,
unless one has a deeper abstract level of understanding of the programming para-
digms, abstractions, programming constructs, and their pitfalls. A deeper abstract
level of understanding of various programming paradigms will allow the program-
mers to superimpose the syntax of new languages on the abstractions for program-
ming in new languages.

 2. Programmer will become aware of low-level execution behavior: The course describes
the effect of the high-level constructs by translating them to the low-level instructions
that execute on low-level abstract machines. Understanding low-level behavior will
help avoid the pitfalls of many programming errors. It will also improve students’

Introduction    ◾    5  

programming style by making them aware of efficient and side-effect free program-
ming. Side-effects are undesirable computational effects caused by abstract computa-
tion models, and can cause the program to behave incorrectly.

 3. Programmer will be able to relate to compiler development: As new, domain- specific
languages are being developed, there is a need for the development of new compilers.
Understanding the low-level behavior of programming languages is the basis of code
generation for efficient execution.

 4. Improvement in programming style: The students will learn many constructs
in different classes of programming languages that will broaden their scope of
 programming style. They will also be able to express their solution efficiently by
 choosing appropriate data and control abstractions. Generally, after knowing a limited
number of programming languages such as C++, Java, PHP, or C#, programmers
get biased by specific programming styles. The knowledge of other programming
 constructs, used in different programming paradigms, improves their programming.

 5. Programmer will be able to select appropriate programming languages and pro-
gramming paradigms: Students will be able to map the problem domains to spe-
cific programming paradigms, and choose the appropriate languages for program
development.

1.4 PROGRAM AND COMPONENTS
When asked to automate a process or to solve a problem, a system analyst has to make a
model of the system, parameterize the input and output behavior, and connect various
modules using a flow chart. These modules abstract the real-world process. The programs
are specifications of the solutions that are developed to process data and handle dataflow
between these modules.

The specification of a solution to a real-world problem is described at a high level for the
ease of human understanding, and the computer’s action is based on low-level machine
instructions. There is a need for a translation process that uniquely maps (without any
ambiguity) high-level instructions to a sequence of equivalent low-level instructions.
Instructions should have a clear unique meaning to avoid ambiguity.

A program is a sequence of meaningful symbols to formally specify the solution to a com-
plex problem (see Figure 1.1). A program has three major components: logic + abstraction +
control. Logic means coming up with the high-level specification of a solution to a problem.
This requires repeated breaking up of a complex problem into a structured combination
of simpler problems, and combining the solutions of these simpler problems using well-
defined operations to compute the final solution.

Abstraction means modeling an entity by the desired attributes needed to solve the
problem at hand. The entity may have many more attributes. However, all the attributes
may not be needed to model the solution of the problem. The advantage of abstraction is
that programs are easily comprehended and easily modified resulting into ease of program
maintenance.

6    ◾    Introduction to Programming Language

Control means mapping the solution of the problem based on the von Neumann machine,
where the memory of the computer is continuously altered to derive a final state of compu-
tation that contains a solution. Every instruction alters the state of computation to a new
state. The use of explicit control in a program gives a programmer the power to modify the
computer memory explicitly. The modification of computer memory to realize the logic
varies from programmer to programmer, and makes a program difficult to understand.

Example 1.1

This example illustrates the three components through a simple, bubble-sort pro-
gram that sorts a sequence of unsorted numbers. Bubble sort utilizes “repeatedly find
the next maximum” strategy on progressively smaller subsequences. A program for
bubble sort uses three components as follows:

• Abstraction: This represents the set of numbers as an indexible sequence.
• Logic: This compares adjacent numbers and swaps the position of numbers

if the following number is smaller until the end of the sequence is reached.
Comparisons of numbers in the current sequence gives the maximum of the
current sequence. This element is excluded in future comparisons, and the com-
parison process is repeated with the remaining elements until one element is left.

• Control: This uses the code to repeatedly exchange and update the values in the
different memory locations associated with variables.

A program is organized using multiple units: (1) program name, (2) imported routines
from the software libraries or modules developed in the past, (3) declaration of the type
information and variables needed for expressing the logic, (4) parameters to exchange the
information between various program modules, and (5) sequence of commands to manip-
ulate the declared variables.

1.4.1 Abstractions in Programs

There are two types of abstractions a program uses: data abstractions and control abstrac-
tion. Data abstraction is used to model real-world entities by identifying specific attributes
needed to solve the problem at hand. For example, to model a class for the grading purpose,
the class will be modeled as a set of students, where each student is modeled as a triple of
the form (student ID, student name, letter grade). Many other attributes of students—such

Programmer Computer
Program = A sequence of meaningful
symbols to repeatedly alter computation
states to reach the final state

FIGURE 1.1 An abstract definition of programs.

Introduction    ◾    7  

as gender, height, weight, address, and sport interests, and so on—are not used, because
they are not needed to solve the problem at hand. Data abstractions can be implemented
by various data representation techniques. For example, sequence of students can be repre-
sented as an array of students, and a triple can be represented as a “struct” with three fields.

Example 1.2

For example, one such representation of class is

 const class_size = 20;
 struct student {string student-id;
 string student-name;
 char letter-grade;
 }
 student class[class_size];

Control abstraction classifies various types of program statements into different groups
based on their common properties. For example, assertion (assignment statement), block
of statements, selection constructs such as if-then-else construct or case construct, indefi-
nite iteration—conditional repetition of a sequence of statements, definite iteration—fixed
number of predetermined iterations, procedural calls, and functional calls are various con-
trol abstractions. The major advantage of abstractions is the expression of high-level pro-
gram constructs that are easily modified and maintained.

Control abstractions are also related to control flow diagrams. For example, if
 (<predicate>) then <then-statement> else <else-statement> is a control abstraction that
selects <then-statement> or <else-statement> based on the truth value of the <predicate>. If
we represent evaluation of the predicate by a diamond block and statements by a rectangular
block, then an if-then-else statement can be represented, as shown in Figure 1.2a. Similarly,

index = index
+ step size then-

statement

then-
statement

else-
statement

True

True

False

False

Evaluate
condition

Exit

Initialize index

Evaluate
condition

(a) if-then-else (b) for-loop

FIGURE 1.2 Control flow diagrams of if-then-else and definite iteration.

8    ◾    Introduction to Programming Language

we can represent a repeat of a block of statements as definite iteration, indefinite iteration,
or data-driven iteration—iteration constructs where the number of iterations are deter-
mined by the number of data elements in a collection.

A definite iteration repeats a block of statements for a fixed number of times by using a
combination of an index variable, lower bound, upper bound, and a fixed step size. The index
variable takes on an initial value, either lower bound (or upper bound), and moves progres-
sively in each step size toward the other end, until it is no more in the range lower-bound ≤
index variable ≤ upper-bound. It is called definite iteration, as the number of times the block
of statements is executed is fixed by looking at three values: lower bound, upper bound, and
step size, and these values cannot be altered within the block of statements inside the defi-
nite iteration. A generic control flow diagram for the for-loop is given in Figure 1.2b. The
evaluation of the condition is given by the diamond. The block of statements is enclosed in
the rectangle, and the dashed box shows the embedded increment of an index.

Indefinite iteration constructs evaluate Boolean conditions to execute the next cycle of
iteration, and the components that constitute the predicate can be altered in the body of
the block of statements within the construct. Owing to this property, there is a probability
of indefinite looping in an indefinite iteration.

There can be many types of loops that have been studied that contain multiple condi-
tional statements followed by blocks of statements. However, it has been shown that the
functional power of all these different types of loops can be captured by the use of two
types of indefinite iteration constructs: while-loop and do-while loop. Do-while loop and
while-do loop have a single entry point and single exit point, and no jump from outside
the loop is allowed. In addition, they have one conditional statement that decides whether
to go through the next iteration cycle or exit out of the loop. The control flow diagrams for
while-loop and do-while loop are shown in Figure 1.3.

While-loop checks for a Boolean condition before executing the block. Do-while loop,
alternately called repeat-until loop in some languages such as Pascal, executes the block

�en-
statement
block

(a) While-loop (b) Do-while-loop

True Exit

False
Evaluate

condition

Statement
block

Evaluate
condition

False

Exit
True

FIGURE 1.3 Control flow diagrams for indefinite iteration.

Introduction    ◾    9  

of statements first and then checks for the condition. The difference between the two con-
structs is that the do-while loop executes the block of statement at least once, while the
while-loop may not execute the block of statement even once.

Data-driven iterations, also called iterators, are generally used in data abstractions that
aggregate the data elements such as multisets and linked lists modeling multisets. Unlike
classical iteration schemes using arrays, the internal representation of the data structure is
hidden from the programmer. These iterators execute a block of statements for every ele-
ment in the aggregate. Iterators are interesting abstractions, because the number of itera-
tions is dependent upon the data size, and they automatically step through the elements in
the list. One such construct is the foreach-loop in Lisp and Java that iterates through every
element of a list. The general construct for iterators is as follows:

 foreach element in <multiset> {
 <block of statements> ;}

Let us understand the drawing of control flow diagrams and nested control flow dia-
grams using simple examples. Example 1.3 shows the control flow diagrams for a nested
conditional statement. Example 1.4 shows the control flow diagram for a definite itera-
tion nested inside an indefinite iteration. The technique to draw control flow diagrams
is to translate the top-level construct and then translate incrementally the next levels of
constructs.

Example 1.3

In this example, first we will develop the control flow diagram for the outer if-then-
else statement; while developing the control flow diagram for the outer control flow
diagram, the complete inner if-then-else statement will be treated as one block of
statement. In the second step, we will expand the nested inner if-then-else block. The
resulting control flow diagram is given in Figure 1.4.

<block2>

<cond2>

<cond1>
if (<cond1>) {
 if (<cond2>) <block1>
 else <block2>
else <block3>
}

<block1>

<block3>

False

True

True

False

FIGURE 1.4 A control flow diagram for a nested if-then-else statement.

10    ◾    Introduction to Programming Language

Example 1.4

This example illustrates the development of the control flow diagram for a nested
while-loop. First a control flow diagram for the outer while-loop is drawn by treating
the inner if-then-else as a statement within the outer while-loop. Next, the control
flow diagram of the embedded if-then-else statement is constructed. The resulting
control flow diagram is given in Figure 1.5.

1.4.2 Program Comprehension and Jumps

One of the major issues in the life cycle of a software is the software maintenance, since
(1) the need evolves, (2) the programmers move on, (3) programmers forget their approach
over a period of time, and (4) the architecture or technology changes significantly. Software
maintenance is directly related to program comprehension: if the control is complicated,
then it is difficult to comprehend, and any attempt to modify the software will lead to bugs
in the software. In the absence of proper language features that support comprehension
and programming standards, the old software will either become useless, or an organiza-
tion has to spend significant amounts of time and resources to maintain the software.

Programmers understands a piece of code by (1) understanding the meanings of known
abstract constructs, (2) understanding the control flow in an abstract domain, (3) model-
ing the information flow between various program subunits, and (4) predicting the final
condition by progressively predicting the conditions after individual statements in their
minds, without the actual execution of the program.

There are many factors that help the human comprehension of programs. Having back-
ground knowledge and training in programming is a necessary but not sufficient condi-
tion to comprehend code written by others. Some of the factors that affect the human
comprehension of a developed code are as follows: (1) the level of abstraction provided in
the programming language, (2) simplicity of abstractions needed for translating logic to
code, (3) removing excessive control from the code, and (4) writing enough standardized
comments at the variable level, block level, module level, and algorithm level that can be

<block2>
<block4>

True

True

while (<cond1>) {
 if (<cond2>) <block1>
 else <block2>
}

False

Exit

<cond2>

<cond1>

False

FIGURE 1.5 A control flow diagram for a nested statement.

Introduction    ◾    11  

understood by others. In addition, many organizations also impose programming styles
and the use of a preferred language.

Humans are very good at understanding a program that is structured, easily catego-
rized, modular in functionality, and follows a forward direction of control flow. As the
number of lines of code in a module increases, it becomes difficult for humans to under-
stand and categorize the overall functionality of the module. Similarly, too many jumps
increase the unstructured nature of programs, and humans cannot mentally visualize the
run-time behavior of programs.

It has been shown that the functional power of unconditional jumps (goto statements)
is maximum. Unconditional jumps have been utilized to implement many control abstrac-
tions such as (1) selection: if-then-else statement or case statement and (2) iteration: while-
do loop, do-while loop, and for-loop, and functional and procedure calls. Within a module,
jumps are used: (1) to pass the control locally to few instructions away, and (2) to exit out
of a block of statements. In the 1970s, a healthy debate took place among the computer
scientists about the program comprehension and the use of jumps. The use of uncondi-
tional jumps and program comprehension are inversely related to each other. Humans can
handle a jump to few instructions away specially in the forward direction. However, jump-
ing backwards, jumping long distances away, and too many jumps significantly reduce
program comprehension. Structuring the program into blocks, subprograms, objects, and
control abstractions with well-defined functionalities such as while-do loop and do-while
loop enhances program comprehension.

Figure 1.6a and b shows the control flow diagram of two equivalent programs. The pro-
gram in Figure 1.6a moves one instruction at a time in the forward direction, while the
program in Figure 1.6b uses multiple jumps in a combination of backward and forward
jumps, and the statements are shuffled up with embedded go-to statements.

Let us assume that S1 is equivalent to S’1 followed by an unconditional jump to S’300,
S2 is equivalent to S’300 followed by an unconditional jump in backward direction to S’2, S3
is equivalent to S’2, S300 is equivalent to S’299 followed by unconditional forward jump to
S’301, S301 is equivalent to S’301, and all the statements from S4 to S299 are equivalent to the
corresponding statements S’3 to S’298. If we look at the functional equivalency—capability
to do the same task—both programs are functionally equivalent. However, it is easy to
understand the structured program in Figure 1.6a.

Owing to this lack of comprehension caused by the free use of unconditional jump state-
ments, various control abstractions have been developed. The use of jump statements is
limited to the implementation of control abstractions and to exit out of nested blocks. It

(a) Structured program (b) Program with jumps

S1 S2 S300 S301 S’301S’300S’299S’2S’1

FIGURE 1.6 Block structured programming versus spaghetti code with jumps.

12    ◾    Introduction to Programming Language

can be shown that programs using jump statements can be translated to a functionally
equivalent structured program using a combination of Boolean variables and control
abstractions such as if-then-else, while-loop, or do-while loop.

1.4.3 Execution of Programs

Major criteria for the sound execution of a program are as follows:

 1. The language constructs of a programming language should be well defined.

 2. There should be a unique meaning for every language construct as computers do not
handle ambiguities.

 3. Each high-level instruction should be translated to a sequence of low-level instruc-
tions that perform consistently the same action on a computer every time.

 4. A computer should execute consistently the same sequence of low-level instructions
producing the same final result.

There are multiple layers of software before the programming language layer, as shown
in Figure 1.7. At the lowest level, it is the bare machine and machine code. The next level
is the operating system, system utilities, and language translators. The outermost layer is
the high-level programming and application layer. A high-level program is translated to
low-level instructions and uses multiple intermediate layer interfaces to use the computer
system resources and utilities needed for program execution.

There are three ways in which a high-level instruction can be translated to a set of low-
level instructions: (1) compile the high-level instructions before the execution of the pro-
gram; (2) interpret the high-level program, and execute it using an implemented abstract
machine; and (3) just-in-time compilation of the high-level language that gives an effect of
partially compiled code and partially interpreted code.

As illustrated in Figure 1.8, the process of compilation translates the high-level instruc-
tions to low-level instructions before execution. On the other hand, interpreters translate
and execute one instruction at a time. In contrast to compiled code, interpreted code goes
through the translation and execution cycle for very statement.

Low-level machine
executing machine code

System software

Application layer developed in
high-level languages

FIGURE 1.7 Different layers of software in a computer.

Introduction    ◾    13  

An advantage of compiled code is that it has no overhead of translation at run time.
Another advantage of using compilers is that a large percentage of the programming bugs
are detected, and memory allocations are optimized before execution.

The execution efficiency of interpreted code is an order of magnitude slower than the
execution efficiency of the compiled code, because the translation process is interleaved
with execution at run time. Another drawback of interpreters is that all the errors cannot
be detected before program execution, and interpreted programs may crash after executing
many instructions, making it unsafe for mission-critical programs. However, interpreters
are easy to develop and have been used in early days for the languages for which compiler
technology was not well developed.

In declarative programming languages that have the capability of developing programs
as data and then transforming them to program at run time, interpreters were a choice.
Interpreters facilitate better interactive debugging capability at the instruction level by dis-
playing all the values of variables. Interpreters support execution of dynamically typed
languages where a variable can be associated with any type of data object at run time.
Interpreters also support better machine independence, since programs are executed
within an interpreter, and programs need not be ported across different machines.

In web-based languages, code is sent as a stream to the client computers that have a version
of an abstract machine installed for the native operating system. An abstract machine is
a program that runs on the native machine and executes a standard instruction set that
is independent of the host operating system and computer architecture. A Java Virtual
Machine (JVM) is one such abstract machine that executes Java programs on multiple
platforms. The execution of instructions on JVM is much slower than the execution of
machine instructions on a native machine, because JVM uses zero-addressing for universal
compatibility, while current-day computers use two-address or three-address instruction
sets. Execution of code on a higher-address machine is faster than that on zero-address
machines, as explained in Section 2.1.

Go back to interpret next statement

Interpreter repeatedly translates one high level statement
and executes corresponding instructions at run time

(a)

(b)

High-level
program

Compiler translates all high
level statements at once

Low-level
instructions

Execute

FIGURE 1.8 Compilation versus interpretation. (a) A schematics of compilation (b) a schematics
of interpretation.

14    ◾    Introduction to Programming Language

To speed up the execution on higher-address machines, just-in-time compilers keep a
library of executable methods, using the instruction set of the native operating system that
is much faster than executing equivalent instructions in JVM. After checking for security,
the fragments of the intermediate code are translated to the native machine code upon
the first occurrence of intermediate code and cached in a library for future lookup. On
subsequent occurrence of the fragments, the executable machine code is looked up and
executed. Similarly, if a high-level Java method already has a compiled code in the native
library, then the compiled code is retrieved and executed. If the binary code is unavailable
or the fragment cannot be compiled in realistic time, then the high-level code is translated
to instructions in JVM and executed. The overall scheme for just-in-time compilation is
shown in Figure 1.9.

There is an overhead of translation when the code-fragments are compiled for the first
time. However, on the subsequent occurrence of the fragments, there is no overhead of
translation. The execution efficiency of a code using just-in-time compilation lies between
the execution efficiency of an interpreted code and the compiled code.

Some vendors such as Microsoft have their own intermediate language called Common
Intermediate Language (CIL). The advantage of a common intermediate language is in pro-
viding interoperability across different high-level languages. A high-level language is first
translated to CIL, and this CIL is transmitted across the Internet and compiled on various
architectures using just-in-time compilation, as shown in Figure 1.10. Languages such as
C#, visual C++, F#, and Visual Basic are translated to CIL.

Execute using implemented
Java virtual machine (JVM) Compile the fragment to machine

code, and cache it for future use

Retrieve binary code and execute

Native binary code library

Code archival/retrieval
Intermediate code in Internet language

Security checker

Method present in binary code
library/compiled fragment

cache

Method contains
compilable fragment

Compiled fragment
cache

Yes

Yes

No

No

FIGURE 1.9 Schematics of just-in-time compilation.

Introduction    ◾    15  

Modern-day compilers use a two-stage translation for execution of a high-level program
on a variety of architectures. Different architectures have different assembly languages,
and it is not possible to write compiler for multiple architectures. Instead, an intermediate
code has been developed for the programming languages. The first stage of compiler trans-
lates high-level programs to an intermediate-level code that is independent of computer
architectures. The second stage translates intermediate code to low-level machine code.

The first stage of translation consists of (1) lexical analysis, (2) parsing, and (3) semantic
analy sis and code generation to generate intermediate code, as shown in Figure 1.11.

Executable code

Class loader → JIT compiler →
Platform-specific instructions

CIL code

C# to CIL compiler

Base class libraries
and user libraries

FIGURE 1.10 Just-in-time compilation of C# program.

Linker Loader CPU
executable

Shared
system libraryObject code

Other
object
codes

Low-level translation

Intermediate code

Semantic analysis and
intermediate code generation

Parsing

Lexical analysis

High level program

Compiler

S
y
m
b
o
l

E
r
r
o
r

h
a
n
d
l
e
r

t
a
b
l
e

FIGURE 1.11 Translation of high-level program for execution on the computer.

16    ◾    Introduction to Programming Language

A lexical analyzer checks for the reserved words—meaningful words that are part of a lan-
guage, identifiers, variables and numbers—and converts them into an internal representation
called tokens for the ease of parsing. The output of lexical analysis is a tokenized stream that
becomes input to a parser. A parser validates the structure of a program sentence according
to the grammar of a programming language. Its output is in the form of a tree for the ease
of efficient internal handling during code generation. The semantic analyzer validates that
parsed sentences are meaningful, and the code generator linearizes the tree-based repre-
sentation to the corresponding intermediate code—a sequence of low-level abstract instruc-
tions. The optimization level removes the redundant code fragments and enhances the use
of processor registers to improve the execution efficiency of the executable code. A symbol
table is used to store the information from previous stages that may be needed or may need
 resolution in the following stages. The type of information that a symbol table contains are
variable names and their locations, nesting level of procedures, information about nonlocal
variables, where a procedure has been called, what procedure has been called, and so on.

In addition to two-stage compilation, a linker links multiple object files (compiled code)
into one big executable code. Linking is done in the order specified by the programmer in
the link command and is independent of the calling pattern of the procedures. The com-
piled code of a subprogram occurs only once in the executable code and is independent of
the frequency of the calling of the subprogram. After linking, the information about the
relative location of procedures is fixed. A loader loads the linked code to be executed in a
memory segment—the memory area given to a user process corresponding to the execut-
able code. The loader relocates the logical address derived after linking to the physical
address in the RAM. The loaded executable program is called a process and is executed
using a combination of operating system software and hardware techniques you will study
in a course on operating systems. Dynamic link libraries are shared system libraries to
share the executable code by multiple processes. You will learn about the mechanisms of
dynamic link libraries in a course on operating systems.

1.5 INTEROPERABILITY OF PROGRAMMING LANGUAGES
Language interoperability is the ability of a code fragment in one language to interact with
code fragments written in other programming languages. Modern-day programming lan-
guages provide language interoperability to support (1) mixing of problem domains in
a complex problem to be automated; (2) utilizing abstractions specific to a different lan-
guage; (3) efficiency by interfacing with libraries of low-level languages; and (4) to maxi-
mize code reuse of an already developed software library, improving software reuse and
maintenance.

To provide interoperability, one must have capabilities to include the compiled module devel-
oped in other languages, to exchange information with compiled modules written in other lan-
guages, and have shared metadata—a separately declared information about the module and
exported data types that can be used by codes in other languages. In addition, the exchanged
information has to be transformed back to proper data abstractions in the host language.

There has been a trend to provide a common language specification and standard spec-
ification of common data types for uniform exchange of information between the host

Introduction    ◾    17  

language and the interfaced languages. Common language specifications include (1) defin-
ing and using types consistent across languages and (2) defining a uniform mechanism
for storing and retrieving information about type correspondence in different languages.
Some vendors—more specifically Microsoft—have developed a common language specifi-
cation under .NET project to provide standardized common features and rules needed for
interoperability.

1.6 SOFTWARE DEVELOPMENT CYCLE
Now we turn our attention to the relationship of programming languages to software
development. After all, programming languages are used to develop large software to auto-
mate some real-world process. Software can be hundreds of thousands of lines of codes.
A successful development of large software needs teams of programmers, system analysts,
and field programmers.

There are multiple stages in the life cycle of software: requirement analysis, system analysis
and design, development, implementation, initial verification, field testing, deployment, and
evolution. After every phase, feedbacks from the following processes are used to refine the
previous phases before progressing to the next phase. At the end of the deployment, the sys-
tem capabilities are well understood by the clients, and the clients’ needs evolve. There is
a need for refinement in the system analysis and the design to satisfy the new needs. The
evolution is incremental, learns from the previous analysis and design errors, and benefits
from the technology improvements during the next software development cycle.

In the requirement analysis phase, a system analyst listens to the client’s requests for the
automation, incomplete and often ill-defined information, and the type of queries the cli-
ent intends to ask. The scope of automation is fixed, and the goals of the project are fixed.
In the system analysis phase, a team of system analysts studies the scope and the system to
be automated then develops an information flow model of the process being automated. In
the design phase, the information flow model is split into various interconnected modules
with the help of lead programmers and system designers. These modules have independent
functionality, so that evolution of one module does not affect other modules significantly.
Input–output of information from various modules is clearly fixed. The designers design
the modules with a potential for evolution as the clients’ needs evolve. This part of visual-
izing and predicting the future evolution of the client needs is quite difficult and needs
experienced analysts and system designers.

In the development phase, after the modules and their linkages (input–output to the
modules) have been developed, a team of lead programmers designs the data abstractions,
the interfaces, and the algorithms for each module, mindful of technical difficulties and
restrictions imposed by the constructs in the available programming languages in the
problem domain. If the automation involves more than one problem domain, then mod-
ules may be developed using multiple programming languages utilizing interoperability.

In the implementation phase, after developing the major high-level algorithms, the pro-
gram code is developed. This part is done by a team of programmers, and the data flow
interface developed in the previous stages is translated into programming module inter-
face between various programming modules. Care is taken to provide enough information

18    ◾    Introduction to Programming Language

hiding to prevent programmers from using local features of other modules to minimize the
numbers of unintended bugs. Development of the code is only one-third of the total process
of the software implementation. The major effort lies in the verification stage, testing stage,
and deployment stage. The programmers should heed the future needs and life cycle of the
software and provide ease of expandability of the scope of the software. Otherwise, even
small programming or design errors may make the software unusable and cripple the daily
essential functions. An example of such errors was the Y2K problem, which cost billions of
dollars to fix. The software should also have concessions for future enhancements in low-
level technology such as faster computer architectures and improved hardware.

In the initial verification stage, programmers try their program on a sample data pro-
vided by the client. After its successful completion, the developed software is floated as an
alpha version and given to the field programmers for testing on the client side. The field
programmers make changes and collect feedbacks from the clients to correct the model
and the program. In the field-testing phase, the new corrected version called the beta ver-
sion is tested extensively by the field programmers for any bug on the actual client-supplied
data, until the final version is released.

In the deployment stage, the refined version is released for public use (or client use),
and field testing and collection of feedback starts. The client sees the potential of the soft-
ware and suggests improvement after the software is integrated with the overall system in
the workplace. The suggested modifications are quickly incorporated in the software at
the field sites (workplace) or through software patches—small pieces of software to fix the
minor improvements, bugs, and security concerns.

Over a period of time, the strengths and the weaknesses of the software are identified,
the client identifies new needs to be incorporated in the software, and a new iterative cycle
of software evolution starts. During this period, the hardware technology may also change,
and the software has to be maintained to make it portable across various architectures.
A schematic of software development cycle is given in Figure 1.12.

Need
evolution

Developed
code Beta testing Refined code

Alpha testing
and refinement

Code
development

High-level
solution

Algorithm
development

Module refinement

Industry
data flow

information
System analysis

Modules

Model and forms to
capture data flow

Module development
with input and output
information flow and

module functions

Code

FIGURE 1.12 Software development cycle.

Introduction    ◾    19  

There are many software cycle models such as the “Waterfall model” and “Spiral model”
for software development. These models have been implicitly included in the above discus-
sion. However, comparison and detailed study of these models is within the scope of a
course in software engineering.

The software keeps evolving with time as the needs evolve, until a new technology
makes old technology obsolete. In that case, new software needs to be developed for better
automation. There have been four major changes in the history of industrial automation:
(1) the development of high-level, object-oriented languages; (2) the development of visual
and multimedia techniques for better visualization; (3) the development of high-level data-
base languages; and (4) the development of web-based languages such as XML to facilitate
transfer and resource sharing over the Internet.

As is obvious, software development requires teamwork, software maintenance, por-
tability, and continuous evolution. Any task that requires a large team over a long period
of time requires software standardization, modularity, user friendliness, and ease of
comprehension.

1.7 CRITERIA FOR A GOOD PROGRAMMING LANGUAGE
Criteria for a good programming language are guided by the domain needs; software
development, maintenance, and evolution; and interaction and efficiency of execution.
Some of these criteria are as (1) abstraction, (2) modularity, (3) orthogonality, (4) excep-
tion handling, (5) user friendliness, (6) readability, (7) ease of comprehension and main-
tenance, (8) overall simplicity, and (9) portability. We have already discussed abstraction,
modularity, portability, and ease of comprehension. Orthogonality means that the con-
structs in programming languages should be independent of each other and should not
be redundant. Exception handling capability is necessary to capture the run-time error
conditions by invoking a user-defined routine for graceful correction of the error condi-
tion or exit to avoid program crashes. In large programs—that is, time-critical programs,
such as a program monitoring a nuclear power plant, and mission-critical programs such
as programs running an aircraft or spaceship—this is an essential criterion. Readability
means that a language should support constructs and capabilities that make the pro-
grams readable for the ease of comprehension. For example, longer variable names
should be allowed, so that programmers can use self-explanatory variable names. Ease
of comprehension and overall simplicity are directly related to software development,
evolution, and maintenance, and are dependent upon the amount of abstraction present
in the language.

Industry executives ask an interesting question: What is a good language for automating
my industry? This question emanates from the basic need of standardization, so that the
companies have to spend fewer resources and finances to maintain software over a period
of time. Unfortunately, there is no magic bullet; there is not a single language that can
handle all the problem domains. Each domain has different requirements.

For example, a system programming language needs to be close to the assembly lan-
guages and needs to have instructions to efficiently access memory modules and I/O
devices; inclusion of too many higher-level abstractions will not contribute to efficiency.

20    ◾    Introduction to Programming Language

A scientific computing language needs to represent big matrices without duplicating
them, because duplication will waste precious memory space and will cause computa-
tional overhead of copying large matrices from one memory space to another. A real-time
language needs to be efficient to avoid losing real-time events. A user-friendly language
will avoid any type declaration, but then it suffers from many problems such as lack of
memory optimization, lack of efficient execution, and once in a while programs crash at
run time.

Many of these requirements for a good language are contradictory. If we want to develop
a good language that has many high-level abstractions, then the translation process will
generate many redundant low-level instructions due to generalized mechanisms used
in the translators. Similarly, if we make the language closer to assembly languages, then
portability and consequently software maintenance suffers, as assembly languages vary
for different architectures. We have moved from 16-bit instruction sets, to 32-bit instruc-
tion sets, and more recently to 64-bit instruction sets. If a program is strongly coupled to
assembly-level instructions, then it will be difficult to port architecture changes every time.
Technology keeps changing at a faster rate, necessitating adaptation of software solutions
with minimal delay and investment. So the new languages need to move away from low
language instructions for the sake of portability, modifiability, and maintenance of the
software. Otherwise, we will be spending millions and billions of dollars just to port the
software to new architectures.

1.8 HISTORY OF PROGRAMMING PARADIGMS AND LANGUAGES
Programming paradigm means style of programming. As programming matured, users
and computer scientists found drawbacks and advantages in previous programming styles
and evolved new programming styles. Modern-day languages are a combination of two or
more programming paradigms, as shown in Appendix I.

We can classify programs into a combination of one or more programming paradigms:
(1) imperative programming, (2) declarative programming, (3) object-oriented program-
ming, (4) concurrent and distributed programming, (5) visual programming, (6) web-based
 programming, (7) event-based programming, (8) multimedia programming, (9) agent-
based programming, and (10) synchronous programming. The list does not end here.
However, the scope of this textbook is limited to the study of class of programming lan-
guages supporting these major programming paradigms.

1.8.1 Imperative Programming Paradigm

The basis of imperative programming is assertion or assignment statement that changes the
state of the low-level von Neuman machine. A programmer manually translates the logic
explicitly to tell the computer what to do. A variable in imperative programs is mapped
onto a memory location in a computer, and the memory location can be modified repeat-
edly by using assignment statements. The effect of the assignment statement is that a new
value is written into the memory location; the old value is lost. The advantage of assign-
ment statement is memory reuse, since the same memory location has been used for storing

Introduction    ◾    21  

multiple values. However, there are many disadvantages of writing into memory location
multiple times as follows:

 1. If a memory location is rewritten into, the old value is lost, making it impossible to
use the old value in the future. In artificial intelligent programming, where a solution
is searched in huge search space, backtracking—going back and undoing part of the
search and trying out alternate search paths—becomes impossible.

 2. If a memory space belonging to another procedure or function is written by the cur-
rently called procedure, then the old value is lost. If the calling procedure or the
procedures is unaware of the modification or needs to use the old value, then the
update has corrupted the memory location. The outcome would be to generate incor-
rect solutions. This problem is called side-effect, and has been discussed in detail in
Section 4.8.

 3. The interleaving of the assignment statement with logic of the program causes
 problems in program comprehension, as the control is very subjective to an indi-
vidual programmer’s thinking style and causes program maintenance problems in
the long run.

Imperative programming paradigm was the first one to be developed in the late 1950s
and 1960s in different versions of FORTRAN and in the early 1960s in the development
block-structured languages such as ALGOL. Among imperative programming paradigms,
four early languages were quite popular: FORTRAN, ALGOL and COBOL, and C, a
descendant of Algol.

Early versions of FORTRAN were extensively used for scientific computing, made lib-
eral use of jump statements, and did not support pointers. ALGOL developed a block-
structured style of programming that supported control abstractions such as while-do
loop and do-while loop that improved program comprehension. ALGOL also used pointers
and “struct” that have been used to implement popular recursive data structures such as
“linked-lists” and “trees”. ALGOL is also known as the mother of modern-day imperative
programming languages: most of the data abstractions and control abstractions described
in ALGOL are still being used in modern-day languages.

C was originally a system programming language developed in Bell labs for writing the
“UNIX” operating system. It was a subset of ALGOL 68 and gained popularity due to the
popularity of Unix and its variations. There were other contemporary languages such as
SDL (Burroughs corporation that supported the development of ALGOL 68) and BLISS 32
(developed by Digital Equipment Corporation) that lost out due to the popularity of public
versions of Unix used by the industry and academia. Other noteworthy languages in this
category are ADA, Pascal, and the Modula family of languages, including Modula-3 and
Oberon, that supported high-level block-structured programming. The Modula family of
languages supported the notion of modules and the concept of import and export of func-
tions. All these languages were derived from ALGOL 68. However, except C and its variants,
these languages remained in the academic world and never gained commercial popularity.

22    ◾    Introduction to Programming Language

COBOL is a business programming language. It emphasizes on user friendliness, report
writing, and handling financial data. There was also an attempt by IBM to develop a lan-
guage, PL-I, that tried to integrate the constructs developed in FORTRAN, ALGOL, and
COBOL. PL-I was projected as a language that could be used for multiple programming
domains. However, due to its bulky nature, it lost the race.

Many imperative programming languages such as ADA, FORTRAN, and COBOL
kept on evolving by incorporating proven constructs. Newer versions of FORTRAN
and COBOL have many features such as block-structured programming, recursive
 programming, stack-based implementation, string processing, pointers, structures, and
 object-oriented programming. With the passage of time, language designers identified
the advantages and disadvantages of contemporary languages and incorporated the
useful constructs. When a language evolves, care must be taken to keep it compatible
with older versions, so that evolved programs can use older libraries, and programs
written using older versions of languages can be compiled using compilers for newer
versions.

1.8.2 Declarative Programming Paradigm

In declarative programming, control has been taken out of the program. There is an
abstract machine that takes care of the control part implicitly. A declarative program
 consists of logic + abstraction at the programmer level. The notion of variable in declarative
programs is quite different from the notion of variables in imperative languages. A variable
in declarative program is a value holder; once a value has been assigned to a variable, it
cannot be altered by the programmer. The advantage of assign-once property is (1) there
is less possibility of side effects, as a called procedure (or function) cannot rewrite into
memory space of the calling procedure (or function) and (2) the old values of variables
can be retained and used if needed. There are also many disadvantages of the write-once
property as follows:

 1. The memory location cannot be reused even if it is not needed such as for the use
of index variable in the for-loop. Handling iterative computation and input–output
processing such as printing a large array of data elements causes memory explosion.

 2. Recursive programming is used more often, since traditional iteration using mutable
index variable is not permitted due to the restriction imposed on the variable
 mutation. Recursive programming has both memory and execution overheads and is
more difficult to program compared to iterative programming.

 3. Global mutable variables that support storing of partial computations that can be
used later by other parts of the program to improve the execution efficiency are not
allowed. However, many declarative programming languages have tried to overcome
this limitation: Lisp allows partial rewriting into memory location by allowing lim-
ited use of global variables; and Prolog, depending upon the implementations, allows
constructs—such as “assert”, “blackboard” or global mutable variables—to store the
result of partial computations.

Introduction    ◾    23  

There are two major types of declarative programming languages: functional program-
ming languages and logic programming languages. Functional programming languages
are based on the use of mathematical functions, and logic programming languages are
based on the use of predicate logic—Boolean logic combined with the notion of quantifica-
tion, as explained in Chapter 2.

Lisp, a popular language that combined functional programming with some imperative
constructs, was developed in the early 1960s for the implementation of artificial intelligence
programming—a branch of computer science that tries to simulate human intelligence by
computational means. Prolog, a popular logic programming language, was implemented
in the 1970s for automated theorem proving and artificial intelligence programming. Both
these languages matured in the early 1980s, when extensive compilation techniques were
developed. Their compilers went through many innovations to overcome the difficulty of
efficient execution and memory reuse over a period of time. In later years, other functional
languages that were influenced by Lisp were developed and have become quite popular.
Some of the popular examples are Scheme, ML, Miranda, and Haskell. Nowadays many
multiparadigm languages such as Ruby and Scala support the functional programming
paradigm. A complete list is given in Appendix I.

Declarative programming languages have been traditionally used in artificial intel-
ligence. The key features of declarative languages needed in artificial intelligence are as
follows:

 1. The artificial intelligence systems need to dynamically develop and update knowl-
edge. AI languages support abstractions for incorporating knowledge.

 2. Most declarative languages treat the program as a first class object, which means that
programs can be built at run time, as data then transformed into a program that can
be executed. Artificial intelligence needs this property to compile new knowledge.

 3. Declarative languages provide the capability of meta-programming—a program
that reasons about another program in an abstract domain. This property of meta-
programming is useful in developing reasoning and explanation capabilities in arti-
ficial intelligent systems.

1.8.3 Object-Oriented Programming Paradigm

As computers’ memory size increased, executing large programs became possible.
SIMULA was the first object-oriented language in the late 1960s. However, the notion of
object-oriented programming caught on with the software development community in the
early 1980s. As the program size grew, people started realizing the value of modularity and
software reuse to develop even more complex software.

Many important interrelated concepts such as modularity, software reuse, off-the-shelf
library, and information-hiding were conceived to provide ease of software development,
maintenance, and evolution. Modularity means dividing large software programs into a
set of interconnected modules, such that each one of them has clear functionality that
does not overlap with the functionality of other modules. The major advantage of modular

24    ◾    Introduction to Programming Language

development is that the modification in one module does not adversely affect the function-
ality of other modules. Software reuse means that previously developed software can be
reused by simply storing it in a file and by importing the needed modules or subprograms
from the archive when needed. Information hiding means to make the part of the program
module implementation inaccessible to other modules if it is not needed for interaction
with other modules.

In order to provide modularity and information hiding, the notion of objects and classes
were discovered. An object has both data abstractions and methods—related functions
or procedures needed to manipulate the data abstractions in the object. The information
inside objects can be private, public, or protected. Public methods are available to the outside
world; private methods are specific to the object providing information hiding; and pro-
tected methods are visible to the objects in the subclasses of the current class. Information
hiding is also related to the notion of modularity, as the hidden information cannot be
used by other objects or classes. The notion of software reuse has been facilitated by the
use of inheritance, where a subclass can inherit the methods from the parent class, and by
the development of library of classes that can be developed and included in the software.

The first language to incorporate object-oriented programming was SIMULA. Small-
talk, developed by Xerox Parc and Eiffel, demonstrated the concept of objects. Since then
many languages have been augmented with the object-oriented paradigm. For example,
C++ is an integration of the language C, and the object-oriented paradigm, CLOS, is an
integration of Lisp and the object-oriented programming paradigm. Many variations of
Prolog have a library for object-oriented programming. Modern-day scripting languages,
such as Python, Ruby, and PHP, have integrated object-oriented programming from
their imperative ancestors. FORTRAN 2008 and COBOL 2002 are the latest evolution of
FORTRAN and COBOL that have integrated the object-oriented programming paradigm
with the earlier imperative versions. Java is a successor of C++ that integrates the Internet
programming paradigm and the object-oriented programming paradigm. In recent years,
X10 is a concurrent object-oriented programming language that has been developed by
IBM researchers for high-level software development on massive parallel computers.

1.8.4 Concurrent Programming Paradigm

During the decade of 1980, as the software started getting bigger, the hardware technol-
ogy was also changing very fast. Multiple fast processors were becoming available in a
single computer, and the development in computer networking was allowing information
exchange between multiple computers.

On the basis of this new advancement, independent subtasks could be mapped on
 separate processors to improve the execution efficiency of the programs. The development
took two directions: (1) parallelizing compilers that could take a sequential program as
input, and automatically transform it to a parallel version to execute concurrently and
(2) incorporating high-level program constructs such as threads, forking, busy-wait-loop,
and remote procedure calls in the existing languages. In all these constructs, a process—the
active part of a program executing on a CPU—could start one or more concurrent subtasks
to improve the execution efficiency.

Introduction    ◾    25  

The concurrent counterparts of many languages with the concurrent programming par-
adigm were given a generic name as “Concurrent X” or “Parallel X,” where X was the name
of an existing language. For example, integration of concurrent programming constructs
in C was named “Concurrent C”; integration of concurrent programming construct in
Pascal was named as “Concurrent Pascal”; integration of concurrent programming con-
structs in Prolog was called “Concurrent Prolog”; and integration of concurrent program-
ming constructs in FORTRAN was called “Parallel FORTRAN.”

The concurrent programming constructs are becoming common with the development
of multicore-processor-based, modern-day personal computers. Modern-day programs
and languages include many of these concurrency constructs to improve the execution
efficiency of the programs. For example, the use of threads is quite common in modern-
day languages, either as an interface to existing thread libraries or as a built-in library. For
example, an extensive library has been provided for C, C++, and Java.

1.8.5 Visual Programming Paradigm

The textual programming paradigm uses one dimension. However, we humans are very
good in perceiving the notion of vicinity instead of just sequential one-dimensional pro-
gramming. Most of the programming languages developed are textual and suffer from this
limitation of sequentiality caused by the single dimension present in the textual represen-
tation of programs.

In the late 1980s, starting with earlier work in Smalltalk to provide user-friendly inter-
faces, the visual programming paradigm took multiple directions. Some suggestions
were to free the programming languages using symbolic representation for different data
abstractions and control abstractions at low-level programming. However, the effort to
incorporate visual programming was limited to drag-and-drop programming to provide
user-friendly interfaces and animations. More recently, visual programming has been
used in languages such as C# for event-based programming: the symbols corresponding
to events and object attributes are dragged and dropped to make a complex scenario of
interacting objects. At the low level, these events and interacting objects are automati-
cally translated to low-level textual version of the language. Similarly, visual educational
languages such as Alice use visual programming to develop code for animation, and lan-
guages such as SMIL, VRML, and Java3D use visual programming for multimedia web-
based on-demand presentation and animation.

The use of the visual programming paradigm for large-scale general purpose low-level
programming has remained dormant due to the following: (1) the parsing difficulty in
two-dimensional planes, (2) difficulty in human comprehension of large-scale programs
in two-dimensional planes, and (3) difficulty of presenting large visual programs to human
programmers. There is also no standardization of symbols used in visual programming.

1.8.6 Multimedia Programming Paradigm

The multimedia programming paradigm means integration of multiple modes of visual-
ization: text, images, audio, video, and gestures. Humans interact with each other using all
these cues. Without these cues, our communications with each others and our perception

26    ◾    Introduction to Programming Language

of objects and real-world phenomena would be incomplete. In the early 1990s, with the
advancement of web-based programming and the development of comprehensive formats
for audio, images, and video, it became possible to embed multimedia objects and video
clips into programs for human visualization and perception. Video can be represented by
a sequence of frames where each frame is a set of possibly interacting objects. There are
languages, such as Alice and Virtual Reality Markup Language (VRML), that create 3D
animated objects and motion to model virtual reality. In recent years, many such 3D mod-
eling languages such as X3D and Java3D have been developing that integrate computation
and 3D modeling for real-time animation over the Internet.

1.8.7 Web-Based Programming Paradigm

The advent of Internet in early 1990 has provided us with a tremendous capability for sharing
data, images, audiovisuals, database, and mobile–code located remote web sites. It has also
provided us with the capability of code and data mobility. If a remote resource does not want
to share the code, it can compute the data at the source, and transmit the resulting data. On
the other hand, if the server does not want to get overloaded, it sends the code to the client
to perform the computation at the client’s end. Web-based programming has become a great
engine for multimedia visualization and has made great impact on financial computing such
as stock markets and banking. There are many Internet-based languages such as Java and
SMIL, and web development languages such as PHP, Javascript, and XML. XML has become
a popular intermediate language for representing databases, computations, and animations
over the Internet. Java has a popular intermediate-level abstract machine called JVM.

Java programs are interpreted using a JVM, which is similar to an assembly language
for zero-address machines. A zero-address machine does not use a register or a memory
address in the instruction. Rather it is a stack-based machine, where the operands are
placed on an evaluation stack, popped, evaluated, and pushed back on the stack. The rea-
son for having a zero-address machine was that Java was designed to be implemented on
any embedded computer in modern everyday devices such as microwaves, smart homes,
and refrigerators. A zero-address machine is the most common abstract machine that
could be run on all these embedded computers.

The problem with zero-address machines is that a high-level instruction is translated to
many more instructions, wasting clock cycles in CPU. In order to speed up the execution, a
new approach of just-in-time compilation has been developed, where known class libraries of
the high-level language such as Java or C# are compiled to the native binary code. When a
high-level language program-fragment is translated to the low-level equivalent, then there are
two possibilities: (1) translate to the compiled native binary code for faster execution or (2) use
an abstract machine interpreter such as JVM or .NET (for a Microsoft Windows operating
system). Just-in-time compiled programs execute faster than interpreted codes on JVM.

1.8.8 Event-Based Programming Paradigm

Events are happenings that set up conditions that trigger some actions or computations. For
example, clicking on a mouse is an event; moving the computer mouse over an image is an
event; and an instrument reaching a threshold value is an event. The difference between

Introduction    ◾    27  

traditional input-driven programming and event-based programming is that input-driven
programming asks for some input, waits for the input, and then takes an action based upon the
input value. In contrast, event-based programming never waits for any input from the external
world. However, it responds to one or more events as soon as the event takes place. Event-based
modeling can be used to model real-world phenomena, as events can become cause for further
cascaded events resulting in additional actions. The concept of event-based programming has
its roots in SIMULA developed during the early 1970s. However, it became popular in recent
years due to graphical and web-based interactions. More than one modern-day language such
as C#, uses event-based programming to model animation and for graphical user interfaces.

1.8.9 Integration of Programming Paradigms

Modern-day languages do not subscribe to one programming paradigm; multiple pro-
gramming paradigms are embedded in a language. For example, C++ supports the
imperative programming paradigm and the object-oriented programming paradigm.
Visual C++ also supports the visual programming paradigm. C# supports the impera-
tive programming paradigm, the object-oriented programming paradigm, the event-based
programming paradigm, and supports extensive visualization capabilities—a multimedia
programming paradigm feature. Java has many characteristics of the imperative program-
ming paradigm, the object-based programming paradigm, the web-based programming
paradigm, the concurrent programming paradigm, and the event-based programming
paradigm. Scala and Ruby integrate functional programming and object-oriented pro-
gramming paradigms. The programming language X10 developed by IBM integrates the
imperative programming paradigm, the object-oriented programming paradigm, and the
concurrent programming paradigm. Modern scripting languages PHP and Python inte-
grate imperative programming paradigms, shell-based programming, and object-oriented
programming paradigms into one. A detailed list of programming paradigms supported
in some popular programming languages is given in Appendix I.

Each programming paradigm has both advantages and disadvantages. For example,
the notion of objects in object-oriented programming, along with information hiding
and the notion of modules, is suitable for large-scale software development and is being
adopted by many older languages such as FORTRAN (in the latest version, Fortran 2008),
that have evolved with time to incorporate many well-proven features such as stack-based
implementation, recursion, and objects over a period of time. Similarly, COBOL (the latest
version, COBOL 2002) has evolved to include objects. If a language stops evolving with
time, programmers stop using the language for the lack of features, and old languages are
replaced by new languages supporting the popular programming paradigms.

1.9 CLASSIFICATION OF LANGUAGES
Languages can be classified using multiple criteria such as programming paradigms,
implementation models, the notions of types used in the programming languages, and
their intended problem domains. However, a clear separation is missing in many modern-
day languages, as they incorporate a combination of features and paradigms to utilize the
underlying advantages.

28    ◾    Introduction to Programming Language

1.9.1 Programming Paradigms–Based Classification

We have already discussed various programming paradigms. For example, early versions
of FORTRAN, C, ALGOL 60, Pascal, ADA, and PL/I were imperative languages; early
versions of Lisp, ML, and Scheme are popular functional programming languages; Prolog
is a popular logic programming language; and C++, Java, Scala, Ruby, Python, and X10
are multiple programming paradigm languages. For example, C++ is an integration of
the imperative programming paradigm and the object-Oriented programming para-
digm; Common Lisp Object-Oriented System (CLOS) is an integration of the functional
 programming paradigm and the object-oriented programming paradigm; Concurrent C,
Concurrent Pascal, and Parallel Fortran are integration of the concurrent programming
paradigm and the imperative programming paradigm; and so on. Java’s thread allows con-
current programming. So Java is an integration of the imperative programming paradigm,
the object-oriented programming paradigm, the concurrent programming paradigm, the
event-based programming paradigm, and the web-based programming. Microsoft C# is
an integration of the imperative programming paradigm, the object-oriented program-
ming paradigm, and the event-based programming paradigm. Combined with .NET, it is
also suitable for web-based programming. Recent languages such as Scala and Ruby sup-
port multiple programming paradigms. In future, more such languages that would inte-
grate multiple programming paradigms will evolve. Older languages have incorporated
concurrent programming and object-oriented programming as they evolved.

1.9.2 Implementation-Based Classification

Languages can also be classified on the basis of implementation models. There are four
broad implementation models: (1) static implementation, (2) stack-based implementation,
(3) heap-based implementation, and (4) an integrated model of implementation that inte-
grates static, stack-based, and heap-based memory allocation for execution efficiency. As
discussed in Chapter 5, static implementation allocates memory for every declared data
structure and variables at the time of compilation, and there is no chance of memory
growth at run time. Stack-based implementation uses a stack, also called control stack, to
allocate the memory for local variables and other run-time requirements such as various
pointers needed to run a called procedure. The advantage of the stack-based implementa-
tion is that the stack can grow and shrink at run time, based on the memory needed by the
chain of called subprograms. This runtime expansion allows dynamic memory growth,
and supports the implementation of recursive procedures and memory reuse. The heap-
based implementation model uses a central common memory area accessible to all pro-
cedures; the memory needed by the data structures can be borrowed from the heap as
and when needed and released dynamically at run time, either manually by programmer’s
explicit action or automatically after the data structure is no more in use. Heap-based
implementation allows the allocation of dynamic data structures such as objects in object-
oriented programming, and recursive data structures such as linked lists and trees.

Static implementation does not support recursive procedures, recursive data structures
such as linked lists and trees, and dynamic objects. However, static implementation uses

Introduction    ◾    29  

absolute memory address, utilizing single-memory access to access a data element. Hence
static implementation can access data elements faster than stack-based implementation
and heap-based implementation that use pointer-based accesses, which are equivalent to
more than one memory access.

Stack size in stack-based implementation is limited only by the memory allowed by the
operating system. Memory locations needed by a procedure can be allocated at run time
when the corresponding procedure is invoked. The memory locations are allocated on
top of the stack based on the calling pattern of the procedure and are recovered after the
called procedure is over. This allows memory reuse, as the same memory space can be used
when another procedure is called. To summarize, there are two major advantages of stack-
based implementation: execution of recursive procedure and memory reuse. However, the
addressing mechanism of stack-based implementation makes use of pointers and offsets,
as discussed in Chapter 5. Hence, in comparison to static implementation, it has additional
overhead to access variables and data structures.

One major disadvantage of stack-based implementation is that recursive data structures
such as linked lists and trees, and dynamic data structures such as dynamically created
objects can still not be implemented. There are two major issues in recursive data struc-
tures and dynamic objects that prevent their implementation on a pure stack-based imple-
mentation. The first issue is uncertainty in the creation of the data structure at the compile
time, and the second issue is the size of the data structure. In the case of recursive data
structures, it is not clear at compile time how much memory will be needed at run time.
Depending upon the invocation and input data, a recursive data structure may need to be
invoked multiple times for varying numbers of cells. Similarly, it is not clear at compile
time which object will be created at run time. In addition, recursive data structures and
dynamic objects may have a lifetime beyond the life of the procedure in which they were
created. For this reason, a common memory area called heap is used. Heap is a memory
bank from which the processes can borrow memory as and when needed and return the
memory when their need is over. One logical data structure may be distributed across the
heap in different memory blocks connected through pointers. These memory blocks are
allocated at different times in response to the request made during program execution.
Deleting a recursive data structure or dynamic object is equivalent to releasing the mem-
ory in the heap. After the memory is released, a garbage collector recycles the memory, so
that it can be used by other processes. Note that this heap is different from a tree-heap you
have learned in data structure.

Heap-based implementation is slower than the stack-based implementation since there
are (1) overheads of run-time allocation of objects, (2) overheads of excessive use of pointers
to traverse the data structures in the heap, and (3) overheads of recycling the memory for
reuse.

Modern-day languages use all three memory allocation techniques, since they want to
give all the facilities along with maximum possible efficiency of execution. For example,
a modern-day language such as C++ uses static variables that use static allocation, stack-
based implementation for handling recursive procedures and memory reuse, and use of
heap for dynamic data objects and recursive data structures.

30    ◾    Introduction to Programming Language

1.9.3 Other Classifications

Programming languages can also be classified according to the type of system they support.
There are two major classifications of type: monomorphic type and polymorphic type. As
the name suggests, a function in a monomorphic type language can handle only one type
of data structure. For example, if we write a function to count the numbers of elements in
a linked list, then multiple similar functions will need to be written in a monomorphic
language, depending on whether we are counting a list of integers or list of floating-point
numbers of a list of another data type. However, just one generic function needs to be
written in a polymorphic language that will adapt itself to different types of linked lists.
Languages such as FORTRAN, ALGOL, Pascal, and C are monomorphic languages: they
support a limited amount of polymorphism in the form of coercion and overloading, as
discussed in Chapter 7. Many modern-day languages such as C++, Lisp, ML, Haskell, Java,
and Prolog are polymorphic languages.

Another interesting way to classify programming languages is to identify them by the
class of problems they are better at, which depends upon the language feature that a prob-
lem domain needs. A language that meets all the requirements of a problem domain can
be classified as a language suitable for that domain. For example, C++ is a good program-
ming language for large software development. However, it is not good for real-time pro-
gramming. Similarly, FORTRAN is a good language for scientific programming.

1.10 SUMMARY
A program has three major components: logic, abstraction, and control. Different languages
are good for different problem domains. Criteria for good programming languages are
often contradictory. Different programming paradigms—imperative programming para-
digm, functional programming paradigm, logic programming paradigm, object- oriented
programming paradigm, visual programming paradigm, concurrent programming para-
digm, event-based programming paradigm, multimedia programming paradigm, and
web-based programming—can be characterized by different features. As different pro-
gramming paradigms have evolved, language scientists have debated and identified the
good features of the various programming paradigms. Modern-day languages combine
these features and incorporate multiple programming paradigms. For example, Java is a
language that incorporates the imperative programming, object-oriented programming,
event-driven programming paradigm, the concurrent programming paradigm, and the
web-based programming.

High-level languages have to support data and control abstractions for better com-
prehension, management, and evolution of software. The languages should also support
modularity so that the effect of changing one module is localized to that module. We
have discussed three different translation mechanisms: interpretation provided by the
 interpreters, compilation provided by the compilers, and just-in-time compilation pro-
vided by the just-in-time compilers. The compiled codes execute most efficiently because
the translation process is not part of the execution. Interpreters execute the program slowly
because translation and execution are interleaved during run time. Web-based languages

Introduction    ◾    31  

use a virtual machine and just-in-time compilation to translate to low-level code for execu-
tion. The execution efficiency of just-in-time compilation is between a compiled code and
an interpreted code.

To implement a programming language, various low-level abstract models are used.
Static implementation uses direct access to memory. However, due to lack of support
for memory growth, static implementation is unable to handle recursive procedures,
memory reuse, recursive data structures such as linked lists and trees, and dynamic
data objects. Stack-based implementation allows execution of recursive procedures
and memory reuse. However, stack-based implementation cannot handle recursive
data structures and dynamic data objects. In order to handle recursive data struc-
tures and run-time creation of dynamic data objects that can be allocated piecemeal,
based on program demand, we need a heap—a common memory area shared by all the
subprograms.

Languages can be classified using many different criteria such as (1) programming
 paradigm–based classification, (2) implementation-based classification, and (3) type-based
classification. However, it is very difficult to classify modern-day languages. Modern
 programming languages benefit from a combination of features, and may not be classifiable
to one single category.

1.11 ASSESSMENT

1.11.1 Concepts and Definitions

Abstraction; algorithm; alpha testing; assembly code; beta testing; binary code; code opti-
mization; compiler; concurrency; concurrent programming; conditional jump; control;
control abstraction; control flow; control flow diagram; data abstraction; data-dependent
iteration; declarative programming paradigm; definite iteration; destructive update;
event-based programming paradigm; functional equivalence; functional programming
paradigm; goto statement; heap-based implementation; imperative language; indefi-
nite iteration; information hiding; intermediate code; Internet programming paradigm;
interpreter; just-in-time compilation; lexical analysis; linker; loader; logic programming
paradigm; modularity; monomorphic type; multimedia programming paradigm; object-
oriented programming paradigm; orthogonality; parsing; polymorphic type; portability;
problem domain; program comprehension; readability; software development cycle; soft-
ware engineering; software evolution; software maintenance; software reuse; stack-based
implementation; static implementation; symbol table; unconditional jump; visual pro-
gramming paradigm; writability.

1.11.2 Problem Solving

 1. Write a program using for-loop and while-loop to construct the for-each loop as
given below. Assume that “a” is an aggregate data structure and the function “size(a)”
returns the number of elements in “a,” and next(a) returns the next element of the
data structure “a.”

32    ◾    Introduction to Programming Language

 foreach x in a {
 y = f(x); print (x, y);
 }

 2. Write a control flow diagram for the following code.
 i = 0; j = 10;
 for (k = 0; k = < 9; k++) a[k] = 0;
 while (i < 5) {
 j = j – 1;
 for (k = 0; k < = j; k++) {
 a[k] = a[k] + 7;
 if (a[k] mod 2 == 0} print (‘even number’);}
 i = i + 1
 }

1.11.3 Extended Response

 3. Explain the three major components—logic, control, and abstraction—in a
program.

 4. Explain the advantages of control and data abstractions in programming
languages.

 5. Compare and contrast various criteria of a good programming language.

 6. Explain using examples from various problem domains and the use of contrast-
ing criteria for good programming language, why there cannot be a universal good
programming language.

 7. How is the “goto” controversy related to program comprehension? Explain using a
figure.

 8. Explain the software development cycle and its effect on the development of pro-
gramming languages.

 9. Explain the characteristics of the various programming paradigms.

 10. What are the various categories of memory allocation in programming language
implementations? Explain the advantages and disadvantages of each category.

 11. What do you understand by just-in-time compilation? How is it different from tra-
ditional interpretation and compilation? Explain using a figure.

 12. Why do web-based languages use just-in-time compilation? Explain.

 13. What are the schemes to categorize programming languages? Describe briefly each
classification.

 14. What do you understand by control flow diagrams? Explain the basic components
of control flow diagrams.

Introduction    ◾    33  

FURTHER READING
Amber, Allen A., Burnett, Margret M., and Zimmerman, Betsy A. “Operational vs. definitional – A

perspective on programming paradigms.” IEEE Computer 25(9), September 1992, 25–42.
Brainerd, Walter S. Guide to FORTRAN 2003 Programming. Springer-Verlag London Ltd. 2009.
Dijkstra, Edsgar W. “GO TO statement considered harmful.” Communications of the ACM, 11(3),

1968, 147–148.
Knuth, Donald E. “Structured programming with goto statements.” Computing Surveys 6(4),

December 1974, 261–302.
Kowalski, Robert. “Algorithm = Logic + Control.” Communications of the ACM, 22(7), 1979, 424–436.
Kupferschmid, Michael. Classical Fortran: Programming for Engineering and Scientific Applications,

2nd edition. Chapman and Hall/CRC Press. 2009.
Ledgard, Henry F. and Marcotty, Michael. “A genealogy of control structures.” Communications of the

ACM, 18(11), November 1975, 629–639.
Peterson, Wesley W., Kasami, T., and Tokura, N. “On the capabilities of while, repeat, and exit state-

ments.” Communications of the ACM, 16(8), 1973, 503–512.
Stalling, William. Operating Systems: Internals and Design Principles. Pearson Publishers. 2011.

35

C h a p t e r 2

Background and
Fundamental Concepts

BACKGROUND CONCEPTS
Previous programming background; A course in data structures; A course in discrete
structures

This chapter describes computer architecture concepts, mathematical concepts, data
structure concepts, and abstract computational concepts needed for understanding the
abstractions and implementation of programming languages. These concepts need not be
studied in sequence. You may like to study the concepts as needed as background material
in different chapters.

2.1 VON NEUMANN MACHINE
Present-day computers are based on a low-level abstract machine called the von Neumann
machine after the mathematician John von Neumann proposed a stored-program
 computer model. Understanding the von Neumann machine is important for us, because
low-level machine instructions are designed to execute on the von Neumann machine.
Program translators translate high-level constructs to equivalent low-level instructions.
High-level constructs—such as if-then-else statements, while-do loops, and for loops—are
 translated to a sequence of low-level instructions in the von Neumann machine. The appli-
cation of the von Neumann machine and low-level abstract instruction sets will become
clear when we discuss the meaning of high-level constructs in terms of low-level abstract
instructions in Chapter 3 and translate control abstractions to sequences of low-level
abstract instructions in Chapter 5.

The von Neumann machine has two major components: (1) memory that stores
 program and data and (2) a central processing unit (CPU) that fetches the instructions and
 processes the data based upon the instructions. The instructions are fetched one at a time
by the CPU using a bus—a high-speed connection between the memory and CPU. A CPU
interprets the instruction and loads the data from the memory using the same bus. Data

36    ◾    Introduction to Programming Language

is processed in the arithmetic and logical unit (ALU) within the CPU, and the resulting
data are stored back to the memory, as shown in Figure 2.1. Frequently used data items or
their references are stored in hardware registers for faster access time. The von Neumann
machine has a program counter, which contains the memory address of the next instruc-
tion to be executed. The program counter is incremented by one after fetching the current
instruction. However, its value can be altered using conditional and unconditional jump
statements.

The instructions could be categorized as loading from the memory (load); storing into
the memory (store); performing arithmetic computations of addition, subtraction, multipli-
cation, and division; logical computations such as logical-AND, logical-OR, exclusive-OR,
and negation; comparing two values; conditionally or unconditionally jumping to another
nonadjacent instruction by changing the value of the program counter and by checking
the status of various system-level flags. The various flags are stored in a register called the
program status word (PSW). In addition to these categories of instructions, instruction sets
also support various addressing mechanisms to address the operands, depending upon the
computer architecture.

2.1.1 Address Mechanisms

In the von Neumann machine, data or addresses of memory locations can be temporarily
stored in the registers or in the memory (RAM). Similarly, a memory location can also
hold data, as well as address of another memory location. If a memory holds the data, then
it is accessed by an instruction using a single memory access called direct access. However,
if a memory location holds the address of another memory location, then two memory
accesses are needed to load the data into the CPU, and this method is called indirect access.
In addition to direct and indirect accesses, an offset can be added or subtracted to an
address stored in a register or another address to calculate a new address. This offset-based
method is used to access subfields of complex data structures, where one needs to store the
base address of the first memory location of the data structure and compute the address of
the subfields by adding the offset of the subfield to the base address.

A computer may support 0-address, 1-address, 2-address, or 3-addresses, depending
upon the computer architecture. As summarized in Table 2.1, the number of addresses
is given by the maximum number of arguments the set of assembly-level instructions in

Memory (instruction + data)
(main storage)

Controller + ALU + registers
(computation and temporary fast storage)

Load Store

FIGURE 2.1 A von Neumann machine.

Background and Fundamental Concepts    ◾    37  

a low-level machine have when addressing memory locations or registers. For expres-
sions involving dyadic operations, there are two input arguments and one output
argument. For example, add_integer will require three addresses: two to hold the
input arguments and one to hold the output argument. The arguments that hold the
input values are called source, and the argument that holds the output value is called
destination.

Most modern-day processors support 3-address instruction sets. However, during the
early days, multiple addresses could not be accommodated with 16-bit word size. Two
address machines have a special purpose register called accumulator that is always used as
destination and is not mentioned as one of the instruction arguments to save the number
of bits needed for the addressing mechanism. It can also be explicitly used as one of the
source registers. One address machine implicitly has the first source argument as the accu-
mulator, and the destination is invariably the accumulator. Accumulators are not men-
tioned in the instruction to save the number of bits; implicit use of accumulator for both
source and destination further cuts down the instruction length.

Zero-address machines do not have any explicit argument and use a built-in stack
to hold the argument. The instructions in zero-address machines are load, store, push,
pop, add, subtract, and so on. For example, when an add instruction is given, the top two
data elements from the evaluation stack are popped into ALU, evaluated, and the result is
pushed back on top of the evaluation stack. The instructions load and store can pull the
data from a local variable to the top of the evaluation stack or store the data from the top
of the evaluation stack to a local variable. Zero-address machines can be implemented by
a higher-address machine. An instruction in higher address machines can be translated to
two or more lower-address instructions. Zero-address machines have been used to execute
java programs in a Java Virtual Machine (JVM).

Example 2.1
This example illustrates the translation of an arithmetic expression X = A + B, where
X, A, and B are integer variables. It is assumed that these variables are mapped into

TABLE 2.1 Different Types of Addressing Mechanisms

Instruction Type Type of Operations
Three-address machine instructions:
<instruction-name> <src1>, <src2>, <dst>

An instruction in a 3-address machine. Instruction could be
any arithmetic or logical dyadic operation

Two-address machine instructions:
<instruction-name> <src1>, <src2>

An instruction in a 2-address machine. Instruction could be
any arithmetic or logical dyadic operation. The destination is
same as the second argument

One-address machine instructions:
<instruction-name> <src>

Instruction could be any arithmetic or logical dyadic operation.
One of the registers by default is accumulator that acts as
destination

Zero-address machine instructions:
<instruction-name>

Load, store, add, subtract, multiply, divide, and so on.
Uses a stack-based evaluation. The arguments for operations are
picked up from top of the stack

38    ◾    Introduction to Programming Language

memory locations. The percent sign “%” starts a comment. An instruction in three-
address machine is as follows:

integer_add A, B, X % Add data loaded from memory locations A
% and B, and store back in X.

Since 2-address machines do not have capability to have three addresses, 3-address
instructions are split into a sequence of 2-address instructions. The second argument
also acts as the destination. The corresponding low-level instructions in a 2-address
machine are as follows:

load A, R0 % load the content of memory location A into the
 % register R0

integer_add B, R0 % add the contents of the memory location B
% and the register R0

store R0, X % store the content of R0 into the memory location X

One address machine implicitly uses accumulator as one of the input arguments
and the destination. The corresponding set of low-level 1-address instructions are as
follows:

load A % load the content of memory location A into the
% accumulator

integer_add B % add the contents of the memory location B with
% the content of the accumulator

store X % store the content of accumulator in the memory
% location X

A zero-address machine (as given in JVM instruction set) loads the values of
memory locations A and B into a built-in stack, adds the top two values of the stack,
and leaves the sum on top of the stack, and then stores the top of the stack into the
memory location X. The load operation is a sequence of two operations: first it loads
the address of the memory location on top of the stack by using load_literal instruc-
tions, and then it loads the value of the memory location by using a load instruction.

load_literal 3 % Push the address of X on top of the
% evaluation stack.

load_literal 1 % Push the address of A on top of the
 % evaluation stack.

load % Pop the address of A and push the content of A on top
% of the evaluation stack.

load_literal 2 % Push the address of B on top of the evaluation
% stack.

load % Pop the address of B and push the content of B on top
% of the evaluation stack.

Background and Fundamental Concepts    ◾    39  

integer_add % Pop top two elements from the stack, add them,
% and push the result on the stack.

store % Pop the result, pop the address X, and store result
% into the memory location X.

It is evident from Example 2.1 that more instructions are needed in lower-address
instruction sets to do the same task. Since each instruction means a memory fetch,
lower address machines need more memory fetches when executed on higher-address
machines. Thus the zero-address virtual machines run slower than the native com-
piled code on higher-address machines.

2.2 DISCRETE STRUCTURES CONCEPTS
In this section, we refresh selected concepts of discrete structures that are relevant to the
abstract representation of data. Their relevance will become clear as we proceed with the
discussions of programming language concepts in the following chapters.

2.2.1 Set Operations

The notion of sets and set-based operations is used in programming languages at multiple
 levels. Sets are used in (1) definition of the types in the type theory, as explained in
Chapter 7; (2) set-based programming such as in languages like Pascal, SETL, Modula,
Claire, Ruby, and Python; and (3) libraries for set-based programming in many popular
languages such as Java, C++, and Prolog.

A set is a collection of unique data items. Shuffling the elements in a set does not alter
the set. A bag or multiset is a collection of entities that can have multiple data items with
the same value. For example, {1, 2, 3, 2, 4, 5, 7} is a multiset (or bag) where element 2
has been repeated three times. Still, shuffling the elements in the bag does not change
the bag.

An interesting subclass of bags is an ordered bag. Each element of an ordered bag is
associated with the corresponding position. In an ordered bag {Meera, John, Li}, Meera is
associated with the position 1, John is associated with the position 2, and Li is associated
with the position 3. Shuffling the elements in an ordered bag alters the ordered bag because
the associated positions get disturbed. For example, an ordered bag {Meera, John, Li} is
not the same as an ordered bag {John, Meera, Li}, because Meera is associated with the
position 1 in the first ordered bag and is associated with the position 2 in the second
ordered bag. Ordered bags play an important role in many programming language struc-
tures. Structures such as sequence, string, files, and so on are modeled as ordered bags as
explained in Chapter 7.

Familiarity with subset, union, and intersection of the sets is assumed. A set of all the
possible subsets of a given set is called the power set of the given set. For example, power set
of a set {X, Y, Z} is given by {{} (empty set), {X}, {Y}, {Z}, {X, Y}, {Y, Z}, {X, Z}, or {X, Y, Z}}.
To derive a subset, either an element can be selected or ignored giving two possibilities.
Thus the size of a power set of a given set is given by 2N, where N is the number of elements
in the original set.

40    ◾    Introduction to Programming Language

2.2.1.1 Cartesian Product
Cartesian product involves two or more sets and derives a new set of N-tuples, where N is
the number of sets in the Cartesian product. Given a Cartesian product A1 × A2 ×, …, ×AN
(N ≥ 2), the first field of an N-tuple is an element of the set A1, and Ith element (I ≤ N) of
the N-tuple is an element of the Ith set. The number of elements in the resulting set is given
by |A1| × |A2| × |A3| × |A4| … |AI| × … × |AN| where |Ai| gives the number of elements in
the Ith set.

Example 2.2
Let us consider three sets: A = {a, b, c}, B = {x, y, z}, and C = {1, 2, 3}. Cartesian product
A × B × C has 3 × 3 × 3 = 27 possibilities as follows: {(a, x, 1), (a, x, 2), …, (c, z, 1),
(c, z, 2), (c, z, 3)}.

2.2.1.2 Mapping
Mapping involves associating the elements of one set to elements in another set, either
in a one-to-one manner or many-to-one manner. Figure 2.2 shows mapping between the
domain D and the codomain R. There are five elements in the set D, and there are six ele-
ments in the set R. If we define the mapping as the “square of the elements in D,” then
every element of the domain D is mapped to an element in R. More than one element in
the domain D may map to the same element in the codomain R. However, one element
of the domain D cannot map to more than one element in the codomain R.

2.2.1.3 Isomorphism
Two sets S1 and S2 are isomorphic, if there exist a pair of bijective functions f and g such that
there is a mapping between S1 and S2: the function f maps all the elements of S1 onto S2 in
a one-to-one manner, the function g maps the elements of S2 to S1 in a one-to-one manner,
and the function g is an inverse function of the function “f.”

Example 2.3
For example, let us take two sets S1 = {1, 2, 3} and S2 = {4, 5, 6}. There is a func-
tion add_3 that maps all the elements of the set S1 to every element of the set S2 in
a one-to-one onto manner by adding 3 to an element in the domain S1, and there

Domain D

1
2
3
4
5

1
4
9

16
25
49

Codomain R

FIGURE 2.2 Mapping using the square function.

Background and Fundamental Concepts    ◾    41  

is a corresponding inverse function subtract_3 that maps every element of S2 to an
element of set S1 in a one-to-one onto manner by subtracting 3. Both add_3 and
 subtract_3 are inverse functions of each other.

2.2.1.4 Functions
A function f is a single-valued mapping from every element x ∈ domain D to an image
f(x) ∈ codomain C. The set of images of f(x ∈ D) ⊆ C, and is called the range of function.
An identity function maps the element to itself, and a constant function maps every element
of a set to a fixed single element. A function is called one-to-one or injective if for all ele-
ments in the domain there exists a distinct image in the codomain that is if y1 = f(x1 ∈ D)
and y2 = f(x2 ∈ D) and x1 ≠ x2 and y1, y2 ∈ C implies y1 ≠ y2. A function is onto or surjective
if for every element y ∈ C, there is an element x ∈ D such that f(x) = y. A function f is bijec-
tive if it is one-to-one and onto. That means that for an element in the codomain, there is a
unique image of the element in the domain. Given a bijective function f, an inverse func-
tion f–1 can be defined that maps the unique image in the codomain to the corresponding
element in the domain that is f–1(f (x ∈ D)) = x.

In programming, surjective functions become quite important, because absence of an
image of a defined function is equivalent to an error condition. A nonsurjective function
can be made surjective by introducing a null symbol, denoted by ⊥, in the range. The null
symbol becomes an image of all the symbols in domains that do not map to any non-null
symbol in the codomain. This idea of null symbol has been used to explain the denota-
tional semantics of programming languages in Chapter 3 and functional programming in
Chapter 9.

Programmatic representation of a function has three parts: variables, expression body,
and input parameters. When an input value is given, the input value is bound to a variable
and substituted everywhere in the expression where the variable occurs. After the simpli-
fication of the expression, an output value is returned. A function may be given a name to
call the function from various locations of multiple program modules.

Example 2.4
Let us consider the well-known function factorial(n) that you have studied in data
structure and programming courses. The function has a variable n that is bound to
the given parameter. The expression body of the function has been given on the right-
hand side of the definition.

 factorial(n) =
 if (n == 0) return(1) % base case
 else return(n * factorial(n – 1))% recursive
 % definition

The body of the function factorial(n) consists of two expressions: “if (n == 0)
then return (1); if (n > 0) return (n * factorial(n – 1)).” Both the expressions are
connected through if-then-else control abstraction, and the test (n > 0) is implicit

42    ◾    Introduction to Programming Language

in the if-then-else abstraction. When we call factorial(3), the value 3 is bound
to the variable n, and then it is substituted everywhere in the expression body of
the function, and the function reduces to “if (3 == 0) then return 1 else return
(3 * factorial(3 – 1)).” The condition is evaluated, and the function is further simpli-
fied to return(3 * factorial(3 – 1)). The expression (3 – 1) is simplified, and the function
is further simplified to return(3 * factorial(2)). Now the evaluation of function(3) is
suspended until factorial(2) has been computed.

2.2.2 Boolean Logic and Predicate Calculus

Boolean logic is based upon associating truth values to some statements. An axiom is a
statement or proposition that can either be “true” or “false.” These truth values can be com-
bined using various logical operators such as logical-AND (denoted by the symbol “∧”),
logical-OR (denoted by the symbol “∨”), implication (denoted by the symbol “→”), and
negation (denoted by the symbol “¬”). Logical-AND and logical-OR combine two logical
axioms A and B. As shown in Table 2.2, both A and B should be true for A ∧ B to be true,
and both A and B have to be false for A ∨ B to be false. Logical operation implication states
that A → B means that if A is true, then B is true. That B’s truth value cannot be ascertained
if A is false. Hence, if A is false, then B can be either true or false. Negation means if axiom
A is true, then ¬ A is false, and if axiom A is false, then ¬ A is true.

Example 2.5
Let us take an axiom A that “people are innovative” and axiom B that “people are
proud.” Assume that Axiom A and axiom B are true; then A ∧ B is also true—that is,
“People are innovative and proud.” If we consider logical-OR, and if either axiom A
is true or axiom B is true, or if either one of them is true, then the axiom “People are
innovative or proud” would be true.

Logical-AND and logical-OR are commutative, associative, and distributive, as
given in Table 2.3. This concept is used extensively in developing programs and con-
current execution of programs. There are many combinations of Boolean operations
that are equivalent. For example, De Morgan’s theorem relates logical-AND with
logical-OR by making use of the negation. The De Morgan’s law states (1) the nega-
tion of the conjunction of predicates is equivalent to the disjunction of negation of
the predicates and (2) the negation of the disjunction of predicates is equivalent to the
conjunction of the negation of the predicates.

TABLE 2.2 Truth Table for Logical Operators Used in Programming Languages

A B ¬(A) A ∧ B A ∨ B A → B

True False False False True False
False False True False False True
True True False True True True
False True True False True True

Background and Fundamental Concepts    ◾    43  

2.2.2.1 First-Order Predicate Calculus
Propositional logic handles only truth values of simple axioms and derivation of new axioms
using logical operators. If we enrich propositional logic by two types of quantification—
universal (denoted by the symbol ∀) and existential (denoted by the symbol ∃)—then the
resulting logic is called “first order predicate calculus.” Universal quantification associates
a property for every element of a set. After associating a property with every element of
a set, if an object is the member of the set with which the property has been associated,
then the object will also be associated with the property. For example, if say all men like
to live longer, and John is a man. A natural inference for us would be that “John likes to
live longer.” Let us map these statements using first order predicate calculus (FOPC). The
FOPC rules are ∀x (man(x) → likes_to_live_longer(x)). If we read these rules, it says that for
all x, if x is a man, that implies x likes to live longer. John is a man. Using the implication
rule, John likes to live longer. An existential quantifier asks for an element that satisfies a
specific property. For example, a rule ∀x ∀y (sibling(x, y) → ∃z (parent(x, z), parent(y, z), not
(x == y) states that for all x and for all y, x is a sibling of y if there exists a z such that z is
parent of x, z is parent of y, and x is not equal to y. The variable z is an existential quantifier,
as it looks for an element in the set that is parent to both x and y.

There are many equivalent properties relating the two quantifiers as shown in Table 2.4.
Both universal quantifiers and existential quantifiers are commutative. However, when
a universal quantifier is mixed with existential quantifiers, then the situation is not as
straightforward. For example, if a property is true for all the elements of a set (∀x P(x)), then
it can be said that it is not the case that there exists an element for which this property is not

TABLE 2.3 Equivalence in Boolean Operations

Type of Operations Equivalences
Negation ¬ (¬ P1) ≡ P1

Associativity P1 ∧ (P2 ∧ P3) ≡ (P1 ∧ P2) ∧ P3

P1 ∨ (P2 ∨ P3) ≡ (P1 ∨ P2) ∨ P3

Commutativity P1 ∧ P2 ≡ P2 ∧ P1

P1 ∨ P2 ≡ P2 ∨ P1

Distributivity P1 ∧ (P2 ∨ P3) ≡ (P1 ∧ P2) ∨ (P1 ∧ P3)
P1 ∨ (P2 ∧ P3) ≡ (P1 ∨ P2) ∧ (P1 ∨ P3)

De Morgan’s rule ¬(P1 ∧ P2) ≡ (¬ P1) ∨ (¬ P2)
¬ (P1 ∨ P2) ≡ (¬ P1) ∧ (¬ P2)

TABLE 2.4 Equivalence in Quantification

Operations Equivalences
Commutativity ∀x ∀y P(x, y) ≡ ∀y ∀x P(x, y)

∃x ∃y P(x, y) ≡ ∃y ∃x P(x, y)
Duality ∀x P(x) ≡ ¬ ∃x (¬ P(x))

∃x P(x) ≡ ¬∀x (¬ P(x))

44    ◾    Introduction to Programming Language

true (¬∃x ¬P(x)). Similarly, (∃x P(x)) is equivalent to ¬ ∀x (¬ P (x)). If we mix a universal
quantifier with an existential quantifier, then law of commutation does not hold: ∀x ∃y
is not equivalent to ∃y ∀x: a statement such as, “There exists a person y for every person
x whom x likes” (∀x ∃y likes (x, y)) is not the same as saying that “There exists a person y
whom every person x likes” (∃y ∀x likes(x, y)).

First-order predicate calculus forms the basis of the logic programming paradigm, as
discussed in Chapter 10. One of the limitations of first-order predicate calculus is that it
cannot express relations about relations. Higher-order predicate calculus can express rela-
tions about relations. However, discussion of higher-order predicate calculus is beyond the
scope of this book.

2.2.2.2 Relations
Similar to functions, relations have been used extensively in programming and representa-
tion of types needed for programming. In this subsection, we review the basic properties
of relations.

A binary relation R is defined as a proper subset of the Cartesian product of two sets:
domain S1 and codomain S2. Mathematically speaking a relation R ⊆ S1 × S2, and each ele-
ment x ∈ S1 is related to an element y ∈ S2 through the relation R for an ordered pair of the
form (x, y) ∈ R. A relationship between two entities can be represented by either as xRy or
R(x, y).

A relation can be reflexive, symmetric, antisymmetric, or transitive. A relationship R is
reflexive if xRx is true for every element of a domain. A relationship R is symmetric if for
every ordered pair (x, y) ∈ R, there exists another ordered pair (y, x) ∈ R. In other words,
xRy is equivalent to yRx. A relationship is antisymmetric if xRy means y is never related to
x through the relationship yRx. A relationship is transitive if xRy and yRz imply that there
exists an ordered pair (x, z) ∈ R. The notion of relations has been used extensively in the
development of the fundamental properties of programming. A relation R is an equiva-
lence relationship if R is reflexive, symmetric, and transitive.

Example 2.6
For example, the relation “greater than” (or less than) is antisymmetric and transi-
tive. Similarly, the relationship “equality” is reflexive, symmetric, and transitive.
The value of a variable x is equal to itself (xRx); if the value of a variable x is equal
to the value of a variable y, then the value of a variable y is equal to the value of a
variable x (xRy implies yRx); if the value of a variable x is equal to the value of a
variable y, and the value of a variable y is equal to the value of a variable z, then
the value of a variable x is equal to the value of the variable z (x == y and y == z
implies x == z).

The properties of reflexivity, symmetry, and transitivity have been used implic-
itly in many comparison operators in regular programming, such as sorting a
sequence of numbers. The property of transitivity has also been used in the data-
dependency graph analysis in Chapter 8 and in the analysis of equivalence of
aliased variables.

Background and Fundamental Concepts    ◾    45  

2.2.3 Recursion

Recursion means that the definition uses itself in the definition, although with a smaller
data set or argument value. Recursion can be used to define a recursive function, such as
factorial or Fibonacci, or a recursive data structure, such as linked list or trees.

A recursive definition has at least one base case and at least one recursive definition. The
recursive definition progressively unfolds and approaches the base case(s). In a finite num-
ber of unfoldings, the recursion is terminated by the base case, and the result of the compu-
tation is passed back in the reverse order to the calling invocation of the recursive function.
The number of invocations of recursive functions is decided by the input value. The previ-
ous invocation is suspended until the invocation caused by the next unfolding is evaluated.
This need to store the suspended procedures needs an inherent use of a stack to store the
memory locations needed to perform computations in the chain of invoked functions.

Example 2.7
 factorial(0) = 1. % base case
 factorial(n) = n * factorial(n – 1) % recursive definition

The function factorial(n) is defined recursively by n * factorial(n – 1), and the base
case is factorial(0) = 1. The function call factorial(4) is unfolded as 4 * factorial(3);
factorial(3) is unfolded as 3 * factorial(2); factorial(2) is unfolded as 2 * factorial(1);
and factorial(1) is unfolded as 1 * factorial(0); factorial(0) is the base case. After evalu-
ating factorial(0), the value 1 is passed to factorial(1); factorial(1) passes 1* 1 = 1 to
factorial(2); factorial(2) passes 2 * 1 = 2 to factorial(3); and factorial(3) passes 3 * 2 to
factorial(4). The final value, 4 * 6 = 24, is returned at the end.

Example 2.8
Another example of recursive function is the definition of “Fibonacci numbers.”
The definition of Fibonacci numbers has two base cases, as given below

 Fibonacci(0) = 1 % base case
 Fibonacci(1) = 1 % base case
 Fibonacci(n) = Fibonacci(n - 1) + Fibonacci(n - 2) % recursive

 % definition

2.2.3.1 Tail Recursion and Iteration
Tail recursion is an important subclass of recursive definitions that needs special attention
in the study of programming languages. In tail recursion, the recursive part comes at the
end of the definition. For example, the function gcd can be expressed using tail recursion
as follows:

GCD(x, y) = gcd((bigger(x, y) modulo smaller(x, y)),
smaller(x, y)). % tail recursive definition

GCD(0, x) = x % base case

46    ◾    Introduction to Programming Language

In the above definition, the base case returns the value of the second argument if the
first argument is 0. It would occur when the left-hand side of the tail recursive definition
has the bigger argument as a multiple of the smaller argument. The tail recursive defini-
tion calls the function GCD tail recursively with the first argument as the remainder of
the division of the bigger and smaller arguments and the second argument as the original
smaller argument that would become the bigger argument in the new invocation of the
function GCD.

One of the properties of tail recursive definitions is that they can be modeled using
 indefinite iterations and avoid the memory overhead associated with invoking new pro-
cedure calls in recursive definitions. Note that neither the definition of factorial nor
the definition of Fibonacci is tail recursive: factorial has “multiplication” as the last
 operation, and Fibonacci has two recursive calls in the recursive definition. Tail-recursive-
optimization is a code optimization technique to allow memory reuse and reduce execu-
tion time overhead by transforming tail recursive programs to indefinite iteration. Iterative
programs reduce the memory and execution time overhead present in stacks, which are
much slower to implement and are wasteful of memory space.

2.2.3.2 Linear Recursion and Iteration
A large class of linear recursive functions—recursive functions with only one call to itself in
the recursive definition—can be transformed to iterative programs using indefinite itera-
tion and accumulators. An accumulator is an abstraction that keeps the last computed
partial result. In the iterative version, the same set of variables are reused, and the invoca-
tions of recursive procedures are replaced by iterative code that starts from the base case
and keeps accumulating the partial-output value after every cycle. Finally, the result is
collected from the accumulator.

Example 2.9
An iterative version of the function factorial is given in Figure 2.3. The accumulator
has been initialized to factorial(0) = 1—the base value of the function factorial; and
the recursive calls have been substituted by iteration. After every step, the accumulator
value is updated. This is equivalent to starting from the base case of recursion and
building up; there is no unfolding of recursive procedures, making it more efficient.

Algorithm iterative_factorial
Input: value of n;
Output: accumulator value;
{ accumulator = 1;
 for (i = 1; i =< n; i++) accumulator = i * accumulator;
 return(accumulator);
}

FIGURE 2.3 An iterative version of the function factorial.

Background and Fundamental Concepts    ◾    47  

2.2.4 Finite State Machines

A finite state machine is an abstract machine to model a real-world phenomenon by model-
ing different situations (states) as nodes of a graph and the transitions between the states
as directed edges between the nodes. A machine transits from one state to another based
upon the input values. All the states may not be reachable from all the states. There are one
or more initial states, and there are one or more final states. The machine starts from one
of the initial states and ends up in a final state.

Example 2.10
A heating and cooling system can be modeled as finite state machine, as shown in
Figure 2.4. There are three states: “room hot,” “room cold,” and “optimum tempera-
ture.” All three states can be the initial state. However, only the state “optimal tem-
perature” is the final state.

In “room hot” state, the thermostat starts cooling. The result is the transition to the
state “optimal temperature.” In “room cold” state, the thermostat starts warming. The
result is the transition to the state “optimum temperature.” No signal is sent if the differ-
ence between the preset temperature and the room temperature is within a threshold.

Example 2.11
The finite state machine in Figure 2.5 recognizes variable names in a program. A
variable is defined as an English letter followed by any number of occurrences of
English letters or digits. The machine contains the initial state S0, the final state S1,
and a state S2 to handle all error conditions. The machine starts in the state S0 where

Room has optimal
temperature

Cool Heat

Room is hot Room is cold

FIGURE 2.4 A finite-state machine modeling thermostat.

S2 (fail)

Other than
letter

S0
(initial)

S1
(�nal)

Other than digit,
letter or ‘_’

Any digit,
letter or ‘_’

A letter

FIGURE 2.5 A finite-state machine to accept a variable name.

48    ◾    Introduction to Programming Language

it can accept only an English letter to transit to state S1; any other character will take
the machine from state S0 to S2, where it will signal an error condition and gracefully
terminate its execution. After accepting the first letter, the machine transits to the
state S1, where it can either accept a digit or another letter. The machine transits from
S1 to S1 whenever it gets a digit, letter, or some special symbols such as “_”; otherwise,
it transits to S2—the fail state.

2.3 DATA STRUCTURE CONCEPTS
There are many concepts in data structures that are needed to understand the implementa-
tion of programming languages. Some of the important concepts are trees used in parsing,
stacks used implicitly in recursion and implementation of programming language engines,
queues and graphs used in some efficient garbage collection schemes, and hashing used to
access the procedures and objects efficiently in the implementation of various program-
ming paradigms.

2.3.1 Sequences

A sequence is an ordered bag of elements such that the immediately preceding element
in the sequence is associated with a position that is less by exactly one from the position
of the reference element. For example, a string is a sequence of characters, and a file is a
sequence of data entities. Even abstract data types stacks and queues can be modeled using
sequence as shown in the next subsection.

Let us denote a sequence with constituting elements within the angular brackets ‘<’
and ‘>’. For example, <x, y, z> is a sequence where the data-element x is associated with
position 1, the data-element y is associated with position 2, and the data-element z is asso-
ciated with position 3. If we denote two functions—predecessor and successor—with a
data element in a sequence, then predecessor(y) = x, and predecessor(z) = y, because the
position of the data element y is greater than the position of the data element x, and the
position of the data element z is greater than the position of the data element y. Similarly,
successor(x) = y and successor(y) = z. The operations on sequences can be categorized as
extracting an element, inserting an element, substituting an element by another element,
joining two sequences, checking whether a sequence is subsequence of another sequence,
extracting a subsequence, and substituting a subsequence by another subsequence. Major
operations on sequences are listed in Table 2.5.

An element can be accessed either from the beginning, from the end, or by giving
the index of an element. The operator first returns the first element of a sequence, the
operator second returns the second element of a sequence, and the operator last returns
the last element of a sequence. A complementary operation is to identify the remaining
subsequence after an element has been taken out. The operator rest gives the remaining
 subsequence of the original sequence minus the first element, and the operator butlast gives
the subsequence of the original sequence minus the last element. The operator select takes
two inputs—the index of the element and the sequence—and returns the corresponding
element of the sequence. The operator cons (abbreviation for construct) constructs a new
sequence by inserting the given element in the beginning of the original sequence. The

Background and Fundamental Concepts    ◾    49  

operation insert inserts the given element at the specified position and generates a new
sequence. The operator cons is a specific case of insertion. The operator append takes two
sequences of the form <x1…xn> and <y1…ym> and generates a new sequence of the form
<x1…xn, y1…ym> by placing the elements of the second sequence after the elements of the
first sequence. The operator subseq takes three input arguments: (1) the original sequence,
(2) the starting position in the original sequence, and (3) the length of the subsequence,
and extracts the corresponding subsequence. For example, subseq(<4, 5, 6, 7>, 3, 2) derives
the subsequence <6, 7>. The predicate is_subseq takes as input two sequences and checks if
the first sequence is a subsequence of the second sequence. For example, is_subseq(<6, 7>,
<4, 5, 6, 7>) returns true.

A sequence can be implemented using a linked list, an array, or a vector. All three data
structures have different characteristics. In a linked list, the elements are accessed sequen-
tially generally from the beginning to the end; in an array, elements can be accessed ran-
domly; and a vector can be accessed randomly and extended at run time.

2.3.2 Stacks and Queues

Both stacks and queues are important in the implementation of programming languages.
Both stacks and queues are used in searching the complex search space modeled as trees or
graphs. Stacks are used in (1) implementing programming languages, (2) handling recur-
sion, and (3) managing and recycling dynamic data structures from the heap, as discussed
in Chapters 5 and 6. Queues are used in efficient recycling of dynamic data structures
allocated in the heap, as described in Chapter 6.

2.3.2.1 Stack
A stack is an abstract data type where data is entered only from one end. The inserted data
is always put on the current top of the stack, and data element is removed from the current
top of the stack; the other end is blocked. In addition, we can read the top element of the

TABLE 2.5 Major Operations Involving Sequence

Operation Output Explanation
first(<x1…xn>) x1 First element of a sequence
last(<x1…xn>) xn Last element of a sequence
rest(<x1…xn>) <x2,…,xn> Rest of the sequence
butlast(<x1…xn>) <x1,…,xn-1> Subsequence except the last element
select(i, (<x1…xn>) xi ith element of a sequence
cons(a, <x1…xn>) <a, x1,…,xn> Constructs a new sequence by adding a

at the beginning of the old sequence
insert(i, a, <x1…xn>) <x1,…xi-1,,a,,xi+1,

… xn>
a is inserted as the ith element of a
sequence

append(<x1…xn>, <y1…ym>) (<x1…xn, y1…ym> Concatenate sequences in order
subsequence(<x1…xn>,i, m) <xi,…,xi+m-1> A subsequence starting from location i of

length m
is_subseq(<x1…xn>, <y1…ym>) Boolean Returns true if <x1…xn> is included in

<y1,…ym> otherwise returns false

50    ◾    Introduction to Programming Language

stack without deleting the element from the stack, and we can check for an empty stack.
The major advantage of a stack is its ability to work with the most recent data item. Stacks
are also called last in first out (LIFO).

There are four abstract operations in a stack: (1) push (stack, data element)—pushing a
data element on the top of a stack; (2) pop(stack)—reading and removing the top element
from a stack; (3) top(stack)—reading the top element from the stack without changing the
stack; and (4) is_empty(stack)—checking if the stack is empty. The instructions push(stack,
element) and pop(stack) change the stack. In the case of the push operation, the element
being inserted becomes the top element of the stack. In the case of pop(stack), the top ele-
ment is removed from the stack. The instruction top(stack) reads the top element of the
stack without modifying the content of the stack. Stack-based operations are illustrated in
Figure 2.6.

A stack can be modeled as a sequence of elements where data is inserted and taken out
from one end. Pushing an element x in a stack S = <a1, a2, …, aN> gives a new stack S’ as
<x, a1, a2, …, aN>, and the size of the stack is incremented by 1. Popping an element out of
the stack S = <a1, a2, …, aN> gives a new stack S’ = <a2, …, aN>, and the size of the stack is
decremented by 1. An empty stack is modeled as an empty sequence < >.

Implementation of stacks in computer memory requires two pointers: a start pointer
and an end pointer. The top-of-the-stack pointer of an empty stack is equal to the start
pointer, and the top-of-the-stack pointer of a full stack is equal to the end pointer. If the
top-of-the-stack pointer tries to go beyond the end pointer, then a “memory overflow”
error is indicated.

2.3.2.2 Queue
A queue is an abstract data type where data is retrieved from one end, and the data is
inserted from the other end. Generally, a data-element is retrieved in the order it enters
the queue. A queue needs two pointers: front and rear. The front pointer is used to retrieve
the first data element, and the rear pointer is used to insert new data elements. A queue is
empty when the front pointer catches up with the rear pointer. In order to insert an ele-
ment in the queue, the data is inserted in the location pointed by the rear pointer, and the
rear pointer is incremented by one. In order to retrieve the data element from the other
end, the data element pointed by the front pointer is retrieved, and the front pointer is
incremented by one. A queue is linear if the “rear” and “front” pointers move in only one
direction, as shown in Figure 2.7. A queue is made circular by using modulo arithmetic,
where the “front” or “rear” pointers traverse the first element of the queue after traversing

Empty stack

TOS
B
A A

TOS
TOS

Stack after pushing
A then B

Stack after one
pop operation

FIGURE 2.6 Stack operations.

Background and Fundamental Concepts    ◾    51  

the last element of the queue. Circular queues optimally reutilize the memory space freed
after removal of the data elements.

Abstractly, queues can be modeled as a sequence of elements, where new data elements
are inserted at the rear end, and the first data element is removed from the front end.
Inserting an element x in a queue Q = <a1, a2, …, aN> gives a new queue Q’ as <a1, a2, …,
aN, x>, and the size of the queue is incremented by 1. Removing an element out of the
queue Q = <a1, a2, …, aN> gives a new queue Q’ = <a2, …, aN>, and the size of the queue
is decremented by 1.

2.3.3 Reference Mechanisms

Memory locations and registers can store two types of information: (1) data values on
which computations are done and (2) memory locations pointing to other memory loca-
tions. Pointers are memory addresses of other memory locations that are stored in a regis-
ter or a memory location. There are many advantages of the use of pointers:

 1. Referencing complex data structures that are stored in some other part of the memory.

 2. Avoiding the overhead of moving physically large data structures.

 3. Delaying memory allocation for a variable until the run time. This property can be
used for optimal memory allocation for extensible data structures such as linked lists,
trees, vectors, and so on.

 4. Allocating memory blocks for a complex logically contiguous data structure for
which multiple physical memory blocks are allocated at different times and chained
through pointers.

 5. Using as a forwarding reference, providing independence of the program from data
movement in the physical memory.

 6. Sharing part of a complex data structure with other data structures.

Pointers have been used in the implementation of recursive data structures such as
linked lists and trees, since the exact memory size needed for recursive data structures is
unknown at the time of compilation. Moreover, depending upon the input data, the size of
the recursive data structure may change and cannot be estimated at compile time.

Empty queue Queue after inserting A then B

Rear
Front

Rear Rear

B B

A

Queue after remove operation

Front
Front

FIGURE 2.7 Queue operations.

52    ◾    Introduction to Programming Language

System programming has a requirement to access and step through the memory loca-
tions. This requires that pointers should be provided with addition and subtraction capa-
bility, so that system programs can step through the memory space that is modeled as a
single-dimensional array. This necessitates that the user-defined pointers should not cross
the boundary of a segment—the area in the RAM allocated for the execution of a specific
program.

Despite the advantages of the pointers, there are three major drawbacks with the use of
pointers in high-level languages:

 1. Arithmetic operations on pointers allow memory hopping. An arithmetic operation
trying to access a memory location outside the segment causes a “segment-violation”
error.

 2. After the compilation of a program, different variables having different data types
are mapped into a single linear memory space; all information about boundaries
between these data types is lost. If we allow arithmetic on pointers, then pointers can
step through different data types of objects at run-time reading or modifying the
 values incorrectly.

 3. Memory locations used by multiple data structures cannot be reused until all the
pointers pointing to the memory location are released.

Owing to these problems with pointers, programs can be error-prone and may crash at
run time. It is difficult to figure out such pointer-related bugs.

2.3.4 Recursive Data Structures

There are classes of data structures such as linked lists, trees, and vectors that can be
defined recursively. A linked list is defined recursively as a node of information followed
by the rest of the list, and the base case is a null list.

<linked-list> ::= <information-node> <linked-list>
<linked-list> ::= null

A binary tree is defined recursively as an information node followed by a left subtree and
a right subtree. The base case is an empty tree.

 <binary-tree> ::= <binary-tree><information-node><binary-tree>
<binary-tree> ::= null

Pointer-based data structures have efficient insert and delete operations. However,
recursive data structures cannot be allocated at compile time due to the lack of knowledge
of run-time size of the recursive data structures. Recursive data structures grow at run-
time, depending upon the program execution and input data. The memory for a recursive
data structures is allocated in a piecemeal manner, based upon the programmer’s demand

Background and Fundamental Concepts    ◾    53  

during run time. We need a special common memory area called heap to implement
recursive data structures. This heap is different from the heap studied in data structures.
Recursive data structures are physically scattered in the heap, based upon the availability
of the memory slots and the order in which program demands for memory allocation at
run time. Different physical fragments of the same recursive data structure are connected
through a chain of pointers.

2.3.5 Trees

A tree is a recursive data structure that consists of multiple information nodes organized in
the form of an information node that contains one or more data elements and has possible
subtrees rooted at the children of the information node. The base case of a tree is a “null”
tree. A tree can have any number of branches. A binary tree has one cell for each informa-
tion node, and has at most two subtrees: left subtree and right subtree. A tree is called n-ary
tree if the maximum number of branches emanating from a node are “n.” Trees can be
implemented using two techniques: (1) indexible data structures such as arrays or vectors
and (2) pointers connecting parent nodes to children nodes. Indexible data structures are
suitable for representing complete binary trees or almost complete binary trees. An almost
complete binary tree has all nonleaf nodes with two children except the rightmost nonleaf
node that may have one left child, as shown in Figure 2.8.

Pointer-based implementation is suitable for any tree. However, they do not have the
capability to compute the index of the parent node to traverse back. The trees implemented
using pointers are directional in nature: trees can be traversed only from the parent node
to the child node. To circumvent this directional property of pointers, we need either a
stack to store the address of the parents before moving to a child or to use a reverse pointer
stored in the child node in addition to pointers from parent node to child node. Both the
schemes have memory overhead as well execution time overhead. However, in the case of a
stack, memory waste is limited only by the depth of the tree.

Trees are used in programming languages and compilers during the parsing phase.
A special kind of tree called “AND-OR tree” is the basis of implementing the logic pro-
gramming paradigm and has been discussed in detail in Chapter 10. Trees can also be used
to show the nesting structure of procedures in a program or blocks in a procedure and thus
can help in understanding the extent of the scope of a variable declared in a procedure or
within a block. N-ary tree are also used to implement data structures in a logic program-
ming paradigm, as described in Chapter 10.

N4N3

N1

N0

N2

N5

FIGURE 2.8 An almost-complete binary tree.

54    ◾    Introduction to Programming Language

2.3.6 Graphs

A graph is formally defined as a pair (V, E) where V is the set of vertices, and E is the mul-
tiset of edges. In an undirected graph, edges are modeled as a pair (vi, vj), where vi, vj ∈
V are the vertices. The pair (vi, vj) ∈ E shows connectivity between the vertices vi and vj.
There may be more than one edge between two nodes. A path is a sequence of edges that
connect a source node to a destination node. There may be more than one path between
two nodes.

In an undirected graph, the presence of an edge (vi, vj) implies the presence of a symmet-
ric edge (vj, vi). In a directed graph—a graph where edges have directions, edges are mod-
eled as a ordered pair (vi, vj), and the presence of (vi, vj) does not imply the presence of an
edge (vj, vi). A weighted graph has weights associated with edges. The edges in a weighted
graph are modeled as a triple of the form (vi, vj, weightij), where weightij gives the weight of
the edge. In a weighted undirected graph, the presence of a weighted edge (vi, vj, weightij)
implies the presence of (vj, vi, weightij); the weights of symmetric edges remain the same.
In a weighted directed graph, the presence of a weighted edge of the form (vi, vj, weightij)
does not imply the presence of a symmetric edge in the other direction with the same
weight. Graph connectivity is a transitive relationship. If a node vi is connected to vj and
the node vj is connected to vk, then the node vi is connected to vk, although an explicit edge
(vi, vk) may not exist. This property is important from the view point of reachability of data
 elements in recursive data structures.

Example 2.12
Figure 2.9 illustrates a model of road connectivity and distances between a set of cit-
ies in the United States using an undirected weighted graph. The cities could also be
connected through rail links or air links to give multiple edges between two nodes.
However, we consider only the road links in this graph. The graph shows that there
are six cities represented as nodes (or vertices) of the graph, and the road connectivity
between them has been shown by using weighted edges between the vertices, where
the weight shows the road distance in miles between the cities.

A graph is acyclic—it has no cycle; if starting from a node, one cannot reach the
same node using two different sequence of edges. A tree is an acyclic graph. A graph is
cyclic, if starting from at least one node, we can reach the same node again using a path
where edges in the path do not repeat. For example, there are many cycles in the con-
nectivity graph given in Figure 2.9 such as <(Seattle, Kent), (Kent, Washington DC),

1440
Dallas, TX

Los Angeles, CA

1135

Seattle, WA
2429 Kent, OH 429 New York, NY

227

Washington, DC

1326

342

FIGURE 2.9 An example of a weighted undirected graph.

Background and Fundamental Concepts    ◾    55  

(Washington DC, Dallas), (Dallas, Los Angles), (Los Angles, Seattle)>. Another such
cycle is < (Kent, New York), (New York, Washington DC), (Washington DC, Kent) >.

Identifying cycles in graphs is a major problem. In order to identify cycles, one has to
store the previously visited nodes, so that a membership test can be used to check if the
previously visited node, is being revisited. The membership test can be done efficiently by
using hash functions as described in Section 2.3.9. In programming languages, graphs
have been used to represent shared data structures, as explained in Example 2.13. Graphs
are also used to (1) model information flow between program statements; (2) to find out
which data cells are connected in heap during memory recycling; (3) modeling the solu-
tion space of a problem; and (4) to implement functional programming languages.

Example 2.13
Figure 2.10 shows three linked lists sharing parts of their data structures: the first
linked list consists of four information nodes A1, A2, A3, A4; the second linked list
consists of information nodes B1, B2, A3, A4; the third linked list consists of informa-
tion nodes C1, A4. The first and second data structures share two information nodes:
A3 and A4; the first, the second, and the third data structures share the common
information node A4.

2.3.7 Exhaustive Search

Computation can be modeled as a state-space search problem. A state-space problem has
multiple computational states, and every computational statement takes the machine from
one computational state to another computational state. The computation can be mod-
eled as a state-space graph. Different search techniques can be classified into two major
 categories: (1) exhaustive search and (2) heuristics-based search. Exhaustive search schemes
potentially search all the nodes in the state-space graph until a goal node is found. A goal
node is a state that has the desired final condition. Exhaustive searches guarantee a solu-
tion if the search does not get caught in a cycle. There are two major approaches to exhaus-
tively search a tree or a graph: depth-first search and breadth-first search.

Heuristic searches use mathematical functions to estimate the distance or closeness of
the current state to the final state and move toward the final state in a focused manner.
Heuristic searches are more efficient than exhaustive searches but do not guarantee a solu-
tion. Most of the programming language problems use exhaustive searches, while artificial
intelligence problems use heuristic searches.

P2

P1

B1

A1

B2 C1

P3

Partially shared
data structure

A2 A3 A4

FIGURE 2.10 Modeling a directed acyclic graph with shared information nodes.

56    ◾    Introduction to Programming Language

2.3.7.1 Depth-First Search
Depth-first search traverses to descendant nodes in a predetermined order, generally
in left-to-right order. It uses a stack to store information to facilitate the traversal to the
right subtrees. The search starts from the root node and selects the leftmost unexplored
child for traversal. When the subtree rooted at the unexplored child is being explored,
there is no way for the pointer to come back to the right children unless the pointer vis-
its the current node again. To facilitate the traversal to the right children, the address
of the current node is stored in a stack. In the absence of any unexplored child, there
is no need to store the address of the current node in the stack. Since a stack stores the
information in LIFO mode, the parent of the current node being traversed is popped
first. After traversing a leaf node (node having no child), the next node is retrieved
from the top of the stack. This process of retrieving from the stack and exploring the
next right subtree for the retrieved node is repeated until the stack is empty and there
is no more subtree to traverse. Since there is no more subtree to traverse, the search
terminates.

Example 2.14
Consider the example in Figure 2.11. The pointer first traverses the node P0. At this
time, the stack is empty. However, the node P0 has both left and right children. Next
the node P1—the left child of P0—is traversed, and the address of the node P0 is stored
in the stack to facilitate traversal of the node P2 later. Next the node P3—the left child
of the node P1—is traversed, and the address of the node P1 is stored on the stack, and
the stack looks like <address(P1), address(P0)>. Since the node P3 is a leaf node, the
node P1 is popped from the stack after traversing the node P3, and the right child—the
node P4—is traversed. After popping the address of the node P1, the stack looks like
<address(P0)>.

Since the node P1 has no more children, no information is pushed on the stack
while traversing the node P4. After traversing the node P4, the address of the node P0
is popped from the stack, and the stack becomes empty. However, the right child of
the node P0 remains to be traversed. The stack remains empty, since the node P2 has
no right sibling. After traversing the node P2, the address of the node P2 is stored in
the stack, and the node P5 is traversed. The stack at this point looks like <address(P2)>.
After traversing the node P5, the stack is popped. The node P6, the right child of the
node P2, is traversed, and the stack becomes empty. After traversing the node P6, the
stack is empty. Since no additional node needs to be traversed, the search terminates.

The major advantage of the depth-first search is that the stack size is limited by the
depth of the tree, and only a focused part of a tree is searched at a time. However, a naive
depth-first search can get stuck indefinitely in the presence of cycles. Detecting a cycle
requires considerable execution time and memory overhead to store all the visited nodes
and to test the membership of a node among the visited nodes. A hash table can be used to
identify the cycles efficiently. However, for large data structures, the memory overhead to
store the traversed nodes is large.

Background and Fundamental Concepts    ◾    57  

2.3.7.2 Breadth-First Search
Breadth-first search (see Figure 2.12) traverses a tree level by level from left-to-right order
and uses a queue to store the children nodes to be visited. The root node (source node) is
put in the queue initially. After that, every time one element is removed from the queue, all
the children of the removed node are inserted at the rear end of the queue. The process is
repeated until the queue is empty.

Example 2.15
Figure 2.12 illustrates breadth-first search. The pointer first visits the root node P0
and inserts the addresses of its children P1 and P2 in the queue. Then it removes the

P6P5P4

P1 P2

P0

P3 P6P5P4

P1 P2

P0

P3

P0

Stack

P0

P1

Stack

(d)(c)

Stack
P6

P0P5P4

P1 P2

P0

P3 P6P5P4

P1 P2

P0

P3 Stack

(f)(e)

Stack
P6

P2P5P4

P1 P2

P0

P3P6P5P4

P1 P2

P0

P3
Stack

(h)(g)

P6 StackP5P4

P1 P2

P0

P3 P6P5P4

P1 P2

P0

P3 Stack

(j)(i)

(b)(a)

P6P5P4

P1 P2

P0

P3 P6

P0

StackStack P5P4

P1 P2

P0

P3

FIGURE 2.11 An example of depth-first search.

58    ◾    Introduction to Programming Language

address of the node P1 from the queue inserts the addresses of its children P3 and P4
in the queue, and visits the node P1. Then it removes the node P2 from the queue and
inserts the addresses of its children P5 and P6 in the queue. Since the nodes P3, P4, P5,
and P6 are leaf nodes, nothing is inserted in the queue during their traversal. After
the last leaf node P6 is removed, all the nodes have been traversed, and the queue
becomes empty.

The advantage of a breadth-first search is that it traverses a tree one level at a time.
There are many disadvantages to breadth-first search. The memory overhead of a

breadth-first search is quite large. While traversing a tree, it holds as many nodes as there
are nonterminal nodes in the previous level. This number can be as large as half the num-
ber of the leaf nodes in the case of a balanced tree. However, if the memory overhead of

P1 P2

P5 P6P4P3

P0

Queue

(g)

P1 P2

P5 P6P4P3

P0

P1 P2

P5 P6P4P3

P0 P5 P6
P6

QueueQueue

(f)(e)

P4P3P2P2P1

P6P5P4P3

P1 P2

P0

P6P5P4P3

P1 P2

P0

QueueQueue

(a) (b)

P6P5P4

P4 P5 P6P4P3 P5 P6

P3

P1 P2

P0

P6P5P4P3

P1 P2

P0 QueueQueue

(c) (d)

FIGURE 2.12 An example of breadth-first search.

Background and Fundamental Concepts    ◾    59  

the queue can be managed efficiently, breadth-first search can be used quite effectively to
traverse a graph and has been used in some efficient memory recycling schemes in a heap.

2.3.8 Mapping Data Structures in Linear Memory

A program can use struct (tuples with multiple fields) to model complex data entities or
multidimensional arrays to model collection of data entities. Arrays could be either static or
dynamic. Static arrays are allocated memory—once at the time of procedure invocation—and
then no more additional memory allocation is required. The array size of the dynamic arrays
changes at run time based upon the program execution. In addition to the arrays and structs,
there are dynamic objects in object-based languages such as C++, Java, or C# and other
modern programming languages. All these data structures have to be mapped on the RAM.
A RAM can be abstracted as a single-dimensional array indexed by memory addresses.

In order to map multidimensional arrays on the RAM, multidimensional arrays have to be
translated to single-dimensional arrays, and the addresses in the RAM have to be computed
using an equation that translates the index of a data-element into an offset that can be added
to the base address (start address) of the data structure. In order to understand the translation
process of two-dimensional arrays, we take each row (or column) one by one individually, and
put them one after another in one strip in a single dimension, as shown in Figure 2.13.

The equation to find out the address of an element a(i, j) for a two-dimensional array of
size M × N is given by Equation 2.1, with the convention that the index of the array starts
at 0. The first term on the right-hand side is the base address—address of a[0, 0]—and the
 second term produces the offset. The first element of the second term states that i-rows
occur before the current row, and the second element of the second term shows the offset
of the element in the current row.

 Address Address a 0, 0 i N j Bytes in one element)()([]= + × + × (2.1)

Example 2.16
Let us consider a two-dimensional matrix m of integers having the size 5 × 6 (5 rows
and 6 columns). We want to find the address of an element located at the location
m[2, 4]—row number 2 and column number 4. Let us also assume that the index
starts from 0, and the base address of m[0, 0] is 1000, and a 32-bit integer needs four
bytes. Using Equation 2.1, the location of m[2, 4] is 1000 + (2 × 6 + 4) * 4 = 1064. The
integer stored in the element m[2, 4] will be in four bytes starting at location 1064.

The concept can be generalized to map any arbitrary dimensional matrix by pro-
gressively expressing a higher-dimensional matrix as a sequence of smaller-dimensional

Two-dimensional array
Translated to the list of
one-dimensional slices

FIGURE 2.13 Translating a two-dimensional matrix to one-dimensional memory.

60    ◾    Introduction to Programming Language

matrix, until it is reduced to a single-dimensional matrix. Given an N-dimensional
matrix m having dimension values of the form D1, D2, …, DN, the address of an element
located at m[i1, …, iN] is given by

()

()
()[]= … + × ×…×

+…+ × + ×−

Address Address m 0, ,0 (i D D

i D) i Bytes in one element
1 2 N

N 1 N N

 (2.2)

For a composite structure such as “struct” with multiple fields of the form (field1,
field2, …, fieldN), the offsets of each field are computed during compilation. This offset
is added to the base address to access the ith field.

2.3.9 Hash Tables

It is important to retrieve the data efficiently during the compilation and execution of pro-
grams. While static arrays have constant time operation to retrieve data elements, it is
not suitable when the input given to search a data element is not an index but the key to a
record. Hash tables support the key-based search in near-constant time using a hash func-
tion f that maps the key <key> to an index value: f(<key>) is equal to the index of the stor-
age where the data element is stored. Hash tables are used in the implementation model of
programming languages due to search efficiency.

The major limitation of hash-based search is collision of the keys—mapping of two keys
on the same index value. Some of the popular techniques to handle index collision are
(1) choosing the table size as a prime number, and using this prime number in the hash
function to derive the index. The division by a prime number in a hash function evenly dis-
tributes the keys in the hash table, reducing the probability of collisions; (2) using a linked
list attached to a particular index to handle multiple colliding keys; and (3) expanding the
hash table, and rehashing all the elements, in case the collision or the density of elements
in the hash table increases beyond a threshold value.

Example 2.17
Figure 2.14 shows an example of a hash table of size 11 being used to store a set of
6 variables and their attributes. There are three procedures: p0, p1, and p2. Procedure
p0 has variable x; procedure p1 has variables s, i, and j; procedure p2 has variables
a and i. To avoid the naming conflict, procedure name is attached as a prefix to the
variables. For example, the key for variable x in p0 is p0x; the keys for variables s, i,
and j in p1 are p1s, p1i, and p1j, respectively; and the keys for the variables a and i in
p2 are p2a and p2i, respectively. All the keys are unique now, even for variables with
conflicting names. Each data element is a triple of the form (identifier, type, memory
location). The six triples are {(p0x, int, L1), (p1s, Bool, L2), (p1i, int, L3), (p1j, int, L4),
(p2a, int, L5), and (p2i, int, L6)}.

The function to map a key is to (1) sum the ordinal value of characters ‘a’ to ‘z’ from
left to right in the key; (2) add the digit value in the key; and (3) divide the sum by
the table size 11, which is a prime number. Linked lists have been used to resolve key

Background and Fundamental Concepts    ◾    61  

collision. For example, the name p0x has three characters, starting with the charac-
ter ‘p’ having an ordinal value 16, digit ‘0’ having a value 0, and the character ‘x’ hav-
ing an ordinal value 24. Summing up these values gives the value 40, and the division
by the table size 11 gives the index value 7. The key p1s maps to the index value 3. The
key p1i maps to the index value 4. The key p1j maps to the index value 5. The key p2a
maps to the index value 8; and the key p2i maps to the index value 5. The collision of
the keys p1j and p2i has been resolved using linked lists.

2.4 ABSTRACT CONCEPTS IN COMPUTATION
This section describes some background concepts used in the development of program-
ming languages. Much of these concepts have been covered informally in various contexts
in the previous programming and foundational courses such as data structures and dis-
crete structures. These fundamental concepts are repeatedly used throughout this course
and need more formal introduction from the program language design and implementa-
tion perspective.

A program is a sequence of meaningful instructions. Each such instruction is also called
a sentence or a statement. Each statement is terminated by a delimiter in many languages or
by line feed in some languages. A reserved word is part of the programming language simi-
lar to words in natural languages. Two reserved words or two variables or any two entities
that have a separate meaning are separated by blank, comma, semicolon, colon, line feed,
or reserved words. These separators are called delimiters.

The programs can have literals, r-values, l-values, identifiers, definitions, variables,
assignment statements, commands, expressions, strings, type declarations, operators, proce-
dure invocations, parameters, labels, and sequencers. A literal is an elementary expression
that cannot be further split into smaller parts and that cannot be redefined. Literals are
also known alternately as atoms, constants, and denotations. For example, a number is a
literal, a character is a literal, a name within single quotes ‘Arvind’ is a literal. However, a

0

1

2

3

4

(p1s, Bool, L2)

(p1i, int, L3)

(p1j, int, L4)

(p0x, int, L1)

(p2a, int, L5)

(p2i, int, L6)5

6

7

8

9
10

FIGURE 2.14 An example of a hash table with linked list to resolve conflicts.

62    ◾    Introduction to Programming Language

string is not a literal: a string is a sequence of characters; special values true and false are
not literals, since they can be redefined. An r-value is the right-hand side of an expression
or the value stored in a memory location. An l-value is the memory location associated
with a variable or an array element or a field within a structure. An identifier is a sym-
bolic name used in the program that can be associated with another entity. For example,
program names, function names, variable names, constant names, and user-defined types
are identifiers. A definition denotes an associated value within a block or a procedure. The
definition is substituted by the associated value during compilation.

A variable is associated with an information unit. The information unit can be a simple
value in a concrete domain, a complex object, or a value in an abstract domain such as the
type domain. A concrete value is an actual value the program works with. A type vari-
able holds the type information. For example, a type variable can be associated with an
abstract domain integer. The notion of type variables is used extensively in polymorphic
languages and has been explained in Chapter 7. From now onward, we refer to a variable as
a value holder of concrete values and type variables as a value holder of type information.
Internally a variable is mapped to a memory location at compile time. The corresponding
memory location can either hold a concrete value or a pointer to an object in the heap.

The assignment statement x = y + 4 is a programmer’s assertion that reads the stored
value from the memory location of the variables in the expression on the right-hand side
of the assertion, evaluates the algebraic expression, and writes the resulting value in the
memory location of the variable on the left-hand side of the assertion. In the above state-
ment, the value of the variable y is read from the store, the expression value-of(y) + 4 is
evaluated, and the result of the expression evaluation is stored in the memory location
corresponding to the identifier x.

A command is a control abstraction that has at least one assignment statement embed-
ded in it. The use of an assignment statement means that a new value is written in at least
one memory location in a command. In contrast to a command, an expression does not
include an assignment; an expression just reads the values from memory locations and
evaluates them.

A string is a sequence of characters. A null string has no characters in it. Type declara-
tion is used to create a user-defined data abstraction such that data can be stored in a user-
specified way to model the entities in real-world problems. However, type declaration itself
does not create a memory location. Memory locations are created only when a variable is
declared.

An operator could be an arithmetic operator or a logical operator. An operator could
be monadic or dyadic. Monadic operators have a single operand, and dyadic operators have
two operands. Arithmetic operators could be ‘<’ (less than), ‘>’ (greater than), ‘= <’ (less
than or equal to), ‘> =’ (greater than or equal to), ‘==’ (equal to), ‘< >’ (not equal to), ‘=/=’
(not equal to as in Prolog). In addition, there are monadic operators such as ‘+’ and ‘−’ to
provide the sign to a number. A dyadic logical operator such as logical-AND (∧), logical-
OR (∨), exclusive-OR (⊕), and implication connect two Boolean expressions using truth
values as described earlier, and a monadic operator ‘not’ takes one Boolean expression as
an argument and returns true or false.

Background and Fundamental Concepts    ◾    63  

Both arithmetic and Boolean operators have precedence: given an expression, certain
operators are reduced first. Monadic operators have higher precedence than dyadic operators;
within dyadic operators, multiplication and division have higher precedence than addition
and subtraction. Similarly, the Boolean monadic operator ‘not’ (¬) has the highest precedence,
followed by logical-AND (∧), followed by logical-OR (∨), followed by implication (→).

2.4.1 Mutable versus Immutable Variables

In the imperative programming paradigm, the variables are mutable: a user can destruc-
tively update the content of the memory location corresponding to a variable at will, using
assignment operations, such as x = y + 4. In contrast to imperative programming paradigm,
declarative programming paradigm does not allow user-level mutations of memory locations;
a variable is just an immutable value holder that can be associated with a value only once.

There are advantages and disadvantages of both the approaches of handling the vari-
ables. The major advantage of destructive update of a memory location is memory reuse
such as in repeated use of statements involving index variables in for-loop. The major dis-
advantages of the destructive update of variable are (1) loss of the past values and (2) side
effects resulting into undesired program behaviors caused by breakdown of fundamental
mathematical properties of programs, as explained in Chapter 4. If past values cannot be
recovered, then any problem-solving method will not be able to backtrack (comeback) to
try out alternate possibilities to derive a solution, even though a solution may exist.

The major advantages of the assign-once property of an immutable variable are (1) reduced
possibility of undesired program behaviors caused by side effects and (2) the use of the past
value to try out alternate solutions such as in-logic programming, as discussed in Chapter 9.
The major disadvantage is that memory cannot be reused, resulting in memory explosion
when processing data elements involving large data structures, especially in an iterative
manner. Many modern languages supporting multiple paradigms support both mutable
and immutable definitions of variables to maximize the advantages in both the approaches.

2.4.2 Bindings and Scope Rules

A binding associates two entities or an entity with the corresponding attributes. For exam-
ple, a variable name can be bound to a memory location, a memory location can be bound
to a value, an identifier can be bound to a value, and a variable can be bound to a type.
Similarly, a group of statements can be bound to an identifier and called a function or a
procedure. A scope rule defines the use of a variable and the extent of its visibility. A vari-
able is visible and can be used within its scope; it does not play any role beyond its scope.
A binding may be temporary or persistent, depending upon the scope.

There are two types of scope rules: static and dynamic. As the name suggests, static
scope is based upon a program structure such as block boundary, subprogram bound-
ary or function (or method, in object-oriented programming languages) boundary, and
class boundary; it does not change with the calling pattern of subprograms. A dynamic
scope changes the scope of a variable, based upon the calling patterns of subprograms. An
example of static scope is given in Example 2.18. An example of the dynamic scope is given
in Example 2.19.

64    ◾    Introduction to Programming Language

Example 2.18
The program in Figure 2.15 has three global variables x, y, and z in the outermost
block, and two local variables temp and z in the inner block. The global variables have
the scope of the whole program, while the scope of local variables is limited to the
block in which they are declared.

The naming conflict of the variable z is resolved by giving preference to the vari-
able that is closest to the use. The variable z in the print statement refers to the global
variable z, while the variable z in the inner block refers to the local variable z. Both
these variables are separate data entities, map to different memory location, and have
different lifetimes. When the variable z is printed outside the scope of the inner block,
the value of the global variable z = 12 is printed. This information about the scope of
these variables can be identified by looking at the program structure, and has noth-
ing to do with the calling pattern of the program.

Example 2.19
The program in Figure 2.16 uses the dynamic scope rule. The program has a function
sum that has two variables: variable x is declared within the function sum, and the
variable y is a free occurrence; that is, the variable y has not been declared in the func-
tion sum. The variable x picks up the value from the parameter passing mechanism.
However, the variable y searches for the same name in the memory areas allocated
to the chain of the calling procedures to find out the corresponding binding value.

The main program has two blocks. The first block has two local variables y and z,
and calls sum with an argument using the variable y. The second block has three local
variables w, y, and z, and calls the function sum with the actual parameter z.

integer x, y, z;
main ()
{x = 4; y = 10; z = 12;
 {integer temp, z;
 temp = x; x = y; y = temp; z = 5;}
print(x, y, z);
}

FIGURE 2.15 An example of static scope rule of a variable.

integer sum(integer x);
return (x + y);
main ()
{ {integer y, z; y = 4; z = 5; sum(y);}
 {integer w, y, z; w = 4, y = 5; z = 6; sum(z);}
}

FIGURE 2.16 An example of dynamic scope rule.

Background and Fundamental Concepts    ◾    65  

The first call to the function sum(y) will return the value 8, since the formal
 parameter x gets the value of the actual parameter y and the free variable y in the
function sum is dynamically bound to the variable y declared in the first block of the
program main. The second call to function sum returns the value 11, as the formal
parameter x in the function sum gets the value of actual parameter z in the program
main, and the free variable y in the function sum gets the value 5 associated with
the variable y declared in the second block of the program main. It is the binding of
the free variable and its binding to the latest declaration in the chain of the calling
 pattern of the subprograms that makes the scope rule dynamic.

2.4.3 Types of Variables

Variables have been categorized according to their visibility, based upon scope rules and
lifetime. A variable that has the lifetime of a program is called a global variable; a variable
that has the lifetime and scope of a called procedure is called a local variable; and the variable
that may be declared in an outer nesting level of a nested procedural structure, but used in
one of the nested procedure is called a nonlocal variable. In block-structured languages—
languages supporting the notion of program organized as blocks of statement—variables
can also be local to a block. The scope of a variables is limited to within the block where
they have been declared.

There is a possibility of name conflict between nonlocal variables and local variables or
global variables and local variables. The conflict is resolved by shadowing (making invis-
ible) the nonlocal variables or global variables if a local variable with the same name is
declared. The concept of shadowing also applies to handling the visibility of nonlocal vari-
ables if they have been declared at different nesting levels. In such cases, the variable that is
declared at the nesting level nearest to the current procedure using the same variable name
is seen, and other variables with the same name are shadowed.

A variable can be static or dynamic. Static variables are allocated in a fixed memory
at compile time, and that memory location does not change during the execution of the
program. The advantage of static memory allocation, as discussed in Chapter 5, is a faster
direct memory access without the use of any pointer. A static variable can be a static global
variable when the scope of the static variable is the whole program, or it could be a static
local variable when the scope of the program is limited to within the procedure where it
has been declared. However, due to local scope of the variable, the value is inaccessible
outside the scope of the procedure and can be accessed only during subsequent calls to
the procedure in which it is declared. Dynamic variables are allocated memory at run time
and are placed on the control stack. Most of the local variable declarations are dynamic
local variables and are allocated in a stack in a stack-based implementation of languages,
as explained in Chapter 5.

Global variables are also allocated like static variables for efficient memory access. All
other variables have limited visibility that depends either on the nesting pattern of the
program units or on the blocks. Local variables are visible only within the scope of the
block where they are declared. Local variables at the procedure level have visibility within
the procedure.

66    ◾    Introduction to Programming Language

In object-oriented languages, a variable can be declared within a class, and it is shared
between all the object instances of that class. Such variables are called class variables. In
contrast to the class variables, we can have instance variables, whose scope is limited to the
created object.

Another classification of variables is based upon mutability, as discussed earlier. A
mutable variable can be destructively updated any number of times, while an immutable
variable has an assign-once property and cannot be altered or unbound programmatically
once bound to a value. However, immutable variables can be unbound by the implemen-
tation mechanism such as backtracking as in the implementation of logic programming
paradigm.

2.4.4 Environment and Store

The execution of a program utilizes two abstract components: environment and store.
Environment is the surrounding where the computation takes place. Environment is
defined as the set of bindings of pairs of the form (variable names ↦ memory locations or
variable attributes) or (identifier name ↦ value), as in the case of constant declaration. New
declarations change the environment by (1) creating new bindings of the form identifier ↦
memory locations or identifier ↦ value and (2) shadowing the bindings of the variables of
nonlocal or global variables having conflicting names with the local variables.

After a call to a subprogram, the environment changes. As illustrated in Figure 2.17, the
current environment of a subprogram consists of (1) local variable bindings to memory
locations, (2) nonlocal variables binding to memory locations, (3) global variables bind-
ings to memory locations, and (4) memory locations in the sequence of calling programs
accessed using reference parameters. After the called subprogram is over, the environ-
ment reverts back to the environment available to the calling subprogram, augmented with
the environment created by dynamic objects and recursive data structures that have life
beyond the life of the called subprogram creating them.

Store is the set of bindings of the form (memory location ↦ value) and changes every
time an assignment statement writes a value into a memory location, the value is initialized,

Environment due to
local variables

Environment due to
nonlocal variables

Environment due to
global variables Environment due to

reference parameters
pointing to locations in
the calling procedures

FIGURE 2.17 Environment for execution in a subprogram.

Background and Fundamental Concepts    ◾    67  

or the value is altered due to parameter passing. Assignment operations can update the
value stored in the following:

 1. The memory locations associated with local variables, nonlocal variables, or global
variables.

 2. The memory locations of the variables in the calling subprograms, when a parameter
is passed as a reference parameter.

 3. The memory locations of the formal parameters in the called program by initializing.

 4. The memory location of the actual parameters by passing the results computed in the
called subprograms.

 5. The memory locations of a recursive data structure or dynamic data objects.

After a procedure is called, both the environment and the store get altered inside the
called procedure. The store changes because of (1) passing of the parameter values or
(2) initialization of the local variables. During the execution of commands in a subprogram,
the store keeps getting altered, as described above. After the called procedure is over, the
environment created by the local variables (in the called subprogram) is lost; the archived
environment of the calling subprogram is recovered and augmented with the environment
of the global variables and the new environment created for recursive data structures and
dynamic objects that have a lifetime beyond the called subprogram.

The store may not be the same after the return from the called procedure due to the
destructive updates of the global variables, the nonlocal variables, and the variables in
the calling procedures, when passed as reference parameters. The assignment of new val-
ues to these variables will update the store of the calling procedure, and this change will
be retained, even after the called procedure is over. Later we will study that this kind of
change in the store can cause an unintended breakdown of the program behavior.

2.4.5 Functions and Procedures

We next discuss the difference between expression and commands, and function and
 procedures. An expression reads one or more values from memory and evaluates. However,
it does not write the result of the evaluation back into the memory. This means that the
store remains unaltered during the evaluation of an expression. In contrast, a command
writes into a memory location, changing the store. For example, x + y + 4 is an expression,
while the assignment statement z = x + y + 4 is a command. In the expression x + y + 4,
the CPU reads the value of the variables x and y from the memory and then evaluates the
expression. In contrast, the assignment statement z = x + y + 4 writes the result of evaluat-
ing the expression x + y + 4 to the memory location corresponding to the variable z.

A function has four components: (1) name of the function, (2) input parameters,
(3) variable declarations, and (4) a set of connected expressions to map the input values
to an output value. A function does not have an “assignment” statement to write back in
the store of the program. In contrast, a procedure has one or more assignment statements.

68    ◾    Introduction to Programming Language

In an imperative programming paradigm, it is inconceivable to do programming without
the use of assignment statements. A function with assignment statements is actually a pro-
cedure that simulates the effect of a function.

2.4.6 Abstracting the Program Execution

Program execution can be abstracted as jumping from one computational state to
another computational state until it reaches the final state that satisfies the final condi-
tion. There are two approaches to model a computational state. The first approach mod-
els a computational state σ as a triple of the form (σE, σS, σD), where the symbol σE is the
environment, the symbol σS is the store, and the symbol σD is a stack of pairs of the from
(part of the environment, in calling procedure not needed [or shadowed] in the called
procedure, part of the store in the calling subprogram not shared by the called proce-
dure) of the chain of calling subprogram invocations in the LIFO order. The second
approach models the computational state as a Boolean expression connecting the logical
axioms using logical operators such as logical-OR, logical-AND, negation, and implica-
tion. The Boolean expression changes each time an assignment statement is executed.
The second approach is independent of the von Neumann machine and has been used
to reason about the correctness of the program, as explained in Chapter 3, and stepwise
program reconstruction starting from the final state, as described in Chapter 4.

2.4.6.1 Computational State as a Triple (Environment, Store, Dump)
In the first approach, the computational state σ changes after the execution of a statement
due to (1) the change of environment σE, caused by declarations; (2) the change in
store, denoted by σS, caused by an assignment statement or initialization; or (3) the change
in dump, denoted by σD, due to function or procedure call. After a declaration statement,
the current environment σE becomes σ’E, and the computational state is altered. After a
new assignment statement, the store σS changes to new store σ’S, and the computational
state is altered.

After a procedure call, a pair of the form (part of the environment of calling procedure,
and part of the store in the calling subprogram not shared by the called procedure) is
pushed on dump σD to give a new computational state (σ’E, σ’S, σ’D). After the return from
a function or procedure, the environment by the declaration of local variables in the called
procedure is discarded, the saved part of the environment of the calling subprogram is
popped, and union of the remaining part of the environment and the popped part of the
environment gives the new environment σEnew. The new environment σEnew of the calling
procedure would be the same as the old environment σE if no data structure with a lifetime
greater than the lifetime of the called subprogram is created. Similarly, in the case of store,
the store related to local variables in the called procedure is discarded, and the union of
the remaining part of the store in the called procedure and the part of the calling proce-
dure’s store popped from the dump becomes the new store σSnew of the calling procedure.
Note that σSnew may not be the same as the store σS. After the successful execution of the
program, the final state is reached.

Background and Fundamental Concepts    ◾    69  

Example 2.20
Let us consider the example given in Figure 2.18. The program has three variables:
x, y, z. The variables x and y have global scope, and the variable z is local to the main
body. The main body assign values to all three variables and calls the procedure swap
by passing the references of the variables x and y. The denotation ‘*’ in the body of
swap dereferences the address and reads (or writes) into the memory locations cor-
responding to the global variables x and y. The procedure swap swaps the value of the
global variables x and y.

The initial computational state is {< >, < >, < >}: the environment, the store, and
the dump are empty. After the declaration of the global variables x and y, identifier
x maps to an address l-value1 and the identifier y maps to an address l-value2, and the
environment becomes <x ↦ l-value1, y ↦ l-value2>. The new computational state is
{<x ↦ l-value1, y ↦ l-value2>, < >, < >}. Inside the main body, the declaration of the
variable integer z changes the environment to <(x ↦ l-value1, y ↦ l-value2, z ↦ l-value3>.
The new computational state is {<(x ↦ l-value1, y ↦ l-value2, z ↦ l-value3>, < >, < >}.

After the execution of each of the three assignment statements, the store changes
 altering the computational state. After the execution of the assignment statement
x = 4, the new store becomes <l-value1 ↦ 4>, and the new computational state
becomes {<(x ↦ l-value1, y ↦ l-value2, z ↦ l-value3>, <l-value1 ↦ 4>, < >}. After
the execution of the statements y = 10 and z = 12, the new computational state
would be {<(x ↦ l-value1, y ↦ l-value2, z ↦ l-value3>, <l-value1 ↦ 4, l-value2 ↦ 10,
l-value3 ↦ 12>, < >}.

The call to procedure swap pushes the local part of the main program in the dump,
and the identifiers m and n map to locations l-value4 and l-value5 respectively. The loca-
tion l-value4 maps to location l-value1 due to the reference link; and the location l-value5
maps to location l-value2 due to the reference link. The environment and store due to the
global variables x and y are retained, while the pair (environment due to local variables,
corresponding store) of the main body is pushed into the dump. The new computational
state before the start of the declarations in the procedure swap becomes {<x ↦ l-value1,

integer x, y;
procedure swap(integer x, y);
main ()
{ integer z;
x = 4; y = 10; z = 12;
swap(ref x, ref y)
print(x, y, z);
}
procedure swap(integer *m, *n)
{ integer temp;
temp = *m; *m = *n; *n = temp;
}

FIGURE 2.18 A program to illustrate computational states.

70    ◾    Introduction to Programming Language

y ↦ l-value2, m ↦ l-value4, n ↦ l-value5>, <l-value1 ↦ 4, l-value2 ↦ 10, l-value4 ↦ l-value1,
l-value5 ↦ l-value2>, < (<z ↦ l-value3>, <l-value3 ↦ 12>)>}. The declaration “integer
temp” changes the environment, and the new environment becomes <x ↦ l-value1, y ↦
l-value2, m ↦ l-value4, n ↦ l-value5, temp ↦ l-value6>. The computational state changes
accordingly. The assignment statement temp = *m involves dereferencing the address:
the memory location l-value6 is mapped to the value stored in the memory location
l-value1, and the new store becomes <l-value1 ↦ 4, l-value2 ↦ 10, l-value4 ↦ l-value1,
l-value5 ↦ l-value2, l-value6 ↦ 4>. Dereferencing uses transitivity of the map function
between l-value4 ↦ l-value1 and l-value1 ↦ 4 to access the value 4. The assignment state-
ment *m = *n writes the dereferenced value of n into the location l-value1, and the new
store becomes <l-value1 ↦ 10, l-value2 ↦ 10, l-value4 ↦ l-value1, l-value5 ↦ l-value2,
l-value6 ↦ 4>. The assignment statement *n = temp writes the value of temp into the
dereferenced location l-value2. The new store becomes <l-value1 ↦ 10, l-value2 ↦ 4,
l-value4 ↦ l-value1, l-value5 ↦ l-value2, l-value6 ↦ 4>. The computational state before
the return from the subprogram swap is {<x ↦ l-value1, y ↦ l-value2, m ↦ l-value4, n ↦
l-value5, temp ↦ l-value6>, <l-value1 ↦ 10, l-value2 ↦ 4, l-value4 ↦ l-value1, l-value5 ↦
l-value2, l-value6 ↦ 4>, < (<z ↦ l-value3>, <l-value3 ↦ 12>)>}. After coming back from
the procedure swap, local environment and the corresponding store for the procedure
swap are removed from the environment and the store, the local environment and the
store of the main body is popped from the dump, and the dump becomes empty again.
The new computational state after the return from the procedure swap becomes {<x ↦
l-value1, y ↦ l-value2, z ↦ l-value3>, <l-value1 ↦ 10, l-value2 ↦ 4, l-value3 ↦ 12>, < >}.

2.4.6.2 Computational State as Boolean Predicates
In the second approach, a Boolean expression defining the computational state changes
after the execution of an assignment statement. The assignment statement x = 5 makes the
predicate x == 5 true. After the execution of the statement y = 6, the conjunctive predicate
x == 5 ∧ y == 6 as true. This abstract approach to look at the program execution frees them
from any specific architecture, and it has been used to analyze programs for their correctness.

2.4.7 Processes and Threads

Modern programming languages that support concurrent programming paradigm and
scripting languages utilize concepts of processes and threads. The active part of a program
or a subprogram is called a process. A process has its own id, heap, stack, and memory area
to communicate with other processes and Boolean flags to store the execution state of the
process. A process is stored in memory blocks. Memory blocks corresponding to a process
are loaded into the RAM from the hard disk for the process execution. As illustrated in
Figure 2.19, a process can be in five states: created, ready, active, suspended, and termi-
nated. An active process is suspended to (1) give another process a chance based upon a
scheduling strategy; (2) wait for an I/O to be completed; or (3) allow a process to sleep for
a specified time, based upon a runtime command. A suspended process is reactivated after
the data is available from I/O activity, or the scheduler gives another turn to the process.

Background and Fundamental Concepts    ◾    71  

A thread is a sequence of actions. The difference between a thread and a process is that
a thread has smaller overhead of execution and reactivation, since it shares a major part
of data area of the existing process that spawns the thread. A process can spawn multiple
threads that join back to the spawning process after the subtasks are over. During the exe-
cution of a thread, the process may be running or suspended while waiting for the signal
that the thread has terminated. A thread will terminate either after finishing a subtask or
be aborted by an operating system action.

2.4.8 Buffers

When two processes or threads communicate with each other or transfer the data to each
other, they may do so asynchronously at varying speed. A reusable memory space is needed
to facilitate the asynchronous data transfer. This reusable memory space is called a buffer.
There are two major operations in a buffer: (1) depositing the data and (2) retrieving the
data.

Buffers are implemented using circular queues. As illustrated in Figure 2.20, circular
queues continuously keep reusing the memory vacated by the removed data elements.
Circular queues use modulo arithmetic on a linear array to go back to the beginning of the
array after encountering the last memory element in an array.

There are four operations on a buffer: (1) to check if the buffer is empty, (2) to check if a
buffer is full, (3) to remove an element from a nonempty buffer, and (4) to insert an element

Terminated
Abort

Abort

I/O request

ReadyFinish

Start

Created

Active Suspended
Scheduler
suspends

Scheduled
I/O received

FIGURE 2.19 A state diagram of a process with labeled transitions.

Process
writing

Process
reading

Front-pointerRear-pointer

m - 1
0

FIGURE 2.20 Schematics of buffer as a circular queue.

72    ◾    Introduction to Programming Language

in a non-full buffer. Let us assume that the buffer is implemented as an array of size m; then
the operations on a buffer are as follows:

is_empty_buffer(buffer) :: if (front-pointer == rear-pointer)
return(true)

 else return(false);
is_full_buffer(buffer) :: if (((rear-pointer + 1) modulo m)

== front-pointer) return(true)
 else return(false);
insert(buffer, element) :: if not (is_full_buffer(buffer)) {
 buffer[rear-pointer] = element;
 rear-pointer = (rear-pointer + 1)

modulo m;}
 else raise_exception(‘buffer_full’);
 remove(buffer):: if not (is_empty_buffer(buffer)) {
 element = buffer[front-pointer];
 front-pointer = (front-pointer + 1)

modulo m; return(element);}
 else raise_exception(‘buffer_empty’)

The operation is_empty(buffer) returns true if the value of the rear pointer is equal to
the value of the front pointer. The operation is_full(buffer) checks if incrementing the rear
pointer by 1 using modulo arithmetic will give the value of the front pointer. This means
that the rear pointer has caught up with the front pointer, and no vacant cells are available.
The operation insert(buffer, element) first checks if the buffer is not full. The data element
is inserted only if the buffer is not full. The data element is inserted in the cell indexed by
the rear pointer. After inserting the element in the cell, the rear pointer is incremented by
1 using modulo arithmetic. The operation remove(buffer) removes the data element from
the location indexed by the front pointer if the buffer is not empty, and the front pointer is
incremented by one using modulo arithmetic.

2.5 SUMMARY
Various fundamental concepts used in the design and implementation of programming
languages have been described. These concepts are essential in the design and implementa-
tion of programming languages and will become relevant in the following chapters.

Discrete structure concepts needed to study programming languages include sets
and multisets, Boolean logic, functions and relations, finite state machine, and set
operations. Type theory makes extensive use of set theory, and many programming
languages support the declaration of sets and set-based operations. Many relevant set
operations, such as power sets, Cartesian product, finite mapping, and disjoint-union,
were discussed.

Boolean logic is one of the pillars of programming. There is a class of functions (or
sentences in logic programs) called predicates that return true or false, depending upon
the values of the variables. Checking for complex Boolean conditions is used in many

Background and Fundamental Concepts    ◾    73  

control abstractions such as selection (if-then-else statements; case statements, etc.) and
indefinite iterations (while-do loop; do-while loop), exception handling, and conditional
jumps such as getting out of nested blocks or graceful termination of execution if an
event has occurred. Boolean conditions form the core of logic programming that is
based upon connecting logical predicates using logical-AND, logical-OR, implication,
and negation.

A function is a mapping between two sets: domain and codomain, such that every ele-
ment of domain maps to only one element of a codomain. The mapping could be one-to-
one or many-to-one. However, it can never be many-to-many or one-to-many. Functional
programming paradigm exclusively uses functions, while other programming paradigms
such as the imperative programming paradigm, use functions along with assertion. A
functional program uses only expression evaluations. In the imperative programming
paradigm, functions also use assertions in addition to expression evaluations.

A relation defines a property between two entities (or an entity and an attribute) x and y.
A relation could be a combination of reflexive, symmetric (or antisymmetric), or transi-
tive. The properties of relations are used in programming such as logic programming,
 aliasing of program variables, and data dependency analysis for translating a program to
run concurrently.

Recursion is characterized by the presence of two types of definitions: base case and
recursive definitions. In programming languages, recursion occurs both in the procedure
definitions as well as data structure definitions. Recursive functions play a major role in
programming. Tail recursive functions can be simulated using iterative programs. A class
of linear recursive programs can be implemented using the notion of accumulators and
iteration. Handling recursion needs a means for memory growth at run time, since the
memory requirement of recursive procedures and recursive data structures cannot be
determined at the compile time. Some of the overheads of recursive programming can be
alleviated by transforming tail-recursive and linear-recursive programs to the correspond-
ing iterative programs.

Finite state machines model transitions between different situations expressed as states,
and have been used in programming languages during lexical analysis—a phase during
compilation, which is discussed in Chapter 3.

Stacks and queues are abstract data types with different properties: stack supports
last-in-first-out property, and queue supports first-in-first-out property. The elements are
pushed and popped from only one end in a stack, while data elements enter from one end
in the queue and are taken out from another end. Stacks play a major role in depth-first
tree traversal, the execution of recursive procedures, and the implementation of program-
ming languages. Queue is used in breadth-first tree traversal and where the fairness prop-
erty of first-in-first-out is needed. Depth-first traversal traverses deeper into the tree, since
the search reaches the leaf nodes in the left subtree before traversing to the right subtree.
Breadth-first search traverses a tree level by level. Breadth-first search has been used in
some efficient heap management techniques, as discussed in Chapter 6.

Hash tables are used for efficient insertion and retrieval of dynamic data by mapping the
primary key to an index, using a hashing function. The use of a hashing function ensures

74    ◾    Introduction to Programming Language

that an index is identified in near constant time. Hash tables play a major role in the imple-
mentation of programming languages and process management, as the information can be
retrieved in near-constant time.

A variable is the primary information holder in a program. A variable contains six major
attributes: name, type, scope, lifetime, memory location, and the assigned value. A scope is
the part of the program where variable can be read or written into, and the lifetime is the
period when the variable can be used. Global variables have the same scope as the lifetime
as of the program, while local variables are limited by the scope of the procedure in which
they are declared. Static variables are allocated at fixed addresses at compile time and are
accessed using direct memory access. Mutative variables can be destructively updated and
are used in imperative programming paradigm for assignment statements.

During the program execution, there are three important concepts: environment that
is altered by declarations; store that is altered by assignment statements; and dump—a
stack of the environment and the store of the sequence of calling procedures. The execu-
tion of a program can be modeled as a sequence of transitions between computational
states described abstractly either as the triple of the form (environment, store, and dump)
or as Boolean expressions involving conjunction, disjunction, and negation of Boolean
predicates. The second approach frees the definition of computational state from the von
Neumann machine and has been used to reason about program correctness.

Process is an active part of a program or subprogram that runs on computer and occu-
pies memory in RAM. A thread is a sequence of activity that acts like a process, except that
it has less overhead of memory allocation than a process and uses the memory space of the
parent process. Buffers are memory spaces used to transfer data between two processes,
threads, between two I/O devices, or between CPU and I/O devices. A buffer is modeled as
a circular buffer that uses modulo arithmetic to reuse the memory space vacated by remov-
ing the data elements from the buffer.

2.6 ASSESSMENT

2.6.1 Concepts and Definitions

Accumulator; acyclic graph; antisymmetric; binding; Boolean logic; breadth-first search;
buffer; Cartesian product circular queue; command; computational state; cycle; cyclic
graph; depth-first search; directed acyclic graph; directed graph; dump; dynamic scope
rule; environment; existential quantification; expression; finite mapping; finite state
machine; first-order predicate calculus; function; graph; hash function; hash table; immu-
table; implication; indexing; linear recursion; logical-AND; logical-OR; mapping; multi-
sets; mutable; negation; one-address machine; ordered set; pointer; power set; predicate
calculus; process; propositional calculus; quantification; queue, recursion; recursive data
structure; recursive function; reference; reflexivity; relation; scope rule; sequence; stack;
static scope; store; string; symmetric; tail recursion; thread; three-address machine; tran-
sitivity, tree; tuple; two-address machine; type variable; universal quantification; variable;
visibility; von Neumann machine; weighted graph; zero-address machine.

Background and Fundamental Concepts    ◾    75  

2.6.2 Problem Solving

 1. Write the Cartesian product of two sets: {“morning,” “evening,”“night,” “afternoon”}
and {“sun,” “light,” “rain”}.

 2. Write the power set of a set given as {sun, light, rain}. Explain the size of the power set.

 3. Given a function subtract-5 that subtracts five from a number in the natural numbers
domain and maps to an element in the lifted natural numbers domain, show the
mapping of the elements 10, 0, 3, 7, and 8. Note that the lifted domain also contains
the bottom symbol ⊥. Anything that does not map to regular elements in the range
maps to the bottom symbol.

 4. Write a predicate calculus representation for the following statement: “for every
number N such that N > 1, there exists a number that is 1 less than the number.”

 5. Write a predicate calculus representation for the following statement: “for every per-
son in this world, there exists a relation that connects the person to at least one person
in this world.”

 6. Given a three-dimensional array of the dimensional size [0..4, 0..7, 0..9] and the base
address of 10,000, give the starting address of the element located at the index (3, 4, 2),
given that each element takes 2 bytes of memory. Explain your computation.

 7. Given a quadruple (4-tuple) of the form (integer, character, floating point, integer),
give the offset of the third field, given that the start address is 5000. Assume that an
integer occupies four bytes, a floating point number occupies eight bytes, and a char-
acter occupies one byte.

 8. Show the snapshots of a stack after every operation, starting with an empty stack,
for the following sequence of operations: push(stack, 4), push(stack, 5), pop(stack);
push(stack, 6). Represent a stack as a sequence of the form <elemN, …, elem1>, where
elemN, …, elem1 are the elements that have been pushed in the stack in last-in-first-
out order, and the elements are added and removed from the front-end.

 9. Show the snapshots of a queue after every operation, starting with an empty queue,
after the following operations: insert(queue, 4), insert(queue, 5), remove(queue);
insert(queue, 6). Represent a queue as a sequence of the form <elem1, …, elemN>,
where elem1, …, elemN are the elements in the queue. The elements are inserted at the
rear end of the sequence and removed from the front end of the sequence.

 10. Write a program for breadth-first search using a queue and a depth-first search using
a stack, and compare the average number of data elements stored in the queue versus
stack. Implement the queue using a vector. Create at least 10 trees at run time using
random number generators for the statistical analysis.

 11. Write a simple program using at least five variables and a simple code with five simple
statements, and show how environment and store changes after each declaration and
the execution of each statement.

76    ◾    Introduction to Programming Language

 12. Take a program with at least five different procedures, with at least two procedures
being called multiple times from different procedures. Represent each procedure by
a labeled node in the graph. Draw a directed edge from a calling procedure to the
called procedure. The weight of the edge is given by the number of procedure calls.
If a procedure calls itself, then draw an edge from the node to itself showing a cycle.
Describe the resulting graph.

2.6.3 Extended Response

 13. What do you understand by predicate calculus? Explain. What are the various com-
ponents of predicate calculus? Explain each one of them using a simple example.

 14. What is the difference between first-order and higher-order predicate calculus?
Explain.

 15. Explain the differences between stack and queue abstract data types.

 16. What do you understand by DAGs (directed acyclic graphs)? How are they different
from trees? Give a real-world example of a problem that can be modeled by DAGs but
not trees.

 17. What are the advantages and disadvantages of the use of pointers in programming
languages? Explain. Discuss three design solutions that would reduce the disadvan-
tages of using pointers in programming languages.

 18. Explain depth-first search, breadth-first search, and their differences. Explain using a
clear example of a balanced n-ary tree (n ≥ 2).

 19. Explain static scope and dynamic scope using a simple example not given in the book.

 20. Explain the difference between environment and store. Show how environment and
store are modified under declaration, assignment statement, procedure call, and
expression evaluation.

 21. Explain how a hashing mechanism works for efficient search and retrieval of the
archived data using a simple but complete example not given in the book.

FURTHER READING
Malik, Davender S. and Sen, Mridul K. Discrete Mathematical Structures: Theory and Applications.

Thomson Course Technology. 2004.
Malik, Davender S. Data Structures using C++, 2nd edition. Course Technology Cengage Learning.

2009.
Patterson, David A. and Hennessy, John L. Computer Organization and Design, the Hardware/

Software Interface, 5th edition. Morgan Kaufmann. 2012.
Silberschatz, Abraham, Galvin, Peter B., and Gagne, Greg. Operating Systems Concepts, 9th edition.

John Wiley and Sons. 2010.

77

C h a p t e r 3

Syntax and Semantics

BACKGROUND CONCEPTS
Abstract concepts in computation (Section 2.4); Boolean logic (Section 2.2.2); Control flow
diagrams (Chapter 1); Discrete structures (Section 2.2); Environment and store (Section 2.4.4);
Finite state machines (Section 2.2.5); Recursion (Section 2.2.4); Trees (Section 2.3.5); Graphs
(Section 2.3.6); von Neumann machine (Section 2.1).

There are two major components to comprehend the constructs of programming languages:
syntax and semantics. Syntax is about the validating structures of the statements in
 programming languages, and semantics is about understanding the unambiguous meaning
of sentences in programming languages. Both the concepts are essential for program
 comprehension, compiler development, and software maintenance. Syntax is important,
because unless a sentence structure is properly validated, it is not a part of a programming
language and cannot be associated with the correct meaning. Semantics is important,
because, unless we associate and communicate an unambiguous meaning for every word
used in programs and constructs of programming languages, a sentence in a program can-
not be comprehended and translated correctly to intermediate-level code for execution.

3.1 INTRODUCTION TO SYNTAX AND SEMANTICS
In most of the natural languages—with the exception of pictorial languages such as
Chinese—there are four major components of syntax: finite set of characters, words, sen-
tences, and grammar rules (also known as production rules) to construct and validate the
sentences. The characters are categorized into vowels and consonants. Vowels are used to
glue consonants and to help pronounce the words. The words are the basic unit for asso-
ciating meaning; no meaning is associated at the character level. These words are further
connected using grammar rules (production rules) to form sentences. If the meanings of
individual words are unique, then a unique meaning for a given sentence can be derived.

In order to derive the meaning of a given sentence, first we have to apply grammar
rules repeatedly to validate the structure of a sentence. The process of validating the
 grammatical correctness of a sentence using the production rules in the grammar is called
parsing. During the validation, a sentence is progressively reduced to multiple intermediate

78    ◾    Introduction to Programming Language

forms using the production rules. The process terminates after the intermediate form is just
a start symbol. The graphical representation of this progressive application of the produc-
tion rules to reach to the start symbol beginning from the sentence is a tree and is called a
parse tree. The details of parsing and parse tree are explained in Section 3.2.

Example 3.1

Consider an example of an English sentence: “I play basketball.” Each word has a
meaning. Before checking whether the sentence is grammatically correct, spelling
of the word has to be corrected. After the spelling has been corrected, a simple sub-
set of grammar rules of English (see Figure 3.1) is applied to validate the sentence
structure. The sentence “I play basketball” is transformed to an intermediate form
 <subject> <verb> <object>, which in turn is transformed to another intermediate
form <subject> <predicate>. By applying another production rule, the intermediate
form <subject> <predicate> is reduced to the start symbol <sentence>.

Semantics derives the meaning of a syntactically correct sentence in a specific domain.
For example, a string “214” means: (1) decimal number 21410 (2 * 102 + 1 * 101 + 4 * 100) in
base-10 domain, (2) 2148 in octal (2 * 82 + 2 * 81 + 4 * 80) = 14810 (148 in base-10 domain),
and (3) “floor number two, isle number 1, and fourth room in the isle” in the building
domain. The meaning depends upon the semantic domain in which the sentence has been
used. In order to have a unique meaning, the semantic domain needs to be clearly fixed.
For example, the meaning of a binary number “1011” in the base-10 domain is 1×23 +
0×22 + 1×21 + 1×20 = 1110, 13 in octal (base-8 semantic domain) and “D” in hex (base-16
semantic domain).

The meaning of a decimal number <integer-part>“.”<floating-part> in the number
domain is meaning-of (<integer-part>) + meaning-of (<floating-part>. If the meanings
of the nonterminal symbols <integer-part> and the <floating-part> are known individu-
ally, and the meaning of the dyadic operator “+” is understood, then the meaning of the
decimal number can be derived. All the operations that are used to derive the meaning of
a sentence in the semantic domain are called semantic algebra. We need a semantic domain
and the corresponding semantic algebra to understand the meaning of sentences in pro-
gramming languages.

<sentence> ∷= <subject> <predicate>
<predicate> ∷= <verb> <object>
<subject> ∷= I | We | You
<sentence> ∷= play | dance
<object> ∷= soccer | basketball

<sentence>

<subject> <predicate>

<verb> <object>

basketballplay

I

FIGURE 3.1 A simple English grammar and the corresponding parse tree.

Syntax and Semantics    ◾    79  

3.2 GRAMMARS
Programming languages are not as complex as the English language to avoid ambigui-
ties in translating high-level instructions to equivalent low-level instructions. Many efforts
have been taken to keep the grammar of programming languages simple as follows:

 1. The basic units of programming languages are more like words in English language;
there is no concept of 26 letters that make words. These basic semantic units are
called reserved words and are associated with a unique meaning. The set of reserved
words in programming languages is much smaller than the English language.

 2. Programming languages avoid multiple meanings for the same word, which needs
disambiguation based upon the context. The use of context-sensitive multimeaning
words will make parsing very time consuming and will be prone to error while deriv-
ing the exact meaning for a sentence in the language. Since meaning of a sentence is
related to low-level code generation, error in meaning will result in erroneous low-
level code. However, a limited amount of vocabulary has multiple meanings, and
their exact meanings are derived on the basis of the context. This concept is called
overloading and is discussed in Chapter 7.

Grammars are used to derive a finite-length sentence in a language. Grammar has four
components: start symbol, set of terminal symbols (reserved words), set of nonterminal sym-
bols, and set of production rules. Nonterminal symbols are expanded to a combination of ter-
minal and nonterminal symbols using the set of production rules. Nonterminal symbols are
only part of the grammar and not a part of the sentences in programming languages. The
set of all terminal symbols (reserved words) in a programming language is called the alpha-
bet of the corresponding grammar. The sentences in a programming language are derived
from the alphabet using production rules starting from the start symbol. An alphabet is
traditionally denoted as the Greek symbol Σ. Formally, a grammar is defined as a 4-tuple of
the form (start-symbol S, set of production rules P, set of nonterminal symbols N, alphabet Σ).

Given a sentence in a programming language, the production rules in grammar are also
used to validate the structure of the sentence. This process of repeated application of the
production rules in the grammar of a programming language to reduce the given sentence
to the start symbol is called parsing. The right-hand side of a production rule is matched
with the part of the sentence or the intermediate form and is substituted by the left-hand
side of the production rule. This process of reduction using the production rules generates
a tree structure called a parse tree. The sentence is located at the leaf nodes of the parse tree,
the nonterminal symbols are located at the non-leaf nodes of the parse tree, and the start
symbol is located at the root node of the parse tree.

Example 3.2

Figure 3.1 illustrates a simple example using a simple subset of English grammar rules
that can drive the sentence “I play basketball” in English. The grammar has five pro-
duction rules. The start symbol is <sentence>. Each production rule has a left-hand

80    ◾    Introduction to Programming Language

side and a right-hand side separated by the symbol ‘::=’. The left-hand side of the rule
has only one symbol enclosed within angular brackets ‘<’ and ‘>’, and the right-hand
side of the rule is a combination of two types of symbols: (1) symbols enclosed within
angular brackets and (2) symbols without angular brackets. The symbols within the
angular brackets are called nonterminal symbol, and the symbols without angular
brackets are terminal symbols (reserved words). The set of nonterminal symbols is
{<sentence>, <predicate>, <subject>, <verb>, <object>}, and the alphabet (set of ter-
minal symbols) is {I, We, You, play, dance, soccer, basketball}.

Given the sentence “I play basketball,” rules 3, 4, and 5 are respectively applied to the
different parts of the sentence by matching the right-hand side of the production rules with
the parts in the sentence and substituting the parts of the sentence by the corresponding
left-hand sides of the production rules: rule 3 reduces the word “I” to the nonterminal
symbol <subject>, rule 4 reduces the word “play” to the nonterminal symbol <verb>,
and rule 5 reduces the word “basketball” to the nonterminal symbol <object>. The new
intermediate form is <subject><verb><object>. In the second step, the nonterminal pair
<verb><object> matches with the right-hand side of the rule 2 and derives the nontermi-
nal symbol <predicate> (left-hand side of the rule 2). The new reduced intermediate form
becomes <subject><predicate>, which matches with the right-hand side of the rule 1 and
derives the start symbol <sentence>. Thus the applications of the production rules reduce
the sentence “I play basketball” to the start symbol <sentence> validating the structure.
A successful validation of grammatical structure does not always mean that the sentence
will be meaningful. For example, the sentence “I dance soccer” is structurally valid using
the given set of production rules. However, the sentence is not meaningful.

3.2.1 Types of Grammars

There are three types of grammars that can be used in the definition and implementation
of programming languages: regular grammar, context-free grammar, and context-sensitive
grammar.

The regular grammars, also called type-3 grammars, are the simplest type and represent
a nondeterministic finite-state machine. A nondeterministic finite state machine is a finite
state machine that has multiple possible transitions from one state to another state for the
same input symbol. In Chapter 2, Section 2.2.4, we discussed a finite state machine that
accepts a variable. The finite state machine can be expressed using a regular grammar:

<S1> → <letter> <S2>
<S2> → <letter> <S2> | <digit> <S2> | ’_’ <S2> | ε

Formally, a regular grammar is represented as 4-tuple (N, Σ, P, S), where N is the set of
nonterminal symbols, Σ is the set of terminal symbols, P is the set of production rules, and
S is the start symbol. In the above example, N is {<S1>, <S2>}, Σ is {any letter, any digit, ‘_’},
P is the set of production rules, and S is the start symbol <S1>. Regular grammars are used to
accept a sentence and emit a signal in the form of a token upon acceptance. Given a sequence
of characters, the above regular grammar will accept the sequence if it is a proper variable.

Syntax and Semantics    ◾    81  

Regular grammars are used extensively in lexical analysis phase during the compilation
process to generate streams of tokens—internalized representations for entities such as vari-
ables, literals, identifiers, and reserved words. Tokens are needed for the ease of parsing.

Context-free grammars, also called type-2 grammar, are represented as a 4-tuple of the
form (N, Σ, P, S), where N is the set of nonterminal symbols, Σ is the set of terminal sym-
bols, P is the set of grammar rules, and S is the start symbol. The major characterization of
context-free grammar is that the left-hand side is a single nonterminal symbol. The gram-
mar in Figure 3.1 is a context-free grammar. This restriction has advantages in time and
space complexity when parsing a sentence. Since the left-hand side of a production rule
is a single nonterminal symbol, it can be expanded without the presence of any terminal
symbol. Context-free grammars are more expressive than regular grammars. For example,
there is no regular grammar to accept a string anbn. However, we can write a context-free
grammar to accept a string anbn as given below

<S> ::= a <S> b | ε

The above grammar is context free by definition, as it has a start symbol <S>, a set of
nonterminal symbols {<S>}, a set of terminal symbols {a, b}, and one production rule. The
rule has only one nonterminal symbol on the left-hand side. The Greek letter ε denotes a
null symbol.

Context-sensitive grammars, also known as type-1 grammar, can have additional terminal
symbols on the left-hand side in addition to nonterminal symbols. The only restriction is that
the length of the string on the left-hand side of a production rule should be less than or equal
to the number of symbols on the right-hand side. Consider the following grammar rules:

<S> ::= a<S>c | ε
<S> c ::= b<S>cc

The above example illustrates a context-sensitive grammar because the second production
rule has a terminal symbol ‘c’ in addition to the nonterminal symbol <S> on the left hand
side of the production rule. The grammar will accept a string of the form anbmcm+n (m ≥ 0,
n > 1). However, the second rule is expanded only in the presence of the terminal symbol ‘c’.

Context-sensitive grammars are more powerful than context-free grammars. For exam-
ple, a context-sensitive grammar can be written that would accept a string anbncn (n > 0).
While no context-free grammar can generate a string of the form anbncn. However, there
is a serious drawback of using context-sensitive grammar: context sensitivity significantly
increases the number of production rules, which slows down the process of parsing a sen-
tence. Owing to the efficiency reasons during parsing, programming language definitions
use context-free grammars.

3.2.2 Representing Grammar Using Backus–Naur Form

In early days of development of compilers, two computer scientists, John Backus and Peter
Naur, proposed a format to represent context-free grammars for programming languages.
The proposed format is now popularly known as the Backus–Naur form or BNF.

82    ◾    Introduction to Programming Language

In BNF, the left-hand and right-hand sides of a production rule are separated by a sym-
bol ‘::=,’ the nonterminal symbols are enclosed within angular brackets, and the multiple
definitions of the same nonterminal symbols are separated by a vertical bar ‘|.’ In addition,
a grammar uses the Greek symbol ‘ε’ to represent the null value and uses tail recursion (see
Chapter 2, subsection 2.2.3) to define zero or more occurrences of an entity. In tail recur-
sion, the recursive part comes at the end of the definition.

Example 3.3

The nonterminal symbol <sequence-of-statements> is defined tail recursively. The
base case is the null statement denoted by the symbol ‘ε,’ and the tail-recursive part is
defined as a nonterminal symbol <statement> followed by a semicolon, followed by
<sequence-of-statements> as follows:

<sequence-of-statements> ::= <statement> ‘;’
 <sequence-of-statements> | ε

Example 3.4

Figure 3.2 illustrates a BNF grammar for a simplistic definition of an arithmetic
expression. The context-free grammar has the start symbol <expression>, 13 produc-
tion rules, the set of nonterminal symbols as {<expression>, <A-expr>, <L-expr>,
<comparison>, <identifier>, <characters>, <digit-or-letter>, <number>, <digit>,
<A-op>, <L-op>, <comp-op>}, and the alphabet as {0 ... 9, ‘a’ … ‘z’, ‘A’ … ‘Z’, ‘+’, ‘−’,
‘*’, ‘/’, ‘&&’, ‘||’, ‘>’, ‘<’, ‘>=’, ‘=<’, ‘==’}. The notation ‘0’ | ‘1’ |... | ‘8’ | ‘9’ gives the
subrange including all the digits between 0 and 9.

An expression (<expression>) is a multidefinition. It could either be an arithmetic
 expression (<A-expr>) or a logical expression (<L-expr>) or an identifier (< identifier>).
An arithmetic expression (<A-expr>) is defined as a number (<number>) or an
 arithmetic expression (<A-expr>) followed by an arithmetic operator (<A-op>) followed
by another arithmetic expression (<A-expr>). A logical expression (<L-expr>) is true;

<expression> ::= <A-expr> | <L-expr>
<L-expr> ::= true | false | <identifier> | not <L-expr> | <comparison> | <L-expr> <L-op> <L-expr>
<comparison> ::= <A-expr> <comp-op> <A-expr>
<A-expr> ::= <number> | <identifier> | <A-expr> <A-op> <A-expr>
<identifier> ::= <letter><characters> | <letter>
<characters> ::= ε | <digit-or-letter><characters>
<digit-or-letter> ::= <digit> | <letter>
<number> ::= <digit> | <number><digit>
<digit> ::= ‘0’ | ‘1’ | … |’8’ | ‘9’
<letter> ::= ‘a’| ‘b’ | … | ‘z’| ‘A’ | ‘B’| …| ‘Z’
<A-op> ::= ‘ + ’ | ‘−‘ | ‘/’ | ‘*’
<L-op> ::= ‘&&’ | ‘||’
<comp-op> ::= ‘>’ | ‘<’ | ‘>=’ | ‘=<’ | ‘ ==’

FIGURE 3.2 A BNF grammar for defining expressions.

Syntax and Semantics    ◾    83  

false, a comparison of two arithmetic expressions, two logical expressions (<L-expr>)
 connected by a logical operator (<L-op>), or the negation of a logical expression. A com-
parison (<comparison>) compares two arithmetic expressions using comparison opera-
tors (<C-op>). An identifier (<identifier>) is a letter followed by the nonterminal symbol
<characters>) that is zero or more occurrences of <digit> or <letter>. A number (<num-
ber>) is defined recursively as a number (<number>) followed by a digit (<digit>). The
left-recursive definition of <number> will be used in a later section to explain denotational
semantics in Section 3.5. A digit (<digit>) could be any element between 0 and 9. An arith-
metic operator (<A-op>) is ‘+’, ‘−’, ‘*’, or ‘/’ and a logical operator could be logical-AND
(‘&&’) or logical-OR (‘||’). The grammar is ambiguous due to the lack of operator prece-
dence, and can yield two or more parse trees for the same sentence, as illustrated in Figures
3.12 and 3.13.

3.2.3 Extended Backus–Naur Form (EBNF)

Despite being expressive, BNF cannot capture some of the situations elegantly for human
comprehension as follows:

 1. BNF uses multiple definitions, even when small parts of the production rule change. This
results in an unnecessary explosion of rules. For example, we can define an arithmetic
expression as <A-exp> (‘+’|‘−’|‘*’|‘/’) <A-exp>, where the construct (‘+’|‘−’|‘*’|‘/’) shows
one of the possibilities and merges two rules into one rule, with better comprehension.

 2. BNF uses tail-recursion to handle zero or more occurrences of a symbol. Tail recur-
sion is easily expressed using iteration. In Example 3.1, instead of defining <sequence-

 of-statements> tail recursively, it can be expressed as {<statement> ‘;’}* where the
 notation ‘*’ denotes zero or more occurrences of the nonterminal symbol <statement>
followed by the terminal symbol ‘;’.

 3. BNF does not capture the optional occurrence of a subpart of a production rule and
describes them as definition or null symbol ε.

EBNFs have been used to remove this limitation present in the BNF. Table 3.1 shows the
substitutions used in EBNF. Grouping for multiple definitions uses parentheses and a vertical
bar of the form (alternative1 | alternative2). Optional features in the expansion on the right-
hand side of a production rule are expressed using square brackets of the form [Optional-
feature]. Repetition uses curly brackets around the repeated entity, augmented with different

TABLE 3.1 Transforming a BNF Grammar into an EBNF Grammar

BNF Representation EBNF Representation

<NT> ::= Alternative1 | Alternative2 <NT> ::= (Alternative1 | Alternative2)
<NT> ::= ε | Optional-feature [Optional-feature]
<NT> ::= Symbol <NT> | Symbol <NT> ::= {Symbol}+
<NT> ::= Symbol <NT> | ε <NT> ::= {Symbol}*
<NT> ::= ‘0’|‘1’|‘2’|‘3’ <NT> ::= ‘0’–‘3’

84    ◾    Introduction to Programming Language

symbols such as ‘*’, ‘+’ or a digit to describe the extent of repetition. For example, a number
is defined as {<digit>}+ meaning one or more occurrences of <digit>; and <identifier> is
defined as <letter> {(<letter> | <digit>)}254 meaning a letter followed by a maximum of
254 characters (a letter or a digit). Owing to the use of parentheses, square brackets, angu-
lar brackets, vertical bars, ‘+’ and ‘*’ with special meanings, these symbols are put within
quotes when used as terminal symbols in a programming language. The range is described
in a shorthand using a hyphen between the lower bound and upper bound of the range.

Example 3.5

Figure 3.3 shows the EBNF version of the grammar described in Figure 3.2. The
 definitions of the nonterminal symbols <A-expr>, <L-expr>, and <comparison>
has been modified by incorporating the “grouping” feature of EBNF, as described
in Table 3.1. The definition of the nonterminal symbol <L-expr> uses the “optional”
 feature of EBNF, as the monadic operator ‘not’ may occur optionally before <L-expr>.
The corresponding multiple definitions in <L-expr> have been merged. The
 nonterminal symbol <number> uses a combination of “grouping” and “ repetition,”
and is defined as one or more occurrences of grouping of digits 1 to 9. Some of the
production rules that have been used to modify other top-level production rules are
not required any more and have been merged with the top-level rules.

The EBNF grammar can be further expanded by defining <A-expr> iteratively
as <number>(or <identifier>), followed by zero or more occurrences of the grouped
operators (‘+’ | ‘−’ | ‘*’ | ‘/’) and the group (<number> | <identifier>). The nonterminal
 symbol <L-expr> has been defined iteratively as the grouping (true | false | <identifier> |
< comparison>), followed by repetition of grouping of comparison operators and grouping
(true | false | <identifier> | <comparison>). The expression [not] <L-expr> on the right-
hand side has been transformed to grouping [not] (true| false| <identifier> | <comparison>)
by pushing down “[not].” The modified EBNF grammar is given in Figure 3.4.

Example 3.6

Figure 3.5 illustrates another realistic example of defining a grammar for iterative state-
ments to study the syntax representation using EBNF representation. The names are
self-explanatory. An <iteration> has multiple definitions: <for-loop>, <while-loop>,
<do_while-loop>, and <iterator>. The nonterminal symbol (< for-loop>) has variable

<expression> ::= <A-expr> | <L-expr>
<L-expr> ::= true | false | <identifier> | <comparison> |
 [not] <L-expr> (‘&&’ | ‘||’) [not] <L-expr>
<comparison> ::= <A-expr> (‘>’ | ‘<’ | ‘>=’ | ‘=<’ | ‘==’) <A-expr>
<A-expr> ::= <number> | <A-expr> (‘ + ’ | ‘−‘ | ‘*’ | ‘/’) <A-expr>
<identifier> ::= <letter> {(<letter> | <digit>)}*
<number> ::= {<digit> }+

FIGURE 3.3 An extended BNF grammar to define an expression.

Syntax and Semantics    ◾    85  

(<identifier>) initialized to the evaluated value of an expression (<expression>), followed
by a terminal symbol ‘;’ followed by the nonterminal symbol <identifier>, followed by the
nonterminal symbol <op>, followed by the nonterminal symbol <expression> showing the
final condition, followed by another delimiter ‘;’ followed by an expression < expression>
to show the step size in the index variable, followed by the right parenthesis, followed by a
nonterminal symbol <block>, denoting a block of statements. The remaining production
rules can be read similarly using the knowledge of EBNF gained in previous examples.

3.2.4 Attribute Grammar

The production rules in a grammar can be associated with different attributes for effective
error handling, evaluation, constraint specification, and low-level code generation for effi-
cient execution on a specific type of architecture. Different architectures impose different
restrictions on the production rules such as word size, size of the strings allowed, maxi-
mum number of characters allowed in an identifier, and so on. In addition, each produc-
tion rule has some meaning associated with it that is used to generate the low-level code
from the parse tree. An attribute of a production rule captures the architecture restric-
tion, or language-designer-imposed constraints, and the meaning of the production rule
needed to generate low-level code from the parse tree generated during parsing.

For example, a language may be compiled for execution on a 16-bit machine, a 32-bit
machine, or a 64-bit machine. For pragmatic and efficiency reasons, designers may like to

<expression> ::= <A-expr> | <L-expr>
<L-expr> ::= [not] (true | false | <identifier> | <comparison>)
 { (‘&&’ | ‘||’) [not] (true | false | <identifier> | <comparison>)}*
<comparison> ::= <A-expr> (‘>’ | ‘<’ | ‘>=’ | ‘=<’ | ‘==’) <A-expr>
<A-expr> ::= (<number>|<identifier>) {(‘ + ’ | ‘−‘ | ‘*’ | ‘/’) (<number> | <identifier>)}*
<number> ::= {<digit>}+
<identifier> ::= <letter> {(<letter> | <digit>)}*
<letter> ::= (‘a’ – ‘z’ | ‘A’ – ‘Z’)
<digit> ::= ‘0’ – ‘9’

FIGURE 3.4 An EBNF for defining an expression.

<iteration> ::= <for-loop> | <while-loop> | <do-while-loop> | <iterators>
<for-loop> ::= for ‘(‘<l-value> ‘=’ <expressions> ‘;’ <expressions>; <expressions> ‘)’ <block>
<while-loop> ::= while ‘(‘ <L-expr> ’)’ <block>
<do-while-loop> ::= do <block> while ‘(‘ <L-expr> ’)’
<iterator> ::= foreach ‘(‘ <identifier> in (<identifier> ‘|’ <enumeration>) ‘)’ <block>
<block> ::= ‘{‘ {<statement> ‘;’}* ‘}’ | <statement> ‘;’ | ‘{‘ ‘}’
<statement> ::= <assignment> | <if-then-else> | <iteration>
<assignment> ::= <identifier> ‘=’ <expression>
<enumeration> ::= ‘{‘ <entity> { ‘,’ <entity> }* ‘}’ | <identifier>
<entity> ::= <integer> | <float> | <string>
<identifier> ::= <alphabet> {(<alphabet> | <digit>)}*
<string> ::= “”{(<alphabet> | <digit>)}* “”
<integer> ::= [(‘ + ’ | ‘−‘)] {<digit>}*
<alphabet> ::= ‘A’ − ‘Z’ | ‘a’ − ‘z’
<digit> ::= ‘0’ − ‘9’

FIGURE 3.5 A grammar for iterative statements written in EBNF.

86    ◾    Introduction to Programming Language

limit the number of allowable characters in a variable. Similarly, based upon the word size,
the value of an integer or floating point needs to be restricted to a maximum value that is
architecture dependent. In syntax definitions, these restrictions (or attributes) are also part
of the grammar and are defined along with the production rules.

During parsing, attributes associated with a production rule have to move up and down
the parse tree to make sure that restrictions are properly enforced. The propagation of
attributes is also useful in intermediate code generation to code for exception handlers in
case the attributes are violated.

Example 3.7

Table 3.2 shows two production rules and the corresponding attributed production
rules. The denotation <int>1 denotes the left-hand side integer, and the denotation
<int>2 denotes the right-hand side integer. The function value gives the base-10 value
of the integer, the function length denotes the number of digits in an integer, and the
function size gives the number of characters in a string.

The attributes for rule 1 say that the value of an integer <int> is limited between
− 231 to + 231 − 1; the number of digits in the integer on the left-hand side, denoted
by length (<int>1), is one more than the number of digits in the integer on the right-
hand side; and the value of the integer <int>1 on the left-hand side is 10 * value of the
 integer <int>2 on the right-hand side + value of the digit <digit> on the right-hand side.
Alternately if <int> is defined as <digit> then the value of the <int> is same as the value
of the <digit>.

Rule 2 attributes impose a restriction on the size of an <identifier> for the efficiency
reasons. The restriction is that the size of the identifier has to be less than or equal to
255, and the size of the left-hand side of the identifier is one more than the size of the
right-hand side of the string.

TABLE 3.2 Examples of Production Rules in an Attribute Grammar

Production Rule Production Rule with Attributes

 1 <int> ::= <int><digit> |
<digit>

<int> ::= <int><digit>
Attributes: value(<int>) > –2**31;
 value(<int>) < 2**31 – 1
 value(<int>1) = 10 *
 value(<int>2) +
 value(<digit>)
 length(<int>1) =
 length(<int>2) + 1

 <int> ::= <digit>
Attribute: value(<int>) = value(<digit>)

 2 <identifier> ::=
<letter>{(<digit>|<letter>)}*

 <identifier> ::= <letter>
 {<digit> |<letter>)}*
Attribute: size-of(<identifier>) =< 255

size-of(<identifier>) >= 1

Syntax and Semantics    ◾    87  

3.2.5 Hyper-Rules and Meta-Definitions

The syntax rules can be made more expressive by capturing the general pattern in the
production rules. Two additional types of rules are used: (1) hyper-rules and (2) meta-
definitions. Hyper-rules abstract multiple production rules by the general pattern, and
meta-definitions specify multiple definitions to be substituted in hyper-rules. By substitut-
ing meta- definitions in hyper-rules, multiple production rules having similar patterns are
derived. For example, a <sequence> is a general pattern across many production rules in
grammars of programming languages and can be expressed as a hyper-rule as follows:

 <sequence> : <definition> ’;’ <sequence> | 𝜀 -hyper rule

A meta-definition to define the nonterminal symbol <definition> is shown below. The
names on the right-hand side are self-explanatory.

 <definition> :: <formal-parameter> | <actual-parameter>|
 <declaration> | <statement> -meta-definition

By applying one meta-definition at a time in the hyper-rule, four production rules are
generated. Only one meta-definition is applied at a time across all the definitions in a
hyper-rule to generate a production rule; two or more meta-definitions cannot be applied
on the same hyper-rule at the same time. The four production rules are as follows:

 <sequence-of-formal-parameter> ::= <formal-parameter> ’;’
 <sequence-of-formal-parameter> | 𝜀

< sequence-of-actual-parameter> ::= <actual-parameter> ’;’
 <sequence-of-actual-parameter> | 𝜀

< sequence-of-declaration> ::= <declaration> ‘;’
 <sequence-of-declaration> | 𝜀
< sequence-of-statement> ::= <statement> ‘;’
 <sequence-of-statement> | 𝜀

In a grammar, there is a need to distinguish production rules from hyper-rules and
meta-rules. Hyper-rules have ‘:’ separating the left-hand side and the right-hand side, meta-
definitions have ‘::’ separating the left-hand side from the right-hand side, and production
rules in BNF and its variations have ‘::=’ separating the left-hand side from the right-hand side.

3.2.6 Abstract Syntax

In order to understand the properties of data abstractions and control abstractions for
a class of programming languages, syntax rules are abstracted using data and control
 abstractions. For example, we can abstract a programming language construct by program,
blocks, iteration, selection statements, assignment, command, expression, declaration, formal
 parameters, actual parameters, identifiers, definitions, literals, and sequencers—goto state-
ments, type expressions, and so on. These abstractions are defined using the abstract syntax
rules along with the important reserved words in the programming languages. Abstract syn-
tax rules are different from the set of production rules for the grammar of a programming
language. Some of the lower-level definitions such as the definitions of identifiers, numbers,

88    ◾    Introduction to Programming Language

integers, digits, expressions, strings, and operator precedence—that are universal across
 programming languages are ignored, as they do not add anything more to the understand-
ing of the abstract constructs in the programming languages. Similarly, lower-level literals,
delimiters, and white spaces are also ignored for the same reason. Abstract syntax is concise
and explains the constructs using programmers’ existing knowledge of abstractions. There
are inherent ambiguities in the abstract syntax rules due to the omission of low-level details.
However, it is concise, associated with control and data abstractions in the programming
language in the form of nonterminal symbols, and carries the alphabet of the programming
language.

Example 3.8

Abstract syntax rules for control abstractions of l-value, declarations, expressions, and
commands can be defined for a major class of imperative programming languages, as
shown in Figure 3.6.

The abstract syntax rules illustrate that an l-value abstraction could be an
 identifier, a specific field of a structure, or a subscripted variable (shown by <l-value>
‘[‘< expression>’]’). An expression abstraction could be a literal, an identifier, an
l-value, an expression within parentheses, two expressions connected by a dyadic
operator, or a monadic operator followed by an expression.

The command abstraction in the given programming language can be a block within
curly brackets, an assignment statement, a sequence of commands, an if-then-else

<l-value> ::= <identifier> | <identifier>.<l-value> | <l-value>’ [‘<expression>’]’

<declarations> ::= variable <identifier> <type-expression> |
 <type-expression>[<numeral>] |
 structure {<type-expression>} <identifier> |
 void <identifier> (<formal-parameters>) |
 <identifier> function <identifier> (<formal-parameters>)

<expressions> ::= <literal> | <identifier> | <l-value> | (<expressions> | <op> <expressions> |
 <expressions> <op> <expressions>
<actual-parameters> ::= <identifier> ‘,’ <actual-parameters>

<formal-parameters> ::= <identifier> ‘,’ <identifier-sequence> ‘;’ <formal-parameters> | ∈

<commands> ::= { <commands> } | <l-value> ‘=’ <expressions> | <command> ‘;’ <commands> |
 if <expressions> then <commands> else <commands> |
 if <expressions> then <commands> |
 while ‘(‘ <expressions> ’)’ <commands> |
 do <commands> while ‘(‘ <expressions> ’)’ |
 for ‘(‘<l-value>’=’ <expressions> ‘;’ <expressions>’;’ <expressions> ‘)’ <commands> |

<identifier> ‘(‘<formal-parameters> ‘)’

<sequencer> ::= goto <numeral>
<program> ::= main <identifier>’;’ <declarations> ‘;’ <commands>

FIGURE 3.6 An example of abstract syntax rules.

Syntax and Semantics    ◾    89  

statement, a while-loop, a do-while loop, a for-loop, or a procedure call. In addition,
it tells the reserved words {if, then, else, do, while, ‘{,’ and ‘},’ for} and so on are part
of the language constructs. However, other low-level details have been removed.
For example, the definition of operator in the definition of abstract syntax rules for
<expression> does not discriminate between various operator precedence and differ-
ent types of expressions: logical versus arithmetic.

3.3 SYNTAX DIAGRAMS
Textual representations are good for processing the grammar by computers. However,
humans are better in visualizing and comprehending simple pictorial diagrams. To visual-
ize, comprehend, and communicate the syntax of programming languages to program-
mers, language designers use the pictorial version of the production rules. These pictorial
versions are called syntax diagrams.

Understanding the correspondence between textual representation of the syntax
 grammar and the syntax diagram is quite important, since the language designers have to
(1) write the syntax diagrams for the ease of comprehension by programmers and language
designers and (2) write the textual version for developing parsers and code generators.
The programmers also have to translate the knowledge of the syntax, gained by studying
 syntax diagrams to textual form during program development.

Formally a syntax diagram is a directed cyclic graph with terminal and nonterminal
 symbols as nodes and the concatenation between the terminal and nonterminal symbols
on the right-hand side of the production rules as edges. The cycles model the tail- recursive
definitions (or repetitions in EBNF). The left end of a syntax diagram describes the left-
hand side nonterminal symbols in a production rule, and the remaining graph models the
right-hand side of the production rule.

Syntax diagrams have three major components: nonterminal symbols, terminal symbols,
and directed edges. For our convenience, the nonterminal symbols have been boxed in an
oval shape to separate them clearly from terminal symbols. The arrow shows the direction
of the flow. The leftmost symbol shows the nonterminal symbol on the left-hand side of the
production rule that is being defined. Different conversions from syntax rules to syntax
diagrams are illustrated in Figures 3.7 and 3.8.

Multiple definitions are represented as multiple forward paths in a syntax diagram. A null
symbol is represented as a simple directed edge between the source and the destination that
has no embedded symbol. Concatenation of multiple symbols on the right-hand side of a
production rule is represented as a path connecting multiple nodes. Tail-recursive definitions
are represented as a feedback loop (a cycle) to show multiple occurrences of a definition. The
feedback loop with a definition in the forward edge describes one or more occurrences in
EBNF. At the destination node, there are two options: use the backward edge to go through
the cycle again or exit. An interesting path is to model zero or more occurrences of symbols.
This is modeled as a feedback loop with a variation that the symbols occurs in the backward
edge of the feedback loop, and the forward edge has no symbol.

90    ◾    Introduction to Programming Language

For better visualization and comprehension, many production rules are merged into one
syntax diagram. The merging is done to reflect abstract entities in programming languages
such as identifiers; variables; integers; decimal numbers; numbers; arithmetic expressions;
logical expressions; actual parameters; formal parameters; different types of statements,
such as if-then-else statements, while-loop, do-while-loop, iterators, and case statements;
block of statements; type declarations; program; and so on.

Example 3.9

Figure 3.7 illustrates syntax diagrams for multiple definitions (see Figure 3.7a), syn-
tax diagrams for concatenation of symbols (see Figure 3.7b), syntax diagram for tail-
recursive definitions showing one or more occurrences of a symbol(s) (see Figure 3.7c),
and syntax diagram for zero or more occurrences of a symbol(s) (see Figure 3.7d).

As illustrated in Figure 3.7a, multiple forward paths between two nodes starting from
one side and merging back on the other side show multiple definitions. The syntax dia-
gram for the nonterminal symbol <statement> has multiple paths: (1) the first path
 containing the nonterminal symbol <assignment>; (2) the second path containing the
 nonterminal symbol <if-then-else>; and (3) the third path, containing the nonterminal
symbol <iteration>. It is equivalent to a syntax rule of the form

 <statement> ::= <assignment> | <if-then-else-statement> |
 <iteration>

(a)

(b)

(c)

(d)

<statement>

<statement>

<assignment> <statement> ::=
<assignment> |
<if-then-else> |
<iteration>

<if-then-else>

if then

;

else
<if-then-else>

<sequence-of-statements>

<sequence-of-statements> ::=

<if-then-else> ::= if <condition> then<statement>
 else<statement>

ε | <statement> ‘;’ <sequence-of-statements>

<number> ::= <digit> | <digit> <number>

<statement>

<then><condition>

<digit><number>

<iteration>

FIGURE 3.7 Syntax diagrams.

Syntax and Semantics    ◾    91  

Figure 3.7b describes the syntax rule <if-then-else> ::= if <cond> then <statement> else
<statement>. The right-hand side of the rule is a concatenation of the terminal symbols {if,
then, else} with the nonterminal symbols {<cond>, <statement>} in a specific order. The
syntax diagram preserves the order of catenation in the syntax rule.

Figure 3.7c illustrates the syntax diagram for the production rule <number> ::= <digit>
| <digit><number>. The definition has a base case <number> ::= <digit> and the tail-
recursive definition <number> ::= <digit> <number>. It represents one or more occur-
rences of <digit>, because the tail-recursive definition can be used to add additional
<digit>, and the definition of the nonterminal symbol <number> can always be termi-
nated by applying the base case that adds one additional <digit> before terminating the
expansion. The definition represents one or more occurrences of <digit>. The EBNF ver-
sion of the syntax rule is <number> ::= {<digit>}+. The corresponding syntax diagram
is modeled as a feedback loop, where the forward path contains a nonterminal symbol
<digit>, and there is a backward edge from the destination node to the source node. The
forward path can be traversed multiple times. Each time a forward path is traversed, an
extra <digit> is added to generate a sequence of <digit>.

Figure 3.7d models the syntax diagram for a syntax rule for zero or more occurrences of
statements. The corresponding production rule in BNF has a base part and a tail-recursive
part. The base part is an empty symbol ε, and the tail-recursive part involves the nontermi-
nal symbol <statement> followed by the terminal symbol ‘;’ as shown below

< sequence-of-statements> ::= <statement> ’;’
 <sequence-of-statements> | ε

In EBNF, zero or more occurrences of symbols is written by enclosing the symbols
within curly brackets and placing an asterisk “*” right after the right curly bracket, as
shown below:

<sequence-of-statements> ::= {<statement>’;’}*

Zero or more occurrences of symbols is represented in the syntax diagrams as a feed-
back loop, such that the forward edge is a straight arrow without a symbol, and the back-
ward edge has the symbols. In Figure 3.7d, the backward edge has the nonterminal symbol
<sentence> followed by the terminal symbol ‘;.’

3.3.1 Translating Syntax Rules to Syntax Diagrams

Syntax rules are translated to the corresponding syntax diagrams using the following rules:

 1. The terminal and nonterminal symbols are distinct in syntax diagrams.

 2. A production rule with multiple definitions in BNF or grouping in EBNF is modeled as
parallel paths between two nodes and looks like a multilane road.

 3. Concatenation of multiple symbols on the right-hand side is depicted as multiple
symbols on the same path.

92    ◾    Introduction to Programming Language

 4. Tail-recursive definition is represented as a feedback loop, where the end of the right-
hand side connects back to the start of the definition.

 5. Empty symbol, denoted as ε, is written as a straight edge between two nodes.

 6. An optional definition is modeled as a pair of paths, such that the first path contains
a straight edge between two nodes, and the second path contains the definition.

Figure 3.8 describes the syntax diagrams for the corresponding components of syntax
rules in BNF and EBNF. The ellipse denotes a symbol (terminal or nonterminal) in the
textual representation.

The first row illustrates a corresponding syntax diagram for a production rule that has
three symbols on the right-hand side. The three edges connecting the ellipse have been
merged into one for convenience. The second row shows a production rule that has four
different definitions in the same production rule as follows:

 1. The first definition on the top edge has two symbols on the right-hand side.

 2. The second and the third definitions have one symbol on the right-hand side.

 3. The fourth definition, shown by the bottom edge, has two symbols on the right-
hand side.

The third row shows a tail-recursive definition of one or more occurrences of a symbol
on the right-hand side of a production rule. One or more occurrences are equivalent

Component

<source>

<source>

<source>

<source>

<source>

<source>

Concatenation

Multiple definitions in BNF or
grouping in EBNF shown parallel
branches

Tail-recursive definition for one or
more occurence

Empty symbol

Optional in EBNF

Tail-recursive definition for zero or
more occurence

Syntax diagram correspondence

FIGURE 3.8 Correspondence of syntax diagrams and syntax rules.

Syntax and Semantics    ◾    93  

to {<symbol>}+ in EBNF and the tail-recursive definition <definition> ::= <symbol>
<definition> | <symbol> in BNF, where <symbol> could be a combination of terminal
or a nonterminal symbol. The fourth row shows the syntax diagram for an empty symbol
‘ε.’ Since there is no symbol, the corresponding syntax diagram is a straight arrow.

The fifth row illustrates the syntax diagram of an optional symbol. An optional symbol
of the form [<symbol>] in EBNF is equivalent to a grouping (<symbol> | ε) showing two
forward paths: one of the paths has <symbol> as an embedded node, and the other path
has no embedded node. The sixth row shows zero or more occurrences of a symbol. The
syntax diagram of zero or more occurrences also has a return edge, like one or more
occurrences. However, the syntax diagram for zero or more occurrences has the symbol
on the return path instead of the forward path. The definition of zero or more occurrences
of <symbol> is written as {<symbol>}* in EBNF and as the tail-recursive definition
< definition> ::= <symbol><definition> | ε in BNF, where <symbol> could be a terminal
or a nonterminal symbol.

In order to translate a textual grammar into a syntax diagram, a grammar is grouped
into the language-relevant functional units that have some meaning at the data or control
abstraction level. The grammar is divided into a set of subsets of production rules, where
each subset corresponds to a functional unit in the program development, such as variables,
formal parameters, block, and so on. Then iteratively top-level rules, are translated into
syntax diagrams, and the nonterminal symbols within the translated syntax diagrams, are
expanded further to another syntax diagram, until the addition of more low-level syntax
diagrams will not facilitate further understanding of the specific functional unit.

Example 3.10

The definition of <identifier> has three production rules using a set of three nonter-
minal symbols: {<identifier>, <letter>, <digit>}. However, <letter> and <digit> are
used to define the nonterminal symbol <identifier>. Thus three productions rules are
merged into a single syntax diagram.

<identifier>, <letter> and <digit> as shown below:
<identifier> ::= <letter> {(<letter> | <digit>)}*
<letter> ::= ‘A’ – ‘Z’ | ‘a’ – ‘z’
<digit> ::= ‘0’ – ‘9’

First the syntax diagram for the production rule defining nonterminal symbol
< identifier> is constructed. The production rule defining the <identifier> has been chosen
first, because the definition of the <identifier> includes the definition of other nonterminal
symbols in its right-hand side, and these nonterminal symbols can be expanded later.
In the second stage, the nonterminal symbols <letter> and <digit> are expanded to
refine the syntax diagram. The production rules are converted to syntax diagrams using
the correspondence between production rules classes. The resulting syntax diagrams is
 illustrated in Figure 3.9.

94    ◾    Introduction to Programming Language

3.3.2 Translating Syntax Diagrams to Syntax Rules

Syntax diagrams have to be translated to textual grammar for use with parser generators.
Thus a language designer or a programmer should be able to translate a syntax diagram to
the corresponding set of syntax rules.

The translation of syntax diagrams to production rules is the reverse process of
 generating syntax diagrams from production rules. Those parts of the syntax diagrams
that are embedded in the syntax diagrams, and that are defined only in terms of terminal
 symbols and already defined nonterminal symbols are converted to production rules using
the correspondence between production rules and syntax diagrams, as given in Figure 3.8.

New meaningful nonterminal symbols are generated for the embedded syntax diagrams.
After developing the production rule, the corresponding part of the syntax diagram is
replaced by the newly defined nonterminal symbol, and the process is repeated. The process
stops when the whole syntax diagram is reduced to a single nonterminal symbol.

Example 3.11

To generate a set of production rules for the syntax diagram in Figure 3.7, the most
embedded parts—multiple parallel paths defining the grouping (‘0’ | ‘1’ | ... | ‘9’) and
multiple parallel paths defining the grouping (‘a’ | ... | ‘z’)—are translated as <letter> ::=
‘a’ | ... | ‘z’ and <digit> ::= ‘0’ | ... | ‘9’. The nonterminal symbols <letter> and <digit>
are now substituted in place of the multiple parallel paths, and the syntax diagram is
reduced to a syntax diagram as given in Figure 3.7a. In Figure 3.7a, there is c oncatenation

<identifier>

<identifier>
‘a’

‘a’

‘0’

‘9’

‘Z’

‘Z’

...

...

...

(a) - Syntax diagram for production rule 1 for <identifier>

(b) - Refining syntax diagram using rules 2 and 3

<letter>

<letter>

<digit>

FIGURE 3.9 Building a syntax diagram using multiple production rules.

Syntax and Semantics    ◾    95  

of the nonterminal symbol <letter> and the tail-recursive definition showing zero or
more occurrences of the alternative symbols (<letter> | <digit>). Hence, a new produc-
tion rule is formed as <identifier> ::= < letter> {(<l etter> | <digit>)}*.

3.4 VALIDATING SENTENCE STRUCTURE
The program compilation process starts by validating the structure of the sentences.
There are two steps in the validation of the grammatical structure: (1) converting the
symbols in sentences into an internal format using “tokens” and (2) validating this
internal format of the sentences using the grammar rules of the language. The first step
is called lexical analysis, and the second step is called parsing. The output of the second
step is a parse tree. A parse tree is a tree generated by repeatedly matching the right-hand
side of the grammar rules and substituting the matched part of the intermediate form
(or sentence) by the corresponding left-hand side nonterminal symbol of the match-
ing production rule. This substitution generates a new intermediate form, where the
part matching the right-hand side of the production rule has been substituted by the
 nonterminal symbol on the left-hand side of the production rule. The process is repeated
until the start symbol is reached. The sequence of derived intermediate forms generates
the parse tree. This parse tree becomes the input for the next level of code generation.

Both lexical analysis and parsing have been automated, and software tools have long
been developed to generate an automated parser using parser generators. The input to a
parser generator is the grammar of a language. Automated parsers use various top–down
or bottom–up techniques along with symbol look-ahead to uniquely select the production
rule for the reduction of the intermediate forms. Automated parsers have been described
more in Section 3.4.5.

This section explains the basics of lexical analysis and parsing. We use our intelligence
to identify the appropriate rules to reduce progressively intermediate forms to the corre-
sponding nonterminal symbols, so that we can generate the optimum parse tree. The study
of parser generators and different techniques for automated parsing are within the scope
of a course in compilers.

3.4.1 Lexical Analysis

Lexical analysis is the first phase of program translation, where the reserved words, iden-
tifiers, and literals are recognized, archived in a symbol table, and translated to tokens.
Literals are constant values in a programming language that cannot be altered. For exam-
ple, 10, true, false, and 4.7 are literals. The lowest syntactic unit that forms a reserved word,
identifier, or a literal is called a lexeme. A lexeme is a string of characters that forms the
lowest-level syntax units in a programming language. During the lexical analysis, white
spaces are removed; tokens are created; and the stream of token is passed to the parser
for the sentence validation. For example, the assignment symbol ‘=’ is assigned a token
assigned_to; the symbol ‘<’ is assigned a token less-than.

A finite state automaton (FSA) is used to recognize words, identifiers, and literals and to
generate the tokens. The FSA is defined by the corresponding regular grammar that
is further divided into small interconnected FSAs that generate the tokens, as shown in

96    ◾    Introduction to Programming Language

Figure 3.10. The input to an FSA is a sequence of characters in a program, and the output is a
tokenized version of the program.

The lexeme recognition process starts from the initial state S0, and FSA transits to
 different states during a lexeme recognition. After identifying a delimiter or a look-ahead
character that resolves the ambiguity in the transition to the next state, the correspond-
ing token is emitted. After the token is emitted, the FSA transits back to the start state
S0. Possible delimiters are blanks spaces, end of the sentences such as a semicolon, end of
block of sentences such as curly brackets, end-of-line in some languages, or end-of-file. The
 definition of delimiters is language dependent. After the emission of the token, the pair
(lexeme, emitted token) is archived in the symbol table. Next time, when the same lexeme
is identified in the program, the symbol table is looked up to generate the same token.

Example 3.12

The FSA in Figure 3.10 can accept identifiers, unsigned integers, and reserved words
‘=’ and ‘+’. It has four subparts that respectively generate the corresponding tokens for
the reserved words ‘=’ and ‘+’, an identifier, and the internal number representation
for a number. The FSA has an initial state S0. The reserved word ‘=’ takes the FSA to
state S1, the reserved word ‘+’, takes the FSA to state S2, a letter takes the FSA to the
state S3, and any digit takes the FSA to the state S4. The FSA keeps cycling in S3 if the
next symbol is a letter or a digit, and upon finding a delimiter converts the identifier
to a token, and it transitions back to the state S0. The FSA keeps cycling in S4 when it
gets a digit as the next symbol, and upon finding a delimiter, outputs a token that is
an internalized representation of an unsigned integer representing the sequence of
digits, and transitions back to state S0.

Delimiter

Delimiter

Delimiter

Delimiter

Digit

Digit

Letter

‘+’

‘=’

A digit or a
letter

Emits an identifier token
Symbol

table

Emits the token plus

Emits the token assigned_to

Emits an integer as token

S1 S1

S2 S21

S31
S3

S0

S4
S41

FIGURE 3.10 A simplified scheme of finite-state automaton for lexical analysis.

Syntax and Semantics    ◾    97  

Let us consider a sentence sum = sum + 10. The symbol sum is an identifier, the symbols
‘=’ and ‘+’ are reserved words, the symbols 10 is a number, and the symbol ‘;’ is a delimiter
ending the sentence. The blank character acts as a delimiter to separate the identifiers and
reserved words. There are ten characters in the input string “sum = sum + 10” in addition
to the blanks.

The lexical analyzer processes one input character at a time. Initially, the FSA is in the
state S0. The first letter is ‘s’. The state machine transits to state S3—a state that recognizes
identifiers. The next two symbols are letters ‘u’ and ‘m’. The machine keeps cycling onto
the state S3. The next symbol is a blank that acts as a delimiter for the identifiers. The FSA
transits to a new state S31, and the identifier sum is internalized, put in a lookup table and
outputs a token value ‘_1’. Upon the subsequent occurrences of the identifier, FSA will
search in the lookup table and output the internalized token ‘_1’. After emitting the token
‘_1’, the FSA transitions back to the start-state S0. The next symbol is a reserved word ‘=’.
It takes the FSA to the state S1. The next look-ahead symbol is a blank that acts as a delim-
iter. The FSA transits to another state, S11, and emits the corresponding token assigned-to.
After emitting the token assigned-to, FSA transitions back to the initial state S0. The next
letter ‘s’ takes the FSA to the state S3, and the process is repeated, with a difference: the
lookup table has an entry for the identifier sum, and the token ‘_1’. is emitted again. After
emitting the token ‘_1’, the FSA transitions back to the initial state S0. Upon seeing the
next look-ahead character ‘+’ the FSA transitions to the state S2. Upon seeing the delimiter
blank, the FSA transitions to state S21, emits the token plus, and transitions back to the
initial state S0. The next character is digit 1. The automaton transitions to state S4. The next
character is the digit 0. The FSA cycles back to state S4. After seeing the delimiter ‘;’, the FSA
outputs the token—an internalized version of unsigned integer 10, and transitions back to
the initial state S0. The output of the lexical analyzer will be a stream ‘_1’ assigned_to ‘_1’
plus 10. This tokenized sequence is the input to the parser.

Many times it is not possible to identify the lexeme just by looking at the next look-
ahead character, due to the ambiguities in transitions to more than one state. In such cases,
more than one look-ahead character is used to resolve the ambiguities. For example, ‘=’
and ‘==’ and ‘=<’ are three different symbols with three different tokens: ‘=’ will get a
token assigned_to, ‘==’ will get a token is_equal_to, and the sequence of characters ‘=<’
will get a token less_than_or_equal_to. If we just look at the first input character ‘=’ then
there is an ambiguity. After we look at the next character, the ambiguity is resolved: a blank
as delimiter will emit a token assigned_to, the second look-ahead character as ‘=’ will result
in a token is_equal_to, and the second look-ahead character as ‘<’ will result in a token
less_than_or_equal_to.

FSA for a lexical analyzer is modeled as a two-dimensional transition table of size
M rows X N columns, where M is the number of states in FSA, and N is the number
of possible input characters. Each cell in the table contains the state (or set of states) to
which the FSA will transit to upon seeing the next input character. In the case of an
 ambiguity, there will be more than one state in the cell. The resolution is done using a
stack, storing the pairs of the form (look-ahead-character position, set of remaining states
to be explored) in the stack, and moving ahead with the next look-ahead character in the

98    ◾    Introduction to Programming Language

input stream. If the next look-ahead character gives a unique lexeme, then the stack is
reinitialized, and the token is generated. Otherwise, the stack is popped, and remaining
possible states are explored.

3.4.2 Parsing

A parser takes the sequence of tokens in a sentence and the grammar of the language as input
and generates an unambiguous parse tree. The process of parsing repeatedly applies one of
the grammar rules on a subsequence of the reduced-intermediate-form of the sentence being
parsed. A reduced-intermediate-form contains a combination of terminal and nonterminal
symbols. The next rule is picked by matching a part of the reduced-intermediate-form with
the right-hand side of a production rule and replacing the matched part with the left-hand
side nonterminal symbol, until the start symbol is reached. If the repeated application of the
production rule does not lead to the start symbol, or there is no subsequence of the reduced-
intermediate-form on which a production rule can be applied, then parsing fails, resulting in
an error. A simplified scheme to understand parsing is given by an algorithm in Figure 3.11.

The input to the algorithm is a set of production rules {p1, … pn}, the sentence S that is
a sequence of symbols s0, …, sm, and the start symbol root. The output of the algorithm is
a parse tree T. Initially the reduced-form is the original sequence S. The while-loop keeps
iterating, while the reduced-form is not equal to the start symbol root and there is no
parsing error. Inside the iterative loop, it checks for a production rule pi the form <non-
terminal-symbol> ::= si ... sj such that the subsequence si … sj is included in the current
reduced-form. After the match, the subsequence si … sj is replaced by the left-hand-side-
of (<production-rule pk>), and the variable reduced-form is updated. The tree T is also
updated accordingly by adding a new edge of the form (si … sj → left-hand-side(pk)), and
the process is repeated until the start-symbol root is found or parse-error becomes true.
The Boolean variable parse-error becomes true if there is no matching rule.

Algorithm bottom-up-parse-sentence
Input: 1. A set of production rules R = {pi, … pn} of the grammar;
 2. A sentence as a sequence of symbols S = s0, …, sm;
 3. The start symbol root;
Output: A parse tree T;
{ reduced-form = S;
 parsing-error = false;
 T = null-tree;
 while ((reduced-form ≠ root) && not(parsing-error))
 { If there exists a subsequence si .. sj in reduced form, such that
 si… sj == right-hand-side(pk ∈ R) where 1 =< k =< n {
 nonterminal = left-hand-side(pk);
 reduced-form = substitute(reduced-form, si… sj, nonterminal);
 T = T + edge(si ..sj → left-hand-side(pk));
 }
 else parsing-error = true;
 }
 If not(parsing-error) return(T); else print(‘parsing-error’);
}

FIGURE 3.11 A simplified scheme for bottom–up parsing a sentence.

Syntax and Semantics    ◾    99  

The process of finding out an appropriate subsequence that matches the right
 production rule is a tricky problem and has been solved using different automated pars-
ing techniques, such as LL(K) and LR parsers. Automated parsers have been described
briefly in subsection 3.4.5.

Example 3.13

Let us parse the sentence “x + 3 * 4,” using the grammar given in Figure 3.2. The
sentence contains five symbols: ‘x’, ‘+’, ‘3’, ‘*’, and ‘4’. These symbols will be converted
by the lexical analyzer to the corresponding tokens. However, for the sake of
 convenience, we use the symbols in their original forms instead of tokens. Any symbol
or a subsequence of five symbols is a candidate for matching with the right-hand side
of the production rules. Using the grammars given in Figure 3.3, we get two alternate
parse trees, as shown in Figures 3.12 and 3.13. A grammar that gives more than one
parse tree for the same sentence is ambiguous and should be avoided.

<A-expr>

<A-expr>

<A-expr>

<A-expr>

<expression>

<number>

<digit>

<A-expr>

<number>

<digit>

<identifier>

<letter>

x + 3 4*

FIGURE 3.12 An incorrect parse tree due to ambiguity in the grammar.

<A-expr>

<A-expr> <A-expr>

<A-expr>

<A-expr>

<number> <number>

<digit> <digit>

<expression>

<identifier>

<alphabet>

x + 3 4*

FIGURE 3.13 The correct parse tree for the expression x + 3 * 4.

100    ◾    Introduction to Programming Language

3.4.3 Handling Grammar Ambiguities

Ambiguous grammars violate one of the fundamental principles of programming lan-
guage design that each sentence should have a unique meaning. Two different parse
trees for the same sentence imply that the sentence can be translated to two different sets
of low-level instructions, leading to two different computations. There are two major
classes in computation where grammar ambiguities are caused: (1) when a production
rule does not take care of the precedence of operators and (2) matching the constructs
in nested structures if the nesting levels are not explicitly separated by reserved words.

Example 3.14

The grammar to define <expression> in Figures 3.2 through 3.5 are ambiguous due
to the grouping of operators in the same production rule using multiple definitions
for arithmetic expressions and logical expressions. In arithmetic expressions, dyadic
operators ‘*’ and ‘/’ have higher precedence than the dyadic operators ‘+’ and ‘−’.
Similarly, in logical expressions, the monodic operator ‘not’ has higher precedence
than ‘&&’ (logical-AND) and ‘&&’ (logical-AND) has higher precedence than ‘||’
(logical-OR).

One way to handle the ambiguities in expressions is to explicitly separate the
subexpressions using parentheses. However, the order of precedence can be coded
in the grammar rules by splitting the production rule into multiple production
rules. A multidefinition production rule is split into multiple production rules by
 introducing new nonterminal symbols that are progressively defined in terms of
other nonterminals with increasing precedence of operators, and the last production
rule uses the highest precedence operator. The operators with higher precedence are
parsed first, because rules involving higher-precedence operators are applied first
when parsing bottom–up. The corresponding unambiguous grammar for expres-
sions has been shown in Figure 3.14.

The production rule for the arithmetic expression <A-expr> has been split into
three production rules, using two additional nonterminal symbols <expr-mult> and
<A-term>. Similarly, the production rule for the logical expression <L-expr> has

<expression> ::= <A-expr> | <L-expr> (1)
<A-expr> ::= <A-expr> (‘ + ’ | ‘-‘)<expr-mult> | <expr-mult> (2)
<expr-mult> ::= <expr-mult> (‘*’ | ‘/’) <A-term> | <A-term> (3)
<A-term> ::= ‘(‘ <A-expr> ‘)’ | <identifier> | <number> (4)
<L-expr> ::= <L-expr> ‘||’ <expr-and> (5)
<expr-and> ::= <expr-and> ‘&&’ <L-term> (6)
<L-term> ::= [not] (‘(‘ <compare> ‘)’ | ‘(‘ <L-expr> ’)’ | <identifier> | true | false (7)
<compare> ::= <A-expr> (‘>’ | ‘<’ | ‘>=’ | ‘=<’ | ‘==’) <A-expr> (8)
<identifier> ::= <letter>{(<letter>|<digit>)}* (9)
<number> ::= [(‘ + ’|’−‘)] {<digit>} + (10)
<letter> ::= ‘a’| ‘b’ | … |’z’| ‘A’ | ‘B’ | … | ‘Z’ (11)
<digit> ::= ‘0’ | ‘1’| … |’9’ (12)

FIGURE 3.14 An unambiguous grammar for expressions.

Syntax and Semantics    ◾    101  

been split into three production rules using two additional nonterminal symbols:
<expr-and> and <L-term>. The nonterminal symbol <A-expr> has been defined
using <expr-mult>. The nonterminal symbol <expr-mult> has been defined in
terms of <A-term>. The nonterminal symbol <A-term> has been defined in terms
of (<A-expr>) or <identifier> or <number>. The nonterminal symbol <L-expr> is
defined using nonterminal symbol <expr-and>. The nonterminal symbol <expr-
and> is defined using nonterminal symbol <L-term>. The nonterminal symbol
<L-term> has been defined in terms of the optional terminal symbol ‘not’ followed
by a grouping of logical expressions within parentheses, or comparison within paren-
theses, or the nonterminal symbol <identifier>, or the terminal symbol true or the
terminal symbol false.

Example 3.15

Let us parse the sentence “x + 3 * 4” using the unambiguous grammar given in
Figure 3.14. The literals ‘3’ and ‘4’ are reduced to nonterminal symbol <A-term>
using a sequence of rules: rule 12, rule 10, rule 9, and rule 4. The reduced form
“<A-term> − <A-term>” is reduced to the nonterminal symbol <expr-mult>
using rule 3, and the new reduced form is “x + <expr-mult>.” The symbol x is
reduced to the nonterminal symbol <identifier> using a sequence of rules: rule 11
and rule 9, and the new intermediate form is “<identifier> + <expr-mult>.” The
 nonterminal symbol <identifier> is further reduced to the nonterminal symbol
<A-expr> using a sequence of rules: rule 4, rule 3, and rule 2. The new reduced
form is “<A-expr> + <expr-mult>” that is reduced to the nonterminal symbol
<A-expr> using rule 2. The nonterminal symbol <A-expr> is reduced to the start-
symbol <expression> using rule 1. The resulting parse tree is unique and correct,
as shown in Figure 3.15.

<A-expr>

<A-expr> <expr-mult>

<expr-mult><expr-mult>

<A-term> <A-term> <A-term>

<number> <number>

<digit> <digit>

<expression>

<identifier>

<letter>

× + 3 4*

FIGURE 3.15 Parse the expression “x + 3 * 4” using an unambiguous grammar.

102    ◾    Introduction to Programming Language

3.4.3.1 Ambiguities in Nested Structures
If-then-else statements can have two options: (1) if <statement> then <statement> or (2) if
<statement> then <statement> else <statement>. The first option is unmatched, as the else
part is missing, and the second option is matched, as the else part is present. A combination
of matched and unmatched options to form a nested if-then-else statement causes ambigu-
ity, as it would be unclear whether the else part matches with the outer if or with the inner
if, as shown below in Table 3.3.

Both the statements have two occurrences of “if” and one occurrence of “else.” The rule
for programming is that else goes with the nearest if occurrence. In order to interpret it
correctly, there are two options: (1) put the inner matched part using delimiters to separate
them clearly from the outer blocks or (2) write an unambiguous grammar for handling a
nested if-then-else statement. An unambiguous grammar is given below

< if-then-else-statement> ::= <matched-if-then-else> |
 <unmatched-if-then-else>

< matched-if-then-else> ::= if <condition> then
 <matched-if-then-else>
 else <matched-if-then-else>|
 <other-statements>
< unmatched-if-then-else> ::= if <condition> then
 <if-then-else-statement> |
 if <condition> then

 <matched-if-then-else>
 else <unmatched-if-then-else>

3.4.4 Abstract Syntax Tree

A parse tree made out of abstract syntax rules gives an abstract syntax tree. An abstract
syntax tree is free of all the nonterminal symbols in the concrete syntax rules that are not
in the abstract syntax rules. The expressions are rooted at the operators. For example, the
abstract syntax tree for the expression “x + 3 * 4” is given by Figure 3.16.

Concrete syntax trees (trees developed using concrete syntax rules) are reduced to
abstract syntax trees by removing low-level and redundant nonterminal symbols not con-
tributing directly to the meaning of the sentence. For example, the concrete syntax tree for
the expression “x + 3 * 4” as shown in Figure 3.15 contains many low-level nonterminal
symbols, such as {<A-term>, <expr-mult>, <digit>}, that do not directly contribute to the
semantics and have been removed from the abstract syntax tree in Figure 3.16.

TABLE 3.3 Possible Interpretations of Unmatched Nested if-then-else Statement

Incorrect Interpretation Correct Interpretation

 if (x > 4) then
 if (y > 0) then return(1);

 else return(0)
(a) else part is matched with outer
if

 if (x > 4) then
 if (y > 0) then return(1);

 else return(0);
(b) else part matched with the

nearest if

Syntax and Semantics    ◾    103  

Abstract syntax trees are useful in understanding the language constructs in program-
ming languages, as they hide unnecessary details of the concrete syntax trees. Abstract
syntax trees are also used in syntax-directed code generation of programs: after parsing,
a concrete syntax tree is reduced to the corresponding abstract syntax tree, and then the
semantic analysis is done on the abstract syntax tree to generate an intermediate-level
code. Abstract syntax trees have also been used in program analysis and understanding
abstract properties of programs.

3.4.5 Automated Parsing

In the previous section, while generating parse trees, we assumed that proper subsequence
that would match the right-hand side of a production rule would be automatically identi-
fied, and it would be reduced to the left-hand side nonterminal symbol of the matching
production rule. While humans use their intelligence and other cues to identify such sub-
sequences, computers need automated parsing software to identify unambiguously such
subsequences that would match the right-hand side of the production rules.

The automated parsing techniques are classified under two major categories: top–down
parsing and bottom–up parsing. In top–down parsing, also known as recursive descent pars-
ing, the leftmost nonterminal symbol is expanded to the right-hand side of the production
rule and matched with the corresponding part of the given sentence. The parsing engine
backtracks—goes back to find out alternative solutions—and tries alternative rules in case
the matching fails.

Backtracking is a computationally inefficient technique. In order to improve the effi-
ciency and remove the need for backtracking, terminal symbol lookahead is used. Predictive
parsers use a M × N size parsing table, where M is the number of nonterminal symbols and
N is the number of terminal symbols (used for look-ahead) in the grammar. Each cell of the
parsing table contains the reference to one or more production rules that show the defini-
tion. If the cell refers to a unique production rule, then the production rule is picked, and
the look-ahead process is stopped. Otherwise, more symbols are looked ahead, and the
corresponding cells are looked up in the table until only one production rule is possible.

Bottom–up parsing, also known as shift-reduce parsing, starts from the given sentence
and works upward. The parser identifies the matching subsequence in the intermediate
reduced form and reduces it to the left-hand side nonterminal symbol of the production
rule. A general class of shift-reduce parsing is LR(k) parsing: k stands for the maximum

<expression>

<expression>
<identifier>

<number> <number>

<expression>

‘+’

‘*’

FIGURE 3.16 Abstract syntax tree for the expression “x + 3 * 4.”

104    ◾    Introduction to Programming Language

number of look-ahead symbols needed to make an unambiguous parsing decision. LR(k)
parsing constructs the parse tree in a reverse order, starting from the rightmost part of
the sentence. There are many advantages of LR parsing: (1) it is nonrecursive, (2) it is
nonbacktracking, (3) it can parse all the programming constructs, and (4) it can identify
the ambiguities in the grammar. One specific subclass of LR(K) parser, called LALR
(Lookahead LR parser), is popular for parsing programs in programming languages and
can be generated using automated parser generators. A further detailed study of automated
parsers is part of a course in compilers.

3.5 SEMANTICS
In programming languages, there are five major ways to define the semantics: operational
semantics, axiomatic semantics, denotational semantics, action semantics and behavioral
semantics. The following subsections explain each of the semantics.

3.5.1 Operational Semantics

Operational semantics, first described as part of ALGOL 68 and later formalized by Plotkin,
is concerned about giving the meaning of a sentence by describing its effect on an abstract
computation state in an abstract machine using the corresponding abstract instruction
set. The meaning of a high-level control abstraction is modeled as the sequence of small
step abstract instructions that potentially modifies the computational state to a new com-
putational state. The computational states depend upon the underlying abstract machine
that in turn is based upon programming paradigms and languages. The transitions in the
computational states for different abstract instructions describe the operational semantics.
The operational semantics that involve small steps abstract instructions is called small-step
operational semantics. The operational semantics that reasons about transition of compu-
tation states involving high-level control and data abstractions, such as for-loop, if-then-
else statement, or while-loop, is called big-step operational semantics.

In our case, to understand machine translation of high-level programs to low-level abstract
instructions, we consider an abstract machine that is rooted in the von Neumann machine
described in Section 2.1. The abstract machine can model the imperative programming
paradigm. The computational state is a triple of the form (environment, store, dump), and
a program is a sequence of declarations, expressions, and commands. A declaration alters
the computational state by changing the environment, a command changes the computa-
tional state by changing the store, and an expression reads the store without changing the
computational state. A call to a subprogram potentially changes both the environment
and store. A statement can be composite and may change both environment and store. For
example, a statement integer x = 10 uses both a declaration and an assignment statement:
declaration integer x changes the environment, and assignment x = 10 changes the store.

As described in Section 2.4, a computational state is denoted by the Greek symbol σ,
and a statement is denoted by the symbol S to model transition between computational
states. The operational semantics of a statement is defined as (S, σ0) → σ1. A composite
statement is of the form <S; Ss>, where the symbol S denotes the first statement, and

Syntax and Semantics    ◾    105  

the symbol Ss denotes the rest of the statements. In order to understand the meaning of
 composite statements, we have to understand the operational semantics of the sequence of
statements. The operational semantics of the sequence of statements is given by (<S; Ss>,
σ0) → (Ss, σ1) →* σfinal, where (S, σ0) → σ1. The symbol “→*” denotes the transitions equal
to the number of statements in the remaining sequence of statements, and σfinal denotes
the final computational state.

Figure 3.17 gives the operational semantics of some common small-step abstract
instructions such as no-op, evaluating a literal, looking up an identifier, updating the
value of an identifier, evaluating a simple expression, evaluating a composite expression,
declaring a new identifier, and assignment statement. To explain the effect of a state-
ment, we denote the computational state σ as a triple of the form <σE, σS, σD>, where
σE denotes the environment—mappings of the set of identifiers to the set of l-values,
σS denotes the store—the mappings of the set of l-values to the set of r-values, and σD
denotes the dump—a sequence of the partial environment and store in the chain of the
calling procedures that are shadowed (not visible) or archived during the execution of
the called procedure.

The computational state of the abstract machine remains the same after the no-op
instruction, evaluation of a literal, identifier lookup, and evaluation of an expression.
When an identifier is encountered, its l-value is looked up in the environment σE, and the
corresponding l-value is looked up in the store σS to retrieve the corresponding r-value.

Evaluation of a composite expression does not change the computational state. Two
expressions are evaluated with respect to the current computational state σ, and the
dyadic operator is applied on the two values to derive the result. The declaration of a new
identifier <ident> changes the environment: a new binding (<ident> ↦ l-value) is added
to the environment σE. In addition, a new binding (l-value ↦ undefined) is added to the
corresponding store σS.

The assignment statement is a composite statement. The meaning of an assignment
statement is described as follows: (1) evaluate the right-hand side expression using the cur-
rent computational state σ0 and (2) update the current store σS by changing the binding of
the l-value of the identifier with the evaluated value of the right-hand side expression.

Since the meanings of small-step abstract instructions in an abstract machine are well
understood, the composite meaning of the high-level abstractions becomes clear with respect
to our understanding of the sequence of small-step abstract instructions that are equivalent to

(no-op, σ) → σ
(literal, σ) → literal
(identifier, σ) → r-value(identifier) (σ) if ((identifier ↦ l-value) ∈ σE and (l-value ↦ r-value) ∈ σS

(new identifier, <σE, σS, σD>) → <σE ⊕ (identifier ↦ l-value), σS ⊕ (l-value ↦ undefined), σD>
(exp1 op exp2, σ) → value1 op value2 and σ does not alter
 where (exp1, σ) → value1 and (exp2, σ) → value2, and
 op ∈ {add, subtract, multiply, divide}
(identifier = exp, <σE, σS, σD>) → <σE, σS ⊕ (l-value(identifier) ↦ value, σD>
 where (exp, <σE, σS, σD>) → value

FIGURE 3.17 Operational semantics of simple abstract instructions.

106    ◾    Introduction to Programming Language

high-level abstract instructions. The high-level control abstractions are translated to a sequence
of these small-step abstract instructions by representing high-level control abstractions as a
control flow diagram and then translating the control flow diagram to a sequence of equivalent
small-step abstract instructions that would give the same effect on the computational state
derived by high-level control abstractions. The details of the translation of high-level control
abstractions, such as if-then-else statements, while-loops, for-loops, procedure calls, and their
 combinations to low-level abstract instructions, is given in Chapter 5.

3.5.2 Axiomatic Semantics

Programs can be developed using mathematical logic such as predicate calculus independent
of any underlying architecture or abstract machine. The meaning of a program is understood
at a logical plane instead of a sequence of computational state transformations in an abstract
machine based upon the von Neumann model. Axiomatic semantics, based upon predicate
calculus first explained by C.A.R. Hoare, uses Boolean expressions to define a computational
state at an instant of computation. The execution of a statement alters the computation state
by changing the Boolean expression. The meaning of a statement is derived by the difference
between postcondition and precondition. A precondition is the Boolean expression immedi-
ately before executing a statement, and a postcondition is the Boolean expression that will
become true immediately after executing the statement. In the case of conflict in axioms
derived by the statement due to the assertion of new condition as in assignment statement,
the axiom in the precondition is dropped in favor of the newly derived axiom. Let us assume
that the initial condition before the execution of a command is {P}, and the postcondition
after executing the statement is {Q}. Then the notation to express the axiomatic semantics is
{P} S {Q}, where S denotes the statement.

Example 3.16

For example, after the execution of an assignment statement x = 4, the Boolean condi-
tion x == 4 becomes true. If the previous condition x == 10 ∧ Y == 9 was true before
executing the statement, then the execution of the assignment statement x = 4 substi-
tutes the Boolean subexpression x == 10 with the Boolean subexpression x == 4, and
the Boolean expression x == 4 ∧ y == 9 becomes true. The execution of a statement
y = 5 generates the postcondition x == 4 ∧ y == 5 is true. The meaning of the state-
ment y = 5 is equal to the difference of the postcondition x == 4 ∧ y == 5 is true and
precondition x == 4 ∧ y == 9 is true.

A typical programming language has control abstractions such as command, sequence of
commands, conditional statements such as if-then-else statements, iterative constructs such
as while-loop, and procedure calls. In order to understand the meaning of a program and to
derive final conditions using axiomatic semantics, we should be able to derive postconditions
after executing these control abstractions. The effect of an assignment statement has already
been illustrated in Example 3.15. In the case of a sequence of statements, the postcondition
after executing the previous statement becomes the precondition for the current statement,

Syntax and Semantics    ◾    107  

and the postcondition after executing the current statement becomes the precondition for the
next statement (declaration, command, or expression). In the following rule, the symbol {P}
denotes the precondition, the symbol {Q} denotes the postcondition, the symbol S denotes
the current statement, and the symbol Ss denotes the sequence of statements after executing
the current statement. The rule says that after the execution of the statement S, the new pre-
condition for the rest of the statements Ss is {Q}, where {Q} is the postcondition after execut-
ing the statement S, given that the precondition before executing the statement S was {P}.

 {P} (S; Ss) → {Q} (Ss) where {P} S {Q}

The axiomatic semantics of control abstraction if B then S1 else S2 is given by the com-
posite postcondition {Q1} V {Q2}. The postcondition {Q1} is derived after executing the
statement S1 if the Boolean expression B is true in precondition {P}, and the postcondition
{Q2} is derived if the Boolean expression B is false in the precondition {P}. We can write the
axiomatic semantics rule for if-then-else constructs as follows:

 {P} if B then S1 else S2 {Q1 ∨ Q2} where {P} S1 {Q1} if B is true,
 or {P} S2 {Q2} if B is false

The disjunction (logical-OR) joins the then-part and the else-part. Either the postcondi-
tion realized by the then-part is true or the postcondition realized by the else-part is true
due to the inherent mutual exclusion in the execution of the statements in the then-part
and the else-part.

Example 3.17

Let us take a program code as follows:

x = 10; z = 4; if (x > 4) then value = x; else value = z;

Let us assume that the initial condition is {P}. After executing the statement x = 10, the
postcondition becomes {P ∧ x == 10} is true. This postcondition becomes the precondi-
tion for the next assignment statement, z = 4. After executing the statement z = 4, the
 postcondition becomes {P ∧ x == 10 ∧ z == 4} is true, and this becomes the precondition
for the if-then-else statement. The postcondition of the if-then-else statement is {P ∧ x ==
10 ∧ z == 4 ∧ (((x > 4) ∧ (value == x)) ∨ (x ≤ 4) ∧ (value == z))))}.

The axiomatic semantics of the control abstraction “while B S” is tricky. The rule says
that the precondition {I ∧ B} before executing a while-loop is split into two parts: an invari-
ant part I and the remaining Boolean expression B, and the postcondition {I ∧ ¬ B} con-
tains the same invariant part I and the negation ¬ B. An invariant condition remains the
same throughout the execution of the iteration. Identifying the invariant condition I is not
straightforward. The axiomatic semantics of while-loop is given by the following:

{ I ∧ B} while B S; {I ∧ ¬ B} where {I} S {I}% I is an invariant
condition

108    ◾    Introduction to Programming Language

The major advantages of axiomatic semantics are as follows:

 1. It can be used to derive the final condition after the execution of a program without
actually executing it. This property can facilitate, in a limited way, checking program
correctness without executing the program. The idea is to derive the final condition
FC derived using axiomatic semantics, and compare it with the intended condition FI.
If the final derived condition FC ⊆ FI, then the program is correct (see Appendix VII),
and if the final derived condition FC ⊆ FI and F I ⊆ FC, then the program is both
complete and correct. While the scheme works for smaller programs, it becomes
computationally prohibitive for the bigger programs due to (1) the computational
cost of matching the equivalent Boolean expressions, (2) the overhead of identifying
that a condition expressed by a Boolean expression is subsumed by another Boolean
expression, and (3) the overhead of identifying invariant conditions.

 2. By knowing the intended final condition FI, a program can be constructed stepwise by
reasoning in backward manner: postconditions and the effect of program constructs are
used to derive progressively the preconditions that are true. These preconditions become
postconditions for the previous statements. By repeating this process of backward heu-
ristic reasoning, a program can be constructed stepwise, as described in Chapter 4.

3.5.3 Denotational Semantics

Denotational semantics derives the meaning of a control or a data abstraction by mapping
the syntax rule into a semantic domain using mathematical functions and semantic algebra
in the semantic domain.

In order to derive the meaning of a sentence, the same parse tree constructed during
 syntax analysis is used with a difference: the semantic rules corresponding to syntactic
rules are applied on the edges of the parse tree, and the meanings of the parts of the sentence
are derived at the internal nodes. The complete meaning of the sentence is derived at the
root of the parse tree. The meaning of a composite sentence is derived using functional
composition of meanings of individual statements.

The difference between operational semantics and denotational semantics is that opera-
tional semantics describes the changes in a computational state as an effect of abstract
instructions in an abstract machine, while denotational semantics uses abstract syntax
trees and composition of semantics rules expressed as mathematical functions to derive the
meaning of a sentence. There is no concept of computational states and abstract machines
in denotational semantics.

There are some similarities in denotational semantics and operational semantics:

 1. Denotational semantics also uses the environment and store like operational seman-
tics does.

 2. Both operational semantics and denotational semantics use abstractions in their
definitions.

Syntax and Semantics    ◾    109  

Example 3.18

Let us understand the notion of denotational semantics using a simple grammar that
parses only unsigned integers in a base-10 domain. The grammar to accept base-10
unsigned integers is given below

 Syntax rule # 1: <integer> ::= <integer><digit> | <digit>
Syntax rule # 2: <digit> ::= ‘0’ | ‘1’ | ‘2’ | … | ‘9’

The semantic domain to derive the meaning for the whole number is integer base-10
denoted as ℤ10, where the subscript denotes base-10 domain. In order to define the
 meaning, we need multiplication and addition operations. Thus the semantic algebra
for the semantic domain is given by plus, times: ℤ10 × ℤ10 → ℤ10 that says that given a
input pair of integers, the result is also an integer in base-10 domain under the addi-
tion and multiplication operation. The symbol “×” denotes the Cartesian product. The
semantic rules use a function ‘ĭ’ to map the syntax rule to the corresponding meaning
in the semantic domain ℤ10.

Semantic Domain: ℤ10

Semantic Algebra: plus, times: ℤ10 × ℤ10 → ℤ10

Semantic rule # 1: ĭ (<integer>LHS) ::= ĭ (<integer>RHS) multiply
 ten plus ĭ(<digit>) | ĭ (<digit>)
Semantic rule # 2: ĭ (<digit>) ::= zero | one | two | … |
 nine

There is an implicit understanding that we know the meanings of ten, hundred, and
so on. Under this assumption, we can derive the meaning of any sequence of digits in
the base-10 domain. Let us parse a sequence of three digits, 237, using the grammar,
and then use the same parse tree to apply the corresponding semantic rules to give a
meaning two hundred and thirty seven in the semantic domain ℤ10. The parse tree and
the derivation of the meaning using the corresponding semantic rules are illustrated in
Figure 3.18.

As shown in the parse tree in Figure 3.18a, each of the symbols is parsed to <digit> using
syntax rule 2. By using syntax rule 1b, we can make the leftmost <digit> as < integer>, and
then use syntax rule 1a twice to join the other two digits in the definition of < integer>. At
the root of the parse tree is the start symbol <integer>.

The Figure 3.18b shows the application of the corresponding semantic rules on the parse
tree to give the meaning of a subtree at the internal nodes and the meaning of the sentence at
the root node. The semantic rule 2 gives the meaning two, three, and seven to the symbols ‘2,’
‘3,’ and ‘7’, respectively. Applying the semantic rule 1b transforms the digit to integer value
two. Application of the semantic rule 1a derives the meaning two times ten plus three =
twenty three. Application of the semantic rule 1a again derives the meaning twenty three
times ten plus seven = two hundred and thirty seven.

110    ◾    Introduction to Programming Language

Example 3.19

Let us understand denotational semantics using an example of defining numbers in
programming languages. The number domain is a composite domain consisting of
a disjoint union of an integer domain and real number domain. However, integer
domain can be coerced to real domain when an arithmetic operation involves both
integer and real number. The syntax rules for numbers are given in Figure 3.19. The
syntax rules are easy to read, except for one definition: the definitions of both the
nonterminal symbols <whole-number> and <float> generate a sequence of <digits>.
However, they have been written differently for better semantics interpretation: while
<whole-number> generates the sequence of digits using a left-recursive definition,
the definition of <float> uses a tail-recursive definition. Although the end product
is the same, the way meaning associated with the two syntax rules is different. The
meaning of the nonterminal symbol <whole-number> when shifted left is multiply
by ten, and the meaning of the nonterminal symbol <float> when shifted right is
divided by floating point value 10.

The meaning of <whole-number> is different in the integer domain and real domain: in
the integer domain, it is treated as an integer; while in the real domain, the value is coerced to

Rule 1: <number> ::= <integer> | <real>
Rule 2: <integer> ::= <sign> <whole-number> | <whole-number>
Rule 3: <real> ::= <sign> <unsigned-real> | <unsigned-real>
Rule 4: <unsigned-real> ::= <whole-number> ‘.’ <float> |
 <whole-number> ‘.’ <float> ‘E’ <integer>
Rule 5: <whole-number> ::= <whole-number><digit>|<digit>
Rule 6: <float> ::= <digit><float> | <digit>
Rule 7: <digit> ::= ‘0’ | ‘1’ | ‘2’ | … | ‘9’
Rule 8: <sign> ::= ‘ + ’ | ‘−‘

FIGURE 3.19 Syntax rules for validating numbers.

<integer>

<integer>

<integer>

<digit> <digit> <digit>

1b

2

2 3

(a) Applying syntax rules (b) Applying corresponding sematic rules

7 2 3 7

2
2

1a

1a
Two

Two hundred thirty seven

Twenty-Three

Two Three Seven

1a

1b

2 2
2

1a

FIGURE 3.18 Deriving meaning by applying semantic rules on a parse tree.

Syntax and Semantics    ◾    111  

the corresponding number in the real domain. The semantic domain for the interpretation
rules is the number domain in base 10, denoted by ℕ. Note that number domain ℕ is a
 disjoint union of integer domain ℤ and real number domain ℝ. However, every element
z ∈ ℤ has a unique image r ∈ ℝ that has the same value. This mapping from the integer
domain to the real domain is an example of coercion—type transformation without any loss
of information, which is discussed in Chapter 7. The semantic algebra involves integer-add
(‘+I’), integer-multiply (‘×I’), real-add (‘+R’), real-multiply (‘×R’), real-divide (‘/R’), and expo-
nentiation (‘̂ ’). The operations addition and multiplication are overloaded: an addition
becomes an integer addition in the integer domain and a floating point addition in the real
 number domain. Similarly, the operation multiplication becomes integer multiplication in
the integer domain and floating-point multiplication in the real number domain.

The semantic rules are given in Figure 3.20 in the same order as the syntactic rules. The
function ň denotes the interpretation of the syntactic rule in the number domain ℕ, the
function ř denotes the interpretation of the syntactic rule in the real number domain ℝ,
and the function ĭ denotes the interpretation in the integer domain ′.

Let us now understand each semantic rule. Rule 1 states that the meaning of a number
denoted by ň(<number>) is equal to the meaning of the real number denoted by ř(<real>)
or the meaning of the integer denoted by ĭ(<integer>). Rule 2 states that the meaning of
the nonterminal symbol <integer> is the same as the meaning of the nonterminal sym-
bol <sign> in the integer domain multiplied by the meaning of the nonterminal symbol
<unsigned-integer> or the meaning of the nonterminal symbol <unsigned-integer>. Rule 3
states that the meaning of the nonterminal symbol <real> is derived by multiplying the
meaning of the nonterminal symbol <sign> in the real number domain with the mean-
ing of nonterminal symbol <unsigned-real> or is the meaning of the nonterminal symbol
<unsigned-real>.

Semantic Domains: integer domain ℤ10

 real number domain ℝ10

 number domain: ℕ10 = ℤ10 ⊎ ℝ10 % ⊎ denotes disjoint-union
Semantic algebra in ℝ10 : real-add ‘+R’; real-multiply ‘×R’ : ℝ10 × ℝ10 → ℝ10

Semantic algebra in ℤ10 : int-add ‘+I’; int-multiply ‘×I’ : ℤ10 × ℤ10 → ℤ10

Semantic algebra in mixed domain: exponent ∧’: (ℝ10 × ℤ10) → ℝ10

Semantic functions: ň; ř; ĭ;

Rule 1: ň(<number>) ::= ĭ(<integer>) | ř(<real>)
Rule 2: ĭ(<integer>) ::= ĭ(<sign>) ×I ĭ (<whole-number>) | ĭ(<whole-number>)
Rule 3: ř (<real>) ::= ř(<sign>) ×R ř(<unsigned-real>) | ř(<unsigned-real>)
Rule 4: ř (<unsigned-real>) ::= ř(<whole-part>) +R ř(<decimal-part>) |
 (ř(<whole-part>) +R ř(<decimal-part>)) ×(10.0 ∧ ĭ(<integer>))
Rule 5a: ř(<whole-part>1) ::= ř(<whole-part>2) ×I 10.0 +R ř(<digit>) | ř(<digit>)
Rule 5b: ĭ(<whole-number>1) ::= ĭ (<whole-number>2) ×I ten +I ĭ(<digit>) | ĭ (<digit>)
Rule 6: ř(<decimal-part>1) :: ř(<digit>) +R ř(<decimal-part>2)) / 10.0 | ř(<digit>) / 10.0
Rule 7a: ř(<digit>) ::= float zero | float one | … | float nine % float 1 is 1.0
Rule 7b: ĭ(<digit>) ::= zero | one | two | … | nine % interpretation of digits
Rule 8a: ř(<sign>) ::= plus float-one | minus float-one % + 1.0 or −1.0
Rule 8b: ĭ(<sign>) ::= plus one | minus one

FIGURE 3.20 Semantic rules corresponding to the syntax rules.

112    ◾    Introduction to Programming Language

Rule 4 says that the meaning of the nonterminal symbol <unsigned-real> is the sum
of the meanings of the nonterminal symbol <whole-part> and the nonterminal symbol
<decimal-part>. Alternately, Rule 4 states that the meaning of the <unsigned-real> is the
sum of the meanings of the nonterminal symbol <whole-part> and the <decimal-part>
multiplied with the meaning of the exponent part. The meaning of the exponent part is the
real-domain image of the 10 raised to the power of the meaning of the integer value in the
exponent part.

Rule 5 has different interpretations in the real number domain and in the integer
domain. Rule 5a states that the meaning of the nonterminal symbol <whole-part> on the
left-hand side of the production rule is the sum of the (1) multiplication of the floating
point 10 with the meaning of the nonterminal symbol <whole-part> on the right-hand
side of the production rule and (2) the meaning of the nonterminal symbol <digit> in the
real number domain derived by rule 7a. Rule 5b states that the meaning of the left-hand
side of the nonterminal symbol <whole-number> is the sum of (1) the multiplication of
integer 10 with the meaning of the right-hand side occurrence of the nonterminal symbol
<whole-number> in integer domain and (2) meaning of the nonterminal symbol <digit>
in the integer domain derived by the rule 7b.

Rule 6 says that the meaning of the nonterminal symbol <decimal-part> is the
 real-domain image of the sum of the meanings of the nonterminal symbol <digit> on
the right-hand side and the nonterminal symbol <float> on the right-hand side divided
by floating point 10. Rules 4 and 6 are different, despite generating a sequence of digits.
The meanings associated with both the rules are different. In the definition of the non-
terminal symbol <whole-number> in rule 5, moving the <whole-number> to the left is
equivalent to the multiplication of the meaning of nonterminal symbol <whole-number>
by integer 10, while in the definition of <float>in rule 6, moving the <float> to the right
is equivalent to division of the meaning of <float> by float 10. Besides, two meanings are
interpreted in different domains: the nonterminal symbol <whole-number> is interpreted
in the semantic domain ℤ10, and the nonterminal symbol <float> is defined in the seman-
tic domain ℝ10.

Rule 7 has two interpretations: one in the real number domain and one in the integer
domain. Rule 7a states that the meaning of the nonterminal symbol <digit> is floating
point zero, floating point one, floating point two, floating point three, and so on. Rule 7b
states that the meaning of the nonterminal symbol <digit> could be integer one, two,
three, and so on.

Rule 8 says that the meaning of the sign ‘+’ is plus one, and meaning of the sign ‘−’ is
minus one as we understand. The image of minus one in the semantic domain ℝ10 is float-
ing minus one, and the image of plus one in the semantic domain ℝ10 is floating plus one.

In order to understand the denotational semantics of control and data abstractions, the
semantic domains should be clearly defined. In addition, the notion of error is handled in
functional definition of denotational semantics by including a bottom element, denoted
by the symbol ⊥, in the semantic codomain. The inclusion of the bottom symbol trans-
forms a semantic codomain to the corresponding lifted semantic domain. If the applica-
tion of a semantic function does not find an image in the lifted semantic domain, then

Syntax and Semantics    ◾    113  

a function maps to the bottom symbol ⊥. The inclusion of the bottom symbol ⊥ allows
handling of programmatic error conditions in function-based meaning in the denota-
tional semantics.

Some of the semantic domains are as follows: (1) set of basic values denoted by the
 symbol B, (2) set of identifiers denoted by the symbol Ide, (3) set of l-values denoted by the
symbol L, (4) set of r-values denoted by the symbol R, (5) set of storable values denoted
by the disjoint union B ⊎ L, (6) store denoted by the symbol S which is equal to L ↦ R ⊎
unused locations, (7) set of procedures denoted by the symbol P, (8) set of denotable values
 (l-values and storable values) denoted by the symbol D which is equal to L ⊎ R ⊎ {undefined},
(9) environment denoted by the mapping Ide ↦ D, (10) set of expression results denoted
by the lifted domain R⟘, (11) set of command results denoted by the lifted domain S⟘, and
(12) the set of returned values from a program denoted by the lifted domain B⟘.

Traditional denotational semantics suffers from many problems: (1) semantic domains
change as new control and data abstractions are added in programming languages; (2) the
semantics of iterative-loop is explained in terms of complex mathematical concepts such
as fix-point semantics despite programmers having a good intuitive understanding of the
control abstraction without any need for such mathematical concepts; (3) the addition
of “goto” commands necessitates the notion of continuation, the sequence of commands
actually executed at runtime following the current command; and (4) complex notations
which are difficult to comprehend for programmers and language designers.

The use of functions to define the meaning in denotational semantics makes them suit-
able for functional programming paradigm, and not for other programming paradigms
such as object-oriented programming paradigm, imperative programming paradigm, and
event-based programming paradigms which are better represented by semantics based
upon computational state transformations.

3.5.4 Action Semantics

Semantics models are used to explain the meaning of the abstractions to program
 developers, language designers, and compiler developers. Individually, the three major
semantics models (operational, axiomatic, and denotational) are restricted, and make
the semantic description of programming language abstractions difficult to comprehend.
However, a pragmatic combination of the three semantics gives a better picture to the
 language designers and compiler developers.

Action semantics integrates the advantages of denotational semantics, axiomatic seman-
tics, and operational semantics to explain the meaning of control and data abstractions
using rules in natural English language. These rules are called actions. The major advan-
tage of action semantics is that it defines the meanings of realistic programming language
abstractions in a comprehensible way.

Action semantics borrows the idea of context-free grammars to derive abstract syn-
tax trees, and then uses semantic equations from denotational semantics. There are three
major components of action semantics: action, data, and yielders. The actions represent
computational entities responsible for the stepwise specification of the dynamic program

114    ◾    Introduction to Programming Language

behavior. The information processed by actions is called data. The yielders retrieve the
information but do not process them. There are two types of actions: primitive and combi-
natory. A primitive action is responsible for the single step of information processing, and
combinators take a composite action. An action can be completing, diverging, or fail, result-
ing in exception handling.

Specification of action semantics consists of (1) specification of nodes to be constructed in
the abstract syntax tree using the notation [[…]] and (2) grouping the components together
such as sequence of statements. For each syntactic rule, the corresponding action semantics
is given in simple English instead of complex functional notations. For example, the seman-
tic rule corresponding to the syntax rule <identifier> ‘=’ <expression> would be as follows:

execute [[<identifier> ‘=’ <expression>]]
action: evaluate <expression> giving value then store the
 resulting value in the l-value(<identifier>)
Si milarly, the action semantics of the if-then-else statement is
given by

ex ecute [[‘if’ <expression> ‘then’ <statement>1 ‘else’
<statement>2]]

action: evaluate <expression> giving truth value B then
 ((check truth-value of B and execute <statement>1)
 (check not (truth-value of B) and execute

<statement>2))

The overall format of the action semantics contains the declaration of modules, declara-
tion of semantic variables representing the semantic domains, and action rules for each
abstract syntax rule. Yielders are used whenever data is retrieved after some action.

3.5.5 Other Models of Semantics

There are other behavioral models of semantics to provide meaning to domain-specific
modeling languages and object-oriented languages. As software development becomes big-
ger and more complex, more than one domain is needed for the development of a software,
and each domain may have a domain-specific language (DSL). The semantics of a DSL can
be modeled as the state transition of a group of active objects in one state to another state
using the objects’ reaction to messages as means of transition from the current state to the
future state. The state transition diagram is expressed as the behavioral semantics of the
language. Each object is modeled by a tuple of the form (set of attributes, methods, the mes-
sages that it can receive, the messages it can emit, the transitions that occur in response to a
message, and the triggers that start the reaction in response to a message). A system state is
modeled as a collection of the state of the objects. A message from one object to another
object may trigger a new transition in the receiving object if the trigger condition is satis-
fied, and changes the state of the receiving object, thus changing the overall computational
state. The changed object emits new messages that can cause a change in state transitions
in other objects, resulting in the state change of the overall system.

Syntax and Semantics    ◾    115  

3.6 SUMMARY
This chapter describes two major components of programming languages: syntax and
semantics. Both syntax and semantics are necessary to understand the constructs, their
meanings, and their translation to low-level intermediate code. Syntax is concerned about
the validity of the sentence structure, and semantics is concerned about deriving meaning
of the statements in programming languages. The process of sentence analysis for struc-
ture validity consists of two phases: lexical analysis and parsing. Lexical analysis is con-
cerned about internalization of the input stream of symbols by generating tokens. Parsing
is concerned about validating the structure of tokenized sentences.

A grammar is a 4-tuple of the form (start-symbol, set of production rules, set of nonterminal
symbols, and set of terminal symbols). Set of terminal symbols form the alphabet of a program-
ming languages. The set of nonterminal symbols is used in the grammar to generate interme-
diate forms of sentences during parsing. Automated parsers can be top–down or bottom–up.
Automated parsers use transition tables and symbol look-ahead to resolve the ambiguity in
the application of appropriate production rules. Automated parsing repeatedly substitutes a
part of the intermediate form of a sentence by the corresponding left-hand side nonterminal
symbol of the production rule in the grammar with the matching right-hand side. The pro-
cess of parsing keeps simplifying the intermediate form until only the start symbol remains.

Production rules of a grammar are represented textually either as BNF or EBNF, or
visually using syntax diagrams. BNF uses tail-recursive rules to model repeated occur-
rence of a group of symbols. EBNF removes the complexity of tail-recursive definitions by
using curly brackets and special symbols, such as ‘*’ or ‘+’. EBNF also reduces redundant
multiple definition by grouping the multiple definitions using parentheses, and uses square
brackets to model optional definitions.

Syntax diagrams are pictorial and are comprehended better by humans. Syntax dia-
grams can be transformed to syntax rules by breaking up the parts of syntax diagrams
using (1) simple correspondence of tail-recursive definitions by a feedback loop, (2) multi-
ple definitions by parallel edges, and (3) the occurrences of concatenated multiple symbols
by multiple adjacent nodes in the same path.

There are two types of rules: concrete syntax rules and abstract syntax rules. Concrete syn-
tax rules contain the full set of nonterminal symbols. Abstract syntax rules use only control
and data abstractions as nonterminal symbols, and avoid low-level nonterminal symbols. The
parse tree generated by abstract syntax rules is called an abstract syntax tree and can be gen-
erated from a concrete parse tree by removing redundant nonterminal symbols and keeping
terminal symbols and the control and data abstraction symbols. Production rules are also asso-
ciated with various attributes to help the translation of parsed sentences to intermediate-level
codes. The attributes in the attribute grammar state the constraints imposed by the architec-
ture and language designers to handle efficiency and pragmatic issues. Attribute grammar
also contains the semantic rules to generate low-level code from the parse tree.

Semantics can be divided into five major types: operational, axiomatic, denotational,
action, and behavioral. Operational semantics models the control and data abstractions as
transformation from one computational state to another computational state in an abstract

116    ◾    Introduction to Programming Language

computational machine. Small-step operational semantics describes how the state of the
underlying abstract machine is altered when a low-level abstract instruction is executed.
Large-step operational semantics describes how the state of the underlying abstract machine
is altered by high-level data and control abstractions. Axiomatic semantics uses Boolean
expressions as preconditions and postconditions of a sentence and gives the meaning of the
sentence as the difference between postconditions and preconditions. Preconditions and
postconditions are expressed as Boolean expressions. The denotational semantics provides
the meaning of abstract syntax rules in a variety of semantic domains using mathematical
functions. Both axiomatic and denotational semantics are free from any underlying abstract
computational machine. However, both axiomatic and denotational semantics are quite
complex for full-scale programming languages for various reasons. Axiomatic semantics
finds it difficult to model invariant conditions in loops and to match Boolean expressions.
The semantic domains in denotational semantics changes when new, high-level constructs
are introduced; the use of “goto” statements forces the use of continuation-based semantics,
and uses complex fixed-point semantics to explain the meaning of the while-loop that is
intuitively clear to the programmers. Neither denotational semantics nor axiomatic seman-
tics can explain event-based programming constructs and object-oriented programming.

Operational semantics, along with the control flow diagrams, can be used to translate
high-level control abstractions to equivalent low-level abstract instructions, so that the
resulting effect on the computational state is the same. Axiomatic semantics has been used
in a limited way to reason about program correctness and the scientific development of pro-
grams using predicate transformation and progressive backward reasoning. Denotational
semantics has been used for syntax-directed translation and execution of the programs.

Semantics of language constructs is necessary for the programmers, language designers,
and compiler designers for the code generation part of the compilers. In order to facili-
tate comprehensible semantics, action semantics has been developed. Action semantics has
three components: actions, data, and yielders. Actions work on data to transform the cur-
rent state, and yielders yield the data from the current state. Actions are written in English
for better comprehension.

To handle domain-specific and object-oriented languages, behavioral semantics based
upon the state transition model is used. The computational state is an aggregate of the state
of the individual objects, and the behavior semantics is modeled as a transition from one
state to another state using reaction to the incoming messages. The model is independent
of any underlying implementation.

3.7 ASSESSMENT

3.7.1 Concepts and Definitions

Abstract machine; abstract syntax; abstract syntax tree; action semantics; alphabet;
 ambiguous grammar; attribute grammar; automated parsing; axiomatic semantics;
 behavioral semantics; BNF; bottom symbol; bottom–up parsing; context-free grammar;
context-sensitive grammar; denotational semantics; extended BNF; grammar; hyper
rules; lexical analysis; lifted domain; meta-definitions; nonterminal symbols; operational

Syntax and Semantics    ◾    117  

semantics; parsing; parse tree; precondition; postcondition; production rules; program
correctness; regular grammar; semantic algebra; semantic domain; semantic rule; sen-
tence; start symbol; syntax; syntax diagram; syntax rule; top–down parsing.

3.7.2 Problem Solving

 1. Give a finite state automata that accepts the reserved words ‘int’, ‘float’, ‘char’, ‘Bool’,
and ‘;’ in addition to numbers and identifiers assuming that the reserved words, num-
bers, and identifiers can be separated by a single space, and all other spaces after the
first space need to be trimmed.

 2. Write a simple BNF representation of a grammar that accepts an octal number.
Convert the grammar to extended BNF.

 3. Make a syntax diagram for the following syntax rules:

 <block> ::= ‘{‘ <decl>; <statements> ‘}’
 <statements> ::= <statement> ‘;’<statements> |
 <statement> ‘; ‘| ∈
 <statement> ::= <cond-statement> | <while-loop>|
 <assignment> |
 <for-loop> | <procedure-call> | return
 (<expression>)
 <while-Loop> ::= while <Boolean> do <statements>
 <cond-statement> ::= if <Boolean> then <statement> else
 <statement>
 <assignment> ::= <identifier> = <expression>
 <Boolean> ::= <Boolean> <l-op> <Boolean> | <predicate> |
 true | false
 <l-op> ::= ‘&&’ | ‘||’ | ‘not’
 <predicate> ::= <identifier> <c-op> <identifier>
 <c-op> ::= ‘==’ | ‘>’ | ‘>’ | ‘>=’ | ‘=<’
 <expression> ::= <expression> <a-op> <expression>
 <a-op> ::= ‘ + ’ | ‘−‘ | ‘*’ | ‘/’
 <decl> ::= <type> <identifier-seq>; <decl> | ∈
 <type> ::= int | float | Bool | string
 <identifier-seq> ::= <identifier> ’,’<identifier-seq> |
 <identifier>

 4. Write a simple BNF for while-loop including the Boolean expression part and the
statement part, and draw the corresponding syntax diagram.

 5. Study the parameter passing in C++, and give the corresponding syntax rules.
Convert the syntax rules to syntax diagrams, and optimize the syntax diagram.

 6. Write a simple unambiguous grammar in EBNF for an if-then-else construct, includ-
ing a complete Boolean expression in C++ or Java, and draw the corresponding syn-
tax diagram.

118    ◾    Introduction to Programming Language

 7. Make a parse tree for the floating point number 23. 416 using the syntax grammar
given in Figure 3.14, and use the semantic rules given in Figure 3.15 to derive the
meaning of the number.

 8. Give the preconditions and the postconditions for the following code-fragment,
starting from a state “undefined.”

 x = 4; y = 6; z = 7;
 if (x > y) then max = x else max = y;

 9. Assuming an environment σE = [x ↦ 1, y ↦ 2, z ↦ 3], and the store σS = [1 ↦ 43, 2 ↦
5, 3 ↦ 10], and dump σD = [], and assuming that the computational state is modeled
as the triple (σE, σS, σD), give the computation state after the declaration “int w = 5;”
followed by the command “x = x + 4; y = z;”.

 10. Write a grammar to accept a Hex number, and write the corresponding denotational
semantics in integer domain. Define the domain, the semantics algebra, and the eval-
uation function clearly.

3.7.3 Extended Response

 11. Compare three types of grammars: regular grammar, context-free grammar, and
context-sensitive grammar.

 12. Why is regular grammar preferred over other types of grammar for lexical analysis?
Explain.

 13. What is the role of the symbol table during lexical analysis? Explain using a simple
example.

 14. What is the difference between abstract syntax and concrete syntax? Explain by using
a simple but illustrative example.

 15. Discuss the potential source of ambiguity in the if-then-else statement, and how it
can be solved.

 16. What is the difference between operational semantics and denotational semantics?
Explain.

 17. Why is logical-OR introduced in axiomatic semantics? Explain by using a simple example.

 18. Compare action semantics with other types of semantics, and state the advantages of
action semantics.

 19. What is the need of behavioral semantics in programming languages? Explain.

Syntax and Semantics    ◾    119  

FURTHER READING
Aho, Alfred V., Lam, Monica S., Sethi, Ravi, and Ullman, Jeffrey D. Compilers: Principles, Techniques,

and Tools, 2nd edition. Addison Wesley. 2007.
Gries, David. The Science of Programming. Springer Verlag. 1981.
Hoare, Charles A. R. and Shepherdson, John C. Mathematical Logic and Programming Languages.

Prentice Hall. 1985.
Liang, Sheng and Hudak, Paul. “Modular denotational semantics for compiler construction.” In 6th

European Symposium on Programming Languages, LNCS 1058. Springer Verlag. 1996. 219–234.
Meyer, Bertrand. Introduction to the Theory of Programming Languages. Prentice Hall. 1985. 447.
Mosses, Peter D. Theory and Practice of Action Semantics. BRICS Report Series RS-96-53. Department

of Computer Science, University of Aarhus. 1996.
Plotkin, Gordon D. A Structural Approach to Operational Semantics. Technical report. Department

of Computer Science. Aarhus University, Denmark. 1981.
Poetzsch-Heffterand, Arnd and Schafer Jan. “A representation-independent behavioral semantics for

object-oriented components.” In Proceedings of the International Conference on Formal Methods
in Object-Oriented Based Distributed Systems, LNCS 4468, Springer Verlag, 2007, 157–173.

Rivera, Jose E. and Vallecio, Antonio. “Adding behavioral semantics to models.” In Proceedings of the
11th International Enterprise Distributed Object Computing Conference. 2007. 169–180.

Schmidt, David A. Denotational Semantics—A Methodology for Language Development. Allyn and
Bacon. 1986.

121

C h a p t e r 4

Abstractions in Programs
and Information Exchange

BACKGROUND CONCEPTS
Abstract syntax (Section 3.2.6); Abstract concepts in computations (Section 2.4);
Grammars (Section 3.1); Control flow (Section 1.4.2); Data structure concepts (Section 2.3);
Discrete structures (Section 2.2); Graphs (Section 2.3.6); Programming background; Trees
(Section 2.3.5); Syntax diagrams (Section 3.3).

A program is about the manipulation of structured data to achieve an intended computa-
tional state that satisfies the final intended condition. Programming can be done at multi-
ple levels: machine-level programming, assembly-level programming, low-level procedural
programming, high-level procedural programming, declarative programming, and so on.
The amount of abstraction and the level of explicit control separate high-level program-
ming languages from low-level programming languages. One of the goals of abstractions
is to make the software reusable with minimal change, so that software evolution has
 minimal overhead as the needs evolve or technology changes.

There are two types of abstractions as described earlier: data abstractions and control
abstractions. Data abstractions are used to model real-world entities using a required subset
of their attributes, and control abstractions are used to structure the sequence of instructions
for better comprehension and maintenance. A data entity can be characterized by a set of
 attributes and can be abstracted by a relevant subset of those attributes needed to solve a prob-
lem at hand.

Data entities are generally expressed in the declaration part of a program, and the
 control part is expressed in the body of the program. As described earlier, the declaration
part of the program modifies the program environment, and the control part of the pro-
gram that involves assignment statement modifies the program store.

122    ◾    Introduction to Programming Language

Depending upon a programming language, the distinction between data and control
can be well defined or become fuzzy as follows:

 1. The program unit itself can be treated as data, and a program could be created
 dynamically at run time as data and later converted into a program unit.

 2. A program may treat another program as data, as in meta-programs.

 3. A class may encapsulate both data and control abstractions together into one package
and regulate the interaction with other computational objects by declaring the
 encapsulated entities public, protected, or private.

As we have discussed earlier, a program consists of multiple subprograms or modules
that exchange information with each other. Programmer-regulated information hiding by
encapsulation is also part of abstraction. Encapsulation provides a natural boundary for
information hiding. Encapsulation can be provided by subprograms, objects and classes,
modules, or a combination of these. Classes provide information hiding by encapsulating
both data abstractions and control abstractions. The visibility of these control and data
abstractions can be explicitly regulated using import–export mechanism or using inheri-
tance. Export–import mechanism consists of two components: selectively making encap-
sulated data or program units visible to other modules or program units using export
mechanism, and pulling the data or program unit within a module or program unit using
an import mechanism. The export mechanism enhances the scope from private to public,
and the import mechanism allows the visibility of an exported entity in the local environ-
ment. Import and export are explicitly declared by the programmer.

In imperative programming, the basic unit that contains data abstractions and control
abstractions is a subprogram or a module, while in the object-oriented programming para-
digm, the basic unit is a subclass or an object—an active instance of a class or subclass. In
module-based languages, a subprogram or data entity may be encapsulated within a mod-
ule, and the usage of data entity or subprograms may be regulated using the export–import
mechanism.

In this chapter, we study the data and control abstractions, information exchange
between program units, and different abstract programming constructs. However, some
of the concrete examples related to programming paradigms other than the imperative
programming paradigm have been deferred to the corresponding chapters described later
after the paradigms have been discussed in detail.

4.1 DATA ABSTRACTIONS
One of the important concepts in data abstraction is to create an abstract data entity that
can be used to hold information to be processed, can be used repeatedly at multiple loca-
tions in the program module, and can be easily modified. The definition could be specific
or generic that could be instantiated at run time to specific data abstractions through a
parameter passing mechanism or redefinition using an override mechanism.

The data entity could be a single entity such as a “literal” or an “atom” that cannot be
divided further in general, or the entity may represent an aggregation of entities having

Abstractions in Programs and Information Exchange    ◾    123  

some set of common properties on which common, well-defined operations are performed.
The set of common properties should not be confused with having the same type of data
objects. The only restriction is some common property that allows a repeated common
operation on different elements of the aggregate entity. If they are of the same data types
such as integers, then the common operation is related to the operation on integer types.
However, many times the operations are structure related and need not involve specific data
type. This distinction will become clear when we study theory of types in Chapter 7.

A data entity has a scope where it is visible, and computations are performed within the
scope. To ascertain visibility, a programming language has to define program units with
clear boundaries within which a data entity is visible. There is a need to set up the visibility
boundary of data entities if we want to allow multiple data entities with the same name
within a program. Otherwise, there would be naming conflict, as the same name may
refer to different data entities. There are two approaches to access a data entity within a
program-unit: (1) by giving a name to the data entity and (2) by defining the extent of the
position where it would be visible from the declared position. The use of name facilitates
accessing a data entity at multiple locations of a program unit, and the extent of position
gives the boundary of visibility of the data entity.

A data entity may be referred by multiple names in different parts of a program. Multiple
names referring to the same data entity are called aliases and will be described in detail
later. When we declare a data entity, there is a need for generic structuring template, as
many data entities may conform to a similar data template. These structures are called data
abstractions.

For a subprogram to work generically on an indefinite number of data entities confirming
to some well-defined properties, we need the concept of constants and variables. A con-
stant is a value holder that can be mapped to a data entity at compile time and does not
alter afterward. A variable maps to a memory location that can be rewritten one or more
times dynamically at run time. A variable can be created anonymously by the compiler or
created at run time by language’s implementation engine or named by the programmer.
The mapping of the variable to a data entity could be altered repeatedly at run time, as in a
destructive assignment in the imperative programming paradigm, or it could be fixed after
the value is assigned once, as in the declarative programming paradigm. The imperative
programming paradigm allows a programmer to change the mapping at will by introduc-
ing the concept of memory location and store. Owing to the introduction of memory loca-
tions such that the identifier ↦ memory location and memory location ↦ data entity, the
variables in imperative programming paradigm are mutable and are referred as mutable
objects. In contrast, declarative languages allow a programmer to map an identifier to a data
entity once: identifier ↦ data entity. After the value is assigned, a programmer needs to cre-
ate a new variable to assign new values. Assign-once objects are called immutable objects.

In modern programming languages, certain classes of data abstractions are common.
All modern programming languages support single entities and aggregation. Aggregation
consists of composite types, collections, and extensible data structures. Multi-paradigm lan-
guages that support both declarative and imperative programming distinguish and sup-
port both mutable and immutable objects.

124    ◾    Introduction to Programming Language

4.1.1 Single Data Entities

Abstraction to define data entity is related to the need of modeling entities present in the
real world and their interconnection to other entities. A real-world object has multiple
attributes, and these attributes themselves are divided further. These attributes can be
represented using basic mathematical domains such as integers, floating point numbers,
characters, and strings, or computational domains such as bits, bytes, and semaphores, or
user-defined enumerable domains. Different problem domains have different types of enti-
ties. Most of the languages treat strings as an indexible sequence of characters, while some
languages such as Java and C# also allow “string” as a basic declaration that can be treated
as sequence of character if needed.

4.1.2 Composite Data Entities

A composite object has more than one attribute. In a composite entity, each field itself could
be a composite data entity. Tuples are used to model composite object. Tuples can be named
or unnamed. Most of the programming languages use named tuples such as record or struct
to model a composite data entity. The only difference between tuples and records or structs
is that records are named templates of tuples. The advantage of named templates of tuples
in type declaration is that they can be used to generate multiple tuples bound to different
variables for ease of programming. The use of name is that the template can be reused for
defining multiple complex user-defined types. Irrespective of syntactic sugar used in differ-
ent programming languages, all definitions of composite objects represent a tuple. A recur-
sive definition of tuple is used to model an extensible data entity. For example, a linked list
is modeled as a pair (info-field, linked list); and a tree can be modeled as a triple (info-field,
left-subtree, right-subtree).

Example 4.1

An example of a composite entity is the definition of “class” given in Figure 4.1. Class
is a 6-tuple of the form (course number, course name, instructor, students, location,
time). The attributes course number, course name, and instructor are single entities;
location and time are pairs; and the attribute students is a collection of data entities.

As shown in the definition of “class,” a composite data entity consists of name of
the data entity, number of attributes, and the description of various attributes. Each
attribute can be a tuple comprising data abstractions or a collection of data abstrac-
tions or a single entity. For example, location is a data abstraction that is modeled as
a pair. Similarly, students is a collection of students.

Student is 4-tuple (quadruple) of the form (student_id, student_name, department-
name, years-in-college). Each of the fields is a single entity. Location has been abstracted
as a pair of the form (building, room). Time has been abstracted as a pair of the form (start
time, duration).

Abstractions in Programs and Information Exchange    ◾    125  

Pairs are special types of tuples, consisting of two attributes that have been used in
abstractions of mathematical entities such as complex number, rational numbers, and
time interval. For example, a complex number is represented as a pair of the form (real
part, imaginary part), and a rational number is represented as a pair of the form (numer-
ator, denominator). Abstract concepts such as events can be modeled as a pair (action
name, occurrence), where occurrence is a pair of the form (time, location). Many pro-
gramming languages such as ADA allow complex and rational types as built-in types.
Polynomials are modeled as a bag of triples, where each triple is of the form (coefficient,
variable name, power).

data abstraction: class
 abstraction-type: tuple
 attribute-size: 6
 begin attribute-description
 attribute1: single-entity course-number
 attribute2: single-entity course-name
 attribute3: single-entity instructor
 attribute4: bag of student
 attribute5: tuple location
 attribute6: tuple time
 end attribute-description
end data abstraction

data-abstraction: student
 abstraction-type: tuple
 attribute-size: 4
 begin attribute-description
 attribute1: single-entity student-id
 attribute2: single-entity student-name
 attribute3: single-entity department-name
 attribute4: single-entity years-in-college
 end attribute-description
end data-abstraction

data-abstraction: location
 abstraction-type: tuple
 begin Attribute-description
 attribute1: single-entity building
 attribute2: single-entity room
 end attribute-description
end data-abstraction

data-abstraction: time
 abstraction-type: tuple
 begin Attribute-description
 attribute1: single-entity start-time
 attribute2: single-entity duration
 end attribute-description
end data-abstraction

FIGURE 4.1 Abstracting a data entity class.

126    ◾    Introduction to Programming Language

4.1.3 Collection of Data Entities

A collection of entities is a bag of entities and is quite different from composite object. In a
composite object, each attribute is a part of the abstraction of the same object and is not index-
ible. In a set or bag, each object is a different entity and is indexible. There are many ways a
collection of data entities can be modeled: (1) sequence—an ordered bag or (2) a bag of pairs of
the form (key, entity), where key is a unique identifier associated with the data entity.

In an ordered bag, each data entity is associated with a specific position, and can be
modeled using an indexible sequence such as array representation or vector representation.

Sequences are implemented using arrays, linked lists, or vectors. Arrays and vectors
are indexible. Linked lists are not indexible; to reach the ith element, first (i − 1) elements
have to be traversed. Arrays can be static arrays, semidynamic arrays, or dynamic arrays.
The size of the semidynamic arrays are passed as parameters from the calling subprogram
and can change between different calls. Dynamic arrays are allocated in heap, are imple-
mented as recursive data structures such as trees, and are extensible. For example, one way
to implement dynamic arrays is to use a quad-tree. A quad-tree has four branches. If the
size of the bag is between 1 and 4, then one needs a tree that is one-level deep. If the size
of bag is between 4 + 1 and 42, it needs two levels of trees, and if the size is between 42 + 1
and 43, it needs three levels of trees. All the data entities are stored at the leaf node. The
 advantage of the representation is that at any time to extend the bag, looking at the index
value, the exact position of the data entity in the tree can be computed, and it can be tra-
versed in logarithmic time, since the tree grows in a balanced way.

The collection of (key, data entity) pairs is called association lists in declarative lan-
guages, and is called a map in Scala—a modern multiprogramming language that inte-
grates functional programming and object-oriented programming. The use of the key
makes the data entity free of specific implicit ordering at the expense of extra memory to
keep the key; data elements can be placed randomly at any position in the bag. Retrieval of
a data entity requires a search mechanism such as hashing or binary search to match the
key and then retrieve the corresponding data entity.

Any dynamic collections of data entities need to have two major properties: (1) efficient
retrieval of data entities based upon the index value or the key value and (2) optional run
time extensibility of the collection size of the data abstraction to accommodate new data
entities that are provided either from the input–output mechanism or through program-
matic generation. Two major search schemes have been used for the efficient retrieval of
data entities: (1) hash function maps the key in near-constant time to find an index value,
and then the index value can be used to retrieve the data from the corresponding array
and (2) the use of tree-based search in logarithmic time. Depending upon the type of tree-
based representation such as binary tree or tertiary tree, the key can be searched using an
appropriate search algorithm.

4.1.4 Extensible Data Entities

Recursive definitions and tuples can be used to model extensibility. Certain data aggregates
are abstracted recursively using the notion of tuples that contains two types of fields: data
entity and a reference field to indefinitely extend the data aggregate at run time.

Abstractions in Programs and Information Exchange    ◾    127  

A set can be modeled using a hash table or a tree. While there is no need to order the key
or the values in a hash table, a tree-based implementation of a set has to be in sorted order
for efficient logarithmic time search.

A sequence is defined recursively as <sequence> ::= (<data-entity> <sequence>) | null.
In this representation, data entities are extended linearly, and, after any number of exten-
sions, the collection can be terminated by the base case null. The size of the aggregate is
indefinite and can be extended at run time. Linked lists, arrays, and vectors are used to
implement a sequence.

Another example of recursive abstraction using tuples is a binary tree that can be mod-
eled recursively as <binary-tree> ::= (<data-entity>, <binary-tree>, <binary-tree>) | void.
The left-subtree and right-subtree are again tuples, and the nesting level of the tuple gives
the level of the tree. The base case of the binary-tree is a void-tree. A node can be added at
a leaf node of the tree to extend the original tree. For example, a one node binary tree can
be modeled as (info, null, null), where info denotes a data entity, and null represents a void-
tree; a two element bag can be modeled as (info, (info, null, null), null); and a three-element
bag can be modeled as (info, (info, null, null), (info, null, null)).

Recursive data structures and extensible dynamic data structures such as vectors are
implemented using pointers. Pointers are addresses that can be used to join physically sepa-
rated chunks of memory. A pointer can point to the next data entity or could be null: not
pointing to any object. This property of pointers is used to implement extensibility in the
implementation of linked lists, vectors, and trees. A tree is extended by adding a pointer in
the leaf node to add new data entity. A vector is extended by keeping a header that keeps
the information of the last cell. New elements are added at the end of the vector. Pointers
can be strongly associated explicitly with recursive data structures as in Pascal. In many
languages such as ADA, ALGOL, and C, pointers are supported as an independent entity
that can be associated with any data structure.

4.1.5 Ordering and Accessing Data Entities

In a composite object, attribute values are projected using the field name such as
 <data-entity>.<attribute-name>. If the field is composite, then its attributes are retrieved as
<data-entity>.<attribute-name>.<nested attribute-name>. At the time of compilation, the
 various attributes of a single entity are allocated in contiguous memory locations, and the code
generator calculates the offset of each attribute name with respect to the base address of the data
entity. The calculated offset is added to the base address to access the corresponding attribute.

In a collection of data entities, the index value or the key value plays a major role to
access a data entity. If the collection is modeled as an array or vector and size of each data
entity is fixed, then the offset of the given data entity is calculated as size-of(individual
data-entity) * index-value under the assumption that the index value starts with zero. If
the collection is modeled as a tree, then the key is searched using some algorithm that is
dependent upon the type of tree representation: binary, tertiary. If the bag is represented
using a hash table, then the access is near-constant time: a hash function is applied on the
key to generate the appropriate index, and the data entities associated with that index are
searched sequentially for the matching key to identify the corresponding data entity.

128    ◾    Introduction to Programming Language

4.1.6 Interconnected Data Entities

Multiple data entities can be embedded inside a single aggregate data entity. An aggregate
data entity can be a tuple (composite data entity), a collection of data entities, or an exten-
sible data entity. An interesting aggregation is the semantic network used in Lisp that is a
graph of entities connected through relations between them. Each entity is modeled as a
frame that is a pair of the form (object name, property list), where the property list is a bag
of pairs of the form (attribute name, value). The value could be a single entity, an aggrega-
tion, a function call to compute a value, or a reference to another data entity. The semantic
network is an interesting abstraction, as it can be used to model relationship between mul-
tiple real-world objects. By using the connecting relational edges between the objects, the
graph can be traversed to find attributes of other related objects.

4.1.7 Persistence

Persistence is associated with two important properties: visibility across program units
and lifetime that goes beyond the life of the program. The advantage of persistence is that
different program units can share the information and the result of computation that may
be generated in other program units at a different time. Persistence can be grouped into
two types of data entities: (1) global transient data entities, whose lifetime is limited to the
lifetime of the program and (2) persistent data entities, whose lifetime goes beyond the
 lifetime of the program such as databases, files, and archived objects.

A blackboard or tuple space is a global transient data entity that is modeled as a bag
of (key, value) pairs, where key is a user-defined unique identifier. The operations on the
blackboard are retrieving a value given the key, deleting a (key, value) pair by giving the
key, updating the value bound to a key, and inserting a new (key, value) pair.

Files and databases are persistent data entities where the information stored can be
reused even after the program has ended, or the information can be passed to other pro-
grams. Files are sequence of characters that are formed by linearizing the data entities.
All the properties of sequences that we studied about the sequences apply to files. In
addition, a file is a logical entity that can be opened to read or write. However, file is a
very large sequence, and processing the data after reading all the elements of the files
into working memory will cause tremendous memory wastage and delay in loading
the data.

Most of the time, a program unit needs part of the data from an input file, processes it,
and then repeats the process with the remaining data as shown below

my-sequence = file;
while (not is _ empty (my _ sequence)) {
 data-entity = first(my-sequence);
 process data-entity;
 my _ sequence = rest(my-sequence);}

Since the rest of the file is not being processed when the current data entity is pro-
cessed, there is no need to have all the data entities in the working area before the first

Abstractions in Programs and Information Exchange    ◾    129  

data entity is processed; the second data entity can be retrieved from the file while the
first data entity is being processed, and the third data entity can be retrieved while the sec-
ond data entity is being processed. The resources such as memory and processor used by
the previous data entity can be reused by the next data entity.

A stream is a data abstraction that allows this resource reuse while avoiding the wastage
of memory. A stream is a sequence that is partially available at a time. If the stream is mod-
eled as <d0, d1, d2, … dN>, then only subsequence of the form <dI, … dJ> is available in
memory at a particular instance of time. If K data entities are processed in one instance,
then the subsequence <dI+K, … dJ+K> would be available at the next instance.

The stream abstraction is important in large data processing, specially in Internet-based
programming, multimedia programming, and mobile computing, where video files and
audio files are very large and cannot be made available for local processing due to delays
in the communication channel and the large amount of computation involved to render
the video or audio files. In such cases, a stream of data is being received continuously.
A subsequence of data is processed while next subsequence of data is being transmitted
through the communication channel.

4.1.8 Declarations and Environment Change

Declaration can have the following five components: binding an identifier to a constant;
macro definition—binding of an identifier to a text block; declaration of a user-defined
type—binding of an identifier to a data abstraction that contains type of data values;
declaration of a variable—binding of an identifier to memory locations; and declaring a
sequencer—a label that can be used for jump. Declaration is also used to bind an identifier
to a procedure or a function. In imperative languages, declaration of labels used for jump
and declaration of variables have no effect on the subsequent declarations. However, bind-
ing an identifier to a constant, declaration of user-defined types, and declaration of macro
definitions can be used in the following definitions to form more complex declarations.

Declaration of a variable changes the environment by binding the identifier to the
 corresponding l-value. We model the state of computation as a triple of the form (σE, σS, σD),
where σE denotes the environment, σS denotes the store, and σD denotes the dump—stack
of calling procedures. Under this model, the computational state changes every time (1) a
declaration changes the environment, (2) execution of an assignment statement changes
the store, and (3) dump is changed when a procedure is called. During parameter passing,
both environment and store may change, because the formal parameters are mapped to
memory locations, and there memory locations are initialized to a value. A command
 executes in the environment that is created by the declarations.

A sequence of declaration of the form D1 <delimiter> D2 can have two different meanings:
sequential and parallel.

 1. In sequential declarations, D1 updates the environment σE and changes to σ’E, and D2
uses the new environment σ’E in its definition to pick up the binding of the variables
bound in declaration D1. For example, in functional programming language Lisp, the
declaration (let* ((X 4) (Y (+ X 4)))) is equivalent to binding the variable X to a value 4

130    ◾    Introduction to Programming Language

and binding the variable Y to a value 8, because the first declaration becomes part of
the environment, and when Y is declared, it picks up the binding of X from the envi-
ronment and adds 4 to the value of X to derive the value 8. After X is bound to 4, the
environment σ’E = σE ⊎ {X ↦ 4}, and after the second declaration the environment
becomes σE ⊎ {X ↦ 4} ⊎ {Y ↦ 8}.

 2. In parallel declarations, both D1 and D2 pick up the bindings from the old envi-
ronment σE, and D2 is not affected by the change caused by D1, as illustrated in
Example 4.2.

Example 4.2

Let us take the following example from the programming language Lisp again.

(defun my_square(b) % define a function
 (let ((b (+ b 5)) (c (+ b 6))) % parallel declaration
 (+ (* b b) (* c c)) % compute b2 + c2

) % close the scope of let declaration
) % close the scope of the function declaration

The let construct is used to create a local environment for the local variables b and c. A
function call my_square(4) computes the value of b as the value(b) + 5 = 9 and computes the
value of c as value of b + 6 = 4 + 6 = 10. Although, the value of b in the local environment
has changed to 9, the second initialization still takes the old value b as 4 due to parallel
assignment semantics of let construct. The final answer is 92 + 102 = 181.

When a procedure or function is called, then the environment changes, because many
bindings that are local to the calling procedures are shadowed—become invisible during
the scope of the called subprogram—and only the bindings of the global variables, nonlo-
cal variables, imported variables, and bindings of the formal parameters are retained in the
new environment of the called subprogram.

4.2 CONTROL ABSTRACTIONS
Depending upon a programming paradigm, the instructions that manipulate the data are
abstracted. Irrespective of the programming paradigm, we can categorize the instructions
as follows: (1) constructors—that create a new data entity; (2) mutators—instructions that
modify the values that an identifier is bound to; (3) selectors—instructions that access the
data elements from a composite data object or an aggregate data object; (4) conditionals—
instructions that pick up one of the alternatives, depending upon the evaluation of a
condition; (5) iterators—instructions that repeatedly perform similar operation on a col-
lection of data objects in an organized manner; (6) evaluators—instructions that evaluate
an expression; (7) sequencers—instructions that pass the control through jump to a given
label; and (8) invocations—instructions that activate a function or procedure to compute
some value.

Abstractions in Programs and Information Exchange    ◾    131  

A mutator such as an assignment statement modifies the store by changing the value
stored in a memory location. In some languages, the store is also modified during initial-
ization with a value when a new data entity is constructed or declared. Given a sequence
of mutators, each mutator progressively modifies the store to a new store. The store is also
modified when the value of an actual parameter is bound to the memory location cor-
responding to the formal parameter, or when a variable is initialized to a specific value
during declaration.

The sequence of commands can be altered either by conditional instructions, jump
statements, or by iterators. The actual sequence of command that follows the current com-
mand during run time is called continuation. Continuation is essential to reason about the
behavior of the program and is an essential part of defining the denotational semantics of
the realistic programming languages. The continuation of a selection function such as an
if-then-else statement of a case statement has multiple alternatives that only can be decided
at run time, based upon the evaluation of the condition. Similarly, the continuation of the
iterative statement involves unfolding the loop multiple times when the condition evalu-
ates to be true. The continuation of an iterative loop and conditional statements are dif-
ficult to predict, since it is dependent upon the outcome of the evaluation of the condition.

Example 4.3

Let us discuss the continuation for the following program.

x = 4; z = 6;
goto L;
z = 8;
L: y = 5;
while (z > 4)
 {x = y + 5; z = z − 1;}

The continuation of the statement x = 4 is {z = 6; y = 5; if z > 4 then exit; x = y + 5;
z = z − 1; if z > 4 then exit; x = y + 5; z = z − 1; if z > 4 then exit}. Note that the sequencer
“goto L” alters the order of execution from the textual order. Similarly, the statements
within the while-loop are executed twice before Z becomes equal to 4, and the control exits
the while loop. Thus the continuation is computation dependent and is difficult to predict
just by looking at the program.

4.2.1 Assignment and Command Sequence

Assignment statement binds the memory location corresponding to an identifier to the
evaluation of the expression written on the right side of the assignment statement. The
binding is done after the evaluation. Generally the assignment consists of a single bind-
ing that means that statement is of the form <identifier> = <expression>. However, some
languages, such as ALGOL-68, C++, Python, and Ruby, support chained assignment (also
called multiple assignment) that has multiple variables bound to the evaluation of the same

132    ◾    Introduction to Programming Language

expression. In the syntax of a modern language, Ruby, that supports functional and object-
oriented programming, multiple assignments are written as follows:

x = y = 4 + 5 + 6 (supported in Python and Ruby)
x, y = 4 + 5 + 6 (supported in Scala)

The statement performs the evaluation of the expression “4 + 5 + 6,” and binds the value
15 to the memory locations of the variables x and y.

Some languages such as Ruby, C++, Python, Perl, and Lua also allow simultaneous
assignment or parallel assignment. In simultaneous assignment, multiple distinct nona-
liased variables are assigned the values of the corresponding expressions simultaneously,
and the expression evaluation takes the original store values. The basic requirement for
simultaneous assignment is that all the variables should be writing into separate memory
locations. A simultaneous assignment is of the following form:

var1, var2, var3, …, varN = exp1, exp2, exp3, …, expN

The semantics of the above statement is that each expression expi (1 ≤ i ≤ n) is evalu-
ated with respect to original store σS, and the evaluated values are bound to the memory
locations of the corresponding variables vari (1 ≤ i ≤ n). For example, in the syntax of
interactive Ruby, the following multiple assignment will bind x1 to 4, x2 to 5, and x3 to 6.
However, if two variables are aliases, then the store contains the last binding.

x1, x2, x3 = 4, 5, 6 % x1 ↦ 4; x2 ↦ 5; x3 ↦ 6
y, y = 8, 9 % y ↦ 9

The sequence of assignment statements of the form C1; C2 can change the store sequen-
tially or concurrently, depending upon the programming language paradigm. In sequential
update of the store, the previous assignment statement updates the store first, and the fol-
lowing assignment statements work on the updated store. In concurrent programming para-
digm, during the concurrent update of the store, two or more assignments work concurrently
on the same original store. The update should occur on different memory locations; reading
or writing the same subset of memory locations would cause racing condition—a condition
where store is inconsistent and may have different values if the same set of statements are exe-
cuted multiple times. Racing condition is discussed in detail in Chapter 7, on concurrency.

Example 4.4

For example, sequential assignment of the form “x = 4; y = x;” will first update the store
σS destructively to create a new store σ’S = σS ⨁ (x ↦ 4). Note that here the symbol
“↦” denotes the destructive update for imperative programming paradigm. Now the
assignment statement “y = x” will first read the value of the variable x from the store
σ’S and generate a new updated store σ’’S = σ’S ⨁ (y ↦ 4) = σS ⨁ (x ↦ 4) ⨁ (y ↦ 4).

Abstractions in Programs and Information Exchange    ◾    133  

In the programming languages that support the imperative programming paradigm,
the assignment statement is a mutator, which means that the identifier is bound to a mem-
ory location that can be destructively updated. As we have discussed earlier, the advantages
of destructive update is memory reuse at the cost of losing the results of the past computa-
tion and side effects—undesired programming behavior that may violate the basic math-
ematical principles essential for programming.

The declarative programming paradigm uses assign-once property and assigns the value
of an expression to the variable only once, and the binding cannot be destroyed explicitly
by the programmer. However, some languages such as Prolog allow backtracking—going
back to the previous computation in search of an alternate solution. During backtracking,
the underlying implementation engine of Prolog can unbind the variable from the previ-
ous value.

A variation of the assignment statement is the concept of unification used in logic pro-
gramming. In unification, two logical terms are equated. A logical term is a composite
structure containing variables, constants, literals, and other embedded logical terms.
During the process of equation, no evaluation is done as terms are not expressions. Instead,
logical terms on the left-hand side and the logical terms on the right-hand side are matched
position by position. If one of them is a variable, then every occurrence of the same variable
in both the logical terms is bound to the corresponding logical term using the assign-once
property of the declarative programming paradigm. If both the corresponding terms are
literals, then they are matched literally.

For example, the unification of X + 4 + 3 with 5 + Y + 3 gives 5 + 4 + 3, and the variable
X is bound to literal 5, and the variable Y is bound to literal 4, and the literals 3 and 3 are
matched successfully. In contrast, the unification of X + 4 + 3 and 5 + Y + 2 fails, because
the corresponding literals 3 and 2 do not match.

Unification is discussed in detail in Chapter 10 on logic programming. However, here it
has been mentioned for the sake of completeness of the concept of assignment statement.

4.2.2 Conditional Statements

The conditional constructs are almost universal across programming languages. The basic
construct of if-then-else statement is given by the following abstract syntax rule:

<if-then-else> ::= if '('<condition>')' then <statement> [else
 <statement>];

<condition> ::= <condition> && <condition> | <condition> ||
<condition> |

 not <condition> | <arithmetic-exp> <c-op>
<arithmetic-exp> | true | false

<c-op> ::= '>' | '<' | '>=' | '=<' | '=='

Different languages use different reserved words. For example, ‘.and’ may be used in
place of ‘&&’ or ‘.or’ may be used instead of ‘||’.

134    ◾    Introduction to Programming Language

In an if-then-else statement, the then-statement and else-statement are equally prob-
able, and changing the order of execution after checking the negation of the condition will
be functionally equivalent to the original if-then-else statement; that is, “if (<condition>)
then <then-statement> else <else-statement>” is functionally equivalent to if (not <condi-
tion>) then <else-statement> else <then-statement>, because <condition> and not <condi-
tion> are mutually exclusive.

Both the then-statement and else-statement can be any statement, including another if-
then-else statement. As discussed in Chapter 3, in case of nested if-then-else statement, the
else part always goes with the nearest then-statement.

The other selection construct is case statement. The structure of case statement is of the
form as given below

case (<expression>) of :
 <value-set1>: <command-sequence1>;
 …
 <value-setN>: <command-sequenceN>;
 otherwise: <command-sequenceN+1>
end case

In the case statement, an expression is evaluated. The outcome is possibly multivalued,
and a different sequence of activities can be taken for each different output value or a range
of output values. All the cases that have a different sequence of activities are handled, and
in the end there is a catch-all statement that is executed when all other possibilities fail.
Note that the case statement is deterministic, since only one choice is selected on the basis
of the evaluation of the expression.

Lisp uses a set of conditional statements of the following form:

(cond ((<predicate1> <expression1>)
 …
 (<predicateN> <expressionN>)
 (t <catch-all-expression>))
)

This function checks from top to bottom: if any of the <predicatei> is true, then the
 corresponding function is evaluated; otherwise, <catch-all-expression> is evaluated.

Another conditional construct used in some functional languages such as Lisp is
 when-construct, which is written as (when <predicate> <expression>). The construct evaluates
the expression <expression> if the predicate <predicate> is true. Another conditional con-
struct is the use of unless construct used in the programming language Ruby. It has the same
semantics as “if not.” The construct is as follows:

 unless '('<condition>')' <command-sequence1> else <command-
sequence2> is equivalent to saying

if not '('<condition>')' <command-sequence1> else <command-sequence2>

Abstractions in Programs and Information Exchange    ◾    135  

4.2.3 Iterative Constructs and Iterators

Iterative constructs are classified in three major categories: (1) definite iteration, (2) indefinite
iteration, and (3) iterators. Both definite and indefinite iteration assume that the collection of
data entities has been modeled explicitly using indexible data structures, such as arrays and
vectors. In contrast, the iterator treats the data entity as a list, such that individual elements
and the mechanism to access the individual element may not be available to a programmer.
An iterator retrieves the next element of the list and performs operations on every element of
the list in an ordered manner. All three classes of iterative constructs have single-entry and
single-exit points, unless the execution is aborted due to some error condition or exception.

Definite iterations do not allow programmer to alter the loop parameters such as initial-
bound, final-bound, the value of the index variable, and the step size during the execution
of the statement block. All of them are fixed in advance. However, the implementation
engine automatically alters the value of the index variable by the step size in the next
 iteration-cycle. An abstract syntax for the definite iteration is as follows:

for (<index-variable> = <initial-expr>';' <final-expr>';' <step-expr>)
 <block>

In the above construct, the initial expression <initial-expr> gives the initial bound, final-
expression <final-expr> gives final-bound, and the step-expression <step-expr> gives the
steps. The expressions are evaluated before entering the loop, and loops are single-entry and
normally single-exit, unless an exception condition forces an abort or an exit out of the loop.

A definite iteration can take an index value from a list of expressions. The definite itera-
tion construct would be of the form:

for '('<index-variable> in <list-of-expressions>')'
 <block>

A definite iteration can also pick up an index from an unordered set. The advantage of
using a set is that the index can occur in any order, and there need not be a pattern to them.
The definite iteration construct would be of the following form:

for '('<index-variable> in <set>')'
 <block>

In an indefinite iteration, the embedded statement block keeps executing until the given
condition is satisfied. Unlike definite iteration, which regularly changes the value of index in
predetermined manner, the condition could be any predicate in indefinite iteration. More-
over, the value of the variables involved in the predicate can be freely altered in the embed-
ded block of statements. Owing to this property, indefinite iterations can loop indefinitely.

As described in Chapter 1, two types of indefinite iterations have been shown to be able
to be functionally equivalent to model any problem that requires repeated manipulation of
data abstractions. The two indefinite iterations are while-loop and do-while loop, which is
also called repeat-until-loop. The abstract syntax for while-loop is as follows:

<while-loop> ::= while '('<condition>')' '{'<statement-block>'}'

136    ◾    Introduction to Programming Language

The abstract syntax for the repeat-until-loop is as follows:

<repeat-until-loop> ::= repeat <statement-block> until <condition> |
do <statement-block> while <condition>

As described in Chapter 1, while-loop executes the embedded block <block> zero or
more times, and repeat-until-loop executes the embedded block <block> at least once. The
repeat-until construct and do-while construct are equivalent and achieve the same effect,
with a difference: repeat-until construct executes the block repeatedly until the condition
becomes true, while do-while syntax executes the block repeatedly while the condition is
true. A generalized multiple-exit iterative loop is used in ADA language. The abstract syn-
tax for the multiple-exit iterative loop is as follows:

<multiple-exit-iteration> ::= loop {<conditional-exit>';'
 <command-sequence>}*
 end-loop

<conditional-exit> ::= if <condition> then exit;

The abstract syntax means that there are multiple exit conditions interspersed within the
block of the loop, and if a condition is satisfied, then the control jumps out of the loop. While
it may be a convenience to some programmers, it had been shown in the 1970s that the
functional power of a nested while-loop and do-while loop along with Boolean variables is
the same as multiple-exit loops. Hence, they do not add any additional programming power.

In order to avoid the explicit use of index that supports only array or vector-based imple-
mentations, iterators support list-based and set-based abstractions. Declarative languages
that support list-based programming or languages that use extensible data abstractions use
iterators. An iterator steps through an extensible bag of data entities, picks up the next data
entity, and performs some operation on the data entity. The process is repeated for every
data element in the collection. The major advantage of the use of iterator is that explicit
index is not needed, and the implementation level details of data abstractions are hidden
from a programmer; the only restriction is to retrieve the next element in the next cycle.
An abstract syntax for iterator is as follows:

<iterator> ::= foreach <variable> in <ordered-bag> <block>

In functional languages, <block> is replaced by a function definition that is applied
on the next data element. The disadvantages of basic scheme of iterators is that an itera-
tor steps through every element of the data abstraction, unlike iterative constructs, where
index can be used to access the elements selectively. Languages such as C++ and Java treat
iterator as a mutable data structure that can produce data element one at a time and has
the capability to check if the next element exists. An iterator construct in Java will look like
the following:

for (iterator i = data-object.iterator(); i.hasNext();)
 … visit i.next() …

Abstractions in Programs and Information Exchange    ◾    137  

4.2.4 Block Structure

The blocks are embedded inside a programming unit. Unlike programming units, blocks
are not bound to an identifier and cannot be invoked simply by calling. Block structures are
generally single-entry and single-exit structures and have a specific functionality. Random
grouping of statements is discouraged to provide a better program structure for better
comprehension. Block structuring allows only a restricted number of “go to” statements
to exit out of the nested blocks or for exception handling to handle the error conditions.

Blocks include a set (possibly null) of declarations followed by a set (possibly null) of com-
mands. The scope of the declarations is within the block, which means all the variables and
data abstractions are visible only within the block boundaries clearly marked by reserved
words like begin … end pair or a pair of curly brackets. These reserved words are specific
to programming languages. Multiple blocks can be nested inside a block. Nested blocks fall
within the scope of the outer block, which means all the declarations in the outer block that
do not have conflict with declarations inside the inner blocks are visible inside the inner
block. In the case of name conflicts, the declarations in inner blocks get the preference,
and the corresponding declarations in the outer blocks are shadowed in the inner block.
The sibling blocks (and their descendants) that are nested at the same level inside an outer
block do not share the environment. The nesting level of the blocks can be modeled as a tree
structure, with the program unit as the root node and the nested blocks as the descendants.

This property of not sharing the environment with the siblings has been exploited in
memory reuse during the execution. The blocks (and their descendants) that are defined
after their sibling blocks (and their descendants) can share the same memory space, since
the scope of the sibling defined earlier will be over before the following sibling.

Example 4.5

Let us consider the following nested block structure:

{declaration A
 …
 {declarations B
 …
 {declarations C
 …}
 {declarations D
 …}
 …
}
 {declarations E
… }
}

The corresponding pictorial representation of the scope of the declarations and the cor-
responding tree structure is given in Figure 4.2.

138    ◾    Introduction to Programming Language

Blocks B and E are siblings, and are nested inside the block A, and blocks C and D
are nested inside the block B. Since B and E are siblings, and blocks C and D are nested
inside B, the blocks B, C, and D do not share their local environments with the block E.
Similarly, blocks C and D do not share their local environments. Owing to tree hierarchy,
the environment of B includes the environment that is declared inside block A. Similarly,
blocks C and D inherit the environment inherited by B and the local environment of
the block B. The memory allocations of block B and the blocks nested inside the block
B will share the memory allocations with the block E and the blocks nested inside the
block E. The details are deferred to Chapter 5, on implementation models of program-
ming languages.

4.2.5 Program Units and Invocations

Program units are a group of declaration and commands that have been bound to an iden-
tifier and can be called at run time by other program units using the identifier the program
that the units are bound to. These two properties separate the program units from the
blocks.

Many programming languages such as the Modula family allow nested declaration
of programming units. The property of environment sharing by nesting is similar to the
blocks: nested program units inherit the local and the inherited environments of their par-
ents, and siblings do not share their local programming environments.

The abstract syntax (given in EBNF) of a programming unit in a block-structured
language is given in Chapter 3. A limited version of the abstract syntax rules has been
described below

<program-unit> ::= (program | function | procedure) <identifier>
<block>

<block> ::= '{' [{<declaration>}*] [{<command>}*] '}'
<declaration> ::= <sequencer-decl>| <type-decl> | <variable-decl>
<command> ::= null | <assignment>| <conditional> |

<definite-iteration> | <indefinite-iteration> |
<iterator> | <subprogram-call>|

'{'<block>'}' | <sequencers>

A
B

E

C

D

(a) (b)

C D

B E

A

FIGURE 4.2 Nesting of (a) block structure and (b) tree representation.

Abstractions in Programs and Information Exchange    ◾    139  

The above abstract syntax states that a program unit could either be the main program,
a function, or a procedure that has been bound to an identifier. The body of the program
unit is a structured block. The reserved words for the program unit could be different for
different languages. For example, Lisp uses the reserved word “defun” to define a function,
and Scala and Ruby use the reserved word “def” to define a function.

A program unit can invoke another program unit to solve a complex problem. By
embedding an invocation of a program unit inside an iterative construct or a recursive
invocation, a program unit can be invoked multiple times, as invocation of a program itself
is a command abstraction and is part of the command sequence inside the program unit.
The compilation process of a program unit is independent of the number of invocations;
each program unit is translated only once during compilation and just-in-time compila-
tion. During just-in-time compilation, after the program unit is compiled at run time for
the first time, it is cached for future retrieval.

The invocation of program units can be modeled as a directed graph, with the direction
showing the calling pattern of the program units. The execution of a program looks like a
graph, since the same program unit can be called from multiple program units. The graph
can be acyclic or cyclic. An acyclic graph means that program units are invoked nonrecur-
sively, and a cyclic graph means that program units are invoked recursively.

Each invocation that a program unit creates has a separate unique environment that is
different from the previous invocations of the same program unit, and the new invocation
works in its own environment. As described in Chapter 2, the environment is a sum of
the declaration of global variables, nonlocal variables—variables declared in the ances-
tor program units if the current program unit is nested, local declarations, and reference
parameters.

4.2.5.1 Self-Recursive Procedures
A recursive program is self-recursive if it invokes itself directly. For example, a definition
of factorial function is self-recursive. Let us assume if the initial invocation is P0; then the
subsequent invocation will be P1, P2, P3, and so on. The invocation stops when the base case
is evaluated, and the result is passed back in last-in-first-out order. In a graph model of pro-
cedure invocation, the length of the self-recursive invocation is zero, since the procedure
invokes itself. Note that the environments of the various invocations of the self-recursive
procedures are separate from each other.

Example 4.6

For example, a call to factorial(4) will start a chain of invocation: factorial(4) →
 factorial(3) → factorial(2) → factorial(1) → factorial(0). Each invocation will have its
own environment, its own store, and its own dump that will include environment
and store of the previous invocation added to the dump of the previous invocation.
The dump is modeled as a stack, and previous invocation is added to the stack by
abstractly pushing the environment and the store on the stack. Note the use of the
word “abstractly pushing.” In reality, when the dump is created, a part of the previous

140    ◾    Introduction to Programming Language

environment can be retrieved by the use of a pointer called a dynamic link. However,
the implementation related discussion is deferred to Chapter 5.

After the invocation factorial(0) is over, the result is passed back in the last-in-
first-out way updating the store of previous invocations. After passing the result,
the corresponding environment and stack of the calling invocation are popped out
of the dump, and the control is passed back to the next instruction of the previous
invocation.

4.2.5.2 Mutually Recursive Procedures
A program unit may support mutually recursion, which means that the program unit may
start a chain of invocations of one or more program units other than itself, and eventually
the last invocation in the sequence invokes the first program unit again. Mathematically,
let the invocation chain be P0, P1, … PN (N > 0); then program unit(Pi(0 < i < N)) is not the
same as program unit(P0) or program unit(PN), and program unit(P0) is the same as pro-
gram unit(PN). There are four types of structures: (1) a hierarchical structure–like tree;
(2) a structure like directed acyclic graphs; (3) a zero-length cycle, denoted by a circle,
showing selfrecursion, and (4) a nonzero-length cycle showing mutual recursion.

Example 4.7

There are three types of structures: (1) a hierarchical structure like tree, (2) a zero-
length cycle, denoted by a circle, showing selfrecursion, and (3) a nonzero-length cycle
showing mutual recursion. An example of a graph of procedure invocations has been
illustrated in Figure 4.3. The top-level subprogram calls two subprograms B and C, in
that order. The subprogram B calls two subprograms D and E. Both the subprograms D
and E form terminal nodes, which means they do not call any other subprogram. The
subprogram C calls the subprograms F and G. The subprogram F is self-recursive, as
shown by the circle; the subprogram G is mutually recursive, as G calls H; and the sub-
program H calls back the subprogram G. The length of the cycle in the mutually recur-
sive subprogram is 1. Note that the calling pattern of the program units is very different
from the nested structure of programming units. Calling patterns of the program units
are run-time properties, while nested structure are static program properties.

A

B C

F

H
Self-recursion Mutual recursion

E
G

D

FIGURE 4.3 Calling pattern of program units.

Abstractions in Programs and Information Exchange    ◾    141  

4.2.6 Modules

A module is an abstraction that provides logical encapsulation around a declaration,
 modeling one or more data abstractions and the corresponding subprograms (or meth-
ods in object-oriented programming terminology) that perform some useful operation on
the data abstractions. Declarations could be (1) importing some information or function
from another module; (2) declaration of constants or user-defined types or variables; or
(3) definitions of procedures, functions, objects, and interface to the rest of the system or
other embedded modules. The definition of module provides an explicit logical boundary
that keeps external declarations outside the local scope. A declaration inside a module has
a natural scope inside the module, and is not visible outside the module unless exported.
A module can be replaced by another equivalent module with the same interface without
changing the semantics of the system.

Explicit modules generally include all the common operations to manipulate an abstract
data type that can be compiled and stored in the form of a library to be used later. When the
module is loaded or imported within another module or program unit, the exported abstract
data types and all its library functions also become available. The basic purpose of module
abstraction is to provide (1) multiple naming systems; (2) independence from the rest of the
system; and (3) regulated interaction with the rest of the system through the module inter-
face using import–export of the declared entities such as variables and subprograms.

Unlike subprograms in imperative languages or inheritance in many object-oriented
languages, the interface is strictly regulated using export–import mechanism. An entity
declared in the module is not available outside unless explicitly exported, and another
module cannot use an entity declared and explicitly exported from other modules unless
it explicitly imports it. There are two approaches to import the information from the mod-
ules. The first technique imports every entity that has been exported from the specified
module. The second technique is to export a specified list of entities from the specified
module. The export–import mechanism of modules provides a better regulation than
nonlocal variables and inheritance as described later in subsection 4.3.5. Within a module,
information between subprograms and objects is passed using local variables, global vari-
ables, and parameter passing.

A module can be developed, compiled, and archived independently, without the need to
compile the rest of the system. An abstract syntax for the module is given below

<module> ::= module <identifier>
 [export {<program-unit>}*]
 [import {<program-unit>}*]
 {<declaration>}*
 {<program-unit>}*
 {<module>}* % definition of nested modules
 end <identifier>

Modules become active when loaded into the memory by other programs. A module
can temporarily pass the control to another module to perform a computation with some

142    ◾    Introduction to Programming Language

request or intended expectation of a result. A programming unit in a module executes on
the basis of the available information in the environment within the module. If a complex
function is too big, it can be broken across multiple modules, and the higher-level function
can call embedded functions in other modules.

One of the limitations of the modules is the lack of information passing between two
modules using parameter passing mechanisms. The export list can also become quite
big. Although modules are compiled separately, type compatibility between the vari-
ables and operators must be guaranteed by the programmers. Types of the variables are
stored in a symbol file—a meta file used to provide interface across modules. Each time a
client module—module that uses the included module—is compiled, the type compatibil-
ity is checked in symbol file.

Many languages such as ADA, C++, CLU, Euclid, Fortran 90 onward, Java, the Modula
family of languages, and Ruby support the concept of explicit module. ADA and Java call
modules as packages. While the above languages support a nested structure of modules,
other languages such as Mesa support a flat definition of modules. In Mesa, modules are
simply functional units that break up a big program into multiple simpler units based upon
functionality.

4.2.7 Objects and Classes

Another important category of encapsulation is the notion of objects. As we have seen that
the basic purpose of the encapsulation is to regulate the visibility of the entities declared
within a boundary so that one module can become independent of another in terms of
declaration, compilation, and the low-level information it carries. Objects do exactly this.
However, unlike explicit definition of modules that are passive units, an object is an active
unit that can be created at run time, invoked, and have a run time computational state.
Objects are created using a constructor that allocates memory space in the heap.

Each object encapsulates data entities, and methods—the subprograms and functions
that operate on these data entities. Encapsulation provides the information hiding. Many
programming languages support the notion of objects such as ADA, Modula-2, and other
object-oriented languages. The data entities inside the object can be accessed using an
abstract syntax of the form <object-name>.<data-entity-name>, and the methods can be
accessed using <object-name>.<method-name>.

An interesting category of programming languages called object-oriented program-
ming is based upon object classes. Generally a class definition follows a hierarchical struc-
ture that means that at the root of the tree is the top-level class definition, at level 1 are the
class definitions that are subclasses of the root class, and this property of defining subclass
can be repeated at level 2, level 3, and so on. An object is an instance of a class or a subclass
that can be created and invoked at run time. In addition, class hierarchy allows for inheri-
tance of the methods—subprograms and functions declared inside the parent class—and
need not be redefined or explicitly imported. However, each subclass may add its own defi-
nition of new methods, or override the definition of the methods given in the parent class
or ancestor class. Class definitions are different from explicit module definitions, because
classes have objects as an instance of classes, and support inheritance; explicit definition of

Abstractions in Programs and Information Exchange    ◾    143  

modules supports neither instances nor inheritance. However, modules can have methods,
as supported in the multiparadigm language Ruby. An abstract syntax of class is given
below

<class> ::= class <identifier>
 [subclass-of] <identifier>
 [private {<data-declaration>}*]
 [protected {<data-declaration>}*]
 [public {<data-declaration>}*]
 [private {<method-declaration>}*]
 [protected {<method-declaration>}*]
 public {<method-declaration>}+

A public method is visible to other objects, private method is invisible to objects from
other classes and subclasses; and protected methods are visible only to the subclasses unless
explicitly sealed inside the class. Depending upon the language, either public declaration
or private declaration could be implicit.

An object of a subclass is created at run time, using a constructor that allocates the
memory location for the object, binds the identifier to the memory location, and initializes
the data entities in the object to initial values. Each object has its own state, and objects
communicate to each other by sending a message to invoked public methods.

Object-oriented languages support data abstractions as classes. Some of the classes sup-
ported are hash tables—(key, value) pairs, where key can be searched using hash func-
tions; arrays—indexible collection of data entities, matrices—collection of collections of
data entities, structures—named tuples, vectors—extendible collection of data entities and
maps—collection of (key, value) pairs.

Programming languages such as C++, Eiffel, CLOS (Common Lisp Object System),
Modula-3, Ruby, Scala, and Java support object classes. The object-oriented programming
is based upon this concept of hierarchical object classes and has been discussed in detail
in Chapter 11.

4.3 INFORMATION EXCHANGE
Each program unit executes commands including invocation of other program unit.
A program unit can call another program unit using an invocation or be called by another
 program unit. A program unit can be a program, a function, or a method inside an object.
In many languages that support nesting of program units, program units can be arranged in
a hierarchical manner, which means that a program unit may be embedded inside another
program unit. A program unit may also be passed as an argument to another program unit.

Whenever a program unit invokes another program unit, part of the environment is
saved, most of the time some information is passed to the called program unit by the call-
ing program unit, and some result is passed back to the calling program unit from the
called program unit. This information exchange between program units is essential for the
successful solution of a problem.

144    ◾    Introduction to Programming Language

4.3.1 Mechanisms of Information Exchange

There can be multiple ways to exchange the information. In order to exchange the informa-
tion, a subset of the environment and store available to the calling program unit has to be
made visible to the called program units. This visibility can be achieved by (1) making the
subset visible to all the program units; (2) making the subset visible to a subset of program
units based upon nesting level of program units and; (3) making the subset visible using
point-to-point visibility between the program units by sharing one of the three major vari-
able attributes: name, memory location, or value. Visibility can be achieved in multiple
ways: (1) by specifically creating a copy of the value from the calling program unit; (2)
by passing the reference to the memory locations; (3) by copying the reference to the first
memory location of a data entity; or (4) by passing the name of the variables.

FORTRAN uses a declaration named “COMMON” between the subprograms to glob-
ally share the memory space. The advantage of the common shared memory space is that
only one copy of the memory space is created, and both the calling subprogram and called
subprogram can directly write into and access from the shared memory space. This saves
both excessive copying cost and memory allocation cost. Common blocks are assigned
a name, and the data entities in two subprograms having the same common blocks are
matched location by location for the correspondence. There are two major disadvantages
of common block declaration from the programming viewpoint:

 1. Common block has to be declared in every subprogram that uses it.

 2. The alignment of multiple variables declared in the same common block is error
prone.

Block structured languages use global variables to make the information visible to every
program unit and nonlocal variables to the nested program units. Nonlocal variables are
available only to the program units that are embedded inside. The information to outer
program units can be passed using a variable local to the outer block that acts as a nonlo-
cal variable in the program units nested inside the outer program unit. In addition, block
structured languages use variable-name or memory location reference or value of the vari-
ables to pass the information between the calling program unit and the called program
unit. During parameter passing, the arguments in the calling program unit are called
actual parameters, and the corresponding arguments in the called subprogram are referred
to as formal parameters. During parameter passing, the parameter correspondence can be
achieved in four ways:

 1. The actual parameters and the formal parameters are aligned from left to right, and
they have position-by-position correspondence. This is a common mode of parameter
correspondence in most programming languages.

 2. The actual parameter and formal parameter names are matched using name asso-
ciations, as in the programming language ADA. If name associations are used,
then there is no need for position-based matching. The correspondence between

Abstractions in Programs and Information Exchange    ◾    145  

actual and formal parameter is specified in the call to the subprogram. In case of
aliasing—the same actual parameter being associated with two different formal
 parameters— position ordering is used for binding the actual parameter attributes to
the formal parameters.

 3. In case the number of arguments in the procedure call and the number of formal
parameters do not match, then the remaining formal parameters after matching the
formal parameters with actual parameters are initialized to the default values.

 4. The formal parameters may be extensible types, such as list, and indefinite number
of arguments can be passed to the called subprogram such as in C# using “param”
declaration.

Object-oriented languages can have nested structure of classes. Thus a variable can be
described in a class, and it is visible in the nested subclasses. A variable declared inside a
class is called class variable and is visible among all the methods and data entities within
that class. A variable can be a static global variable that means it is available across all
the classes and thus across the objects. A variable can be specific to a method. The infor-
mation can be exchanged across the objects using global variables, using class variables,
using parameter passing between the methods within a class, and using message passing
between the objects. If the language supports modules in addition to classes and objects
such as Modula-3, then the methods and variables can be used across the modules using
an import–export mechanism.

Functional programming languages have a powerful mechanism of information
exchange. They can pass the whole function as a parameter that can be invoked in the
called function. The dual nature of function as data and back to function is a special prop-
erty in functional languages. Functional programming also uses textual substitution of
formal parameters by the name of the actual parameter before evaluating an expression. If
the evaluation of an expression is delayed until needed, then it cannot be evaluated before
passing the information to the called function. Rather, it has to rely on textual substitution.
This property of information passing by textual substitution of formal parameter by actual
parameter name is called call-by-name and is discussed in the next section.

4.4 PARAMETER PASSING
A variable in imperative language is defined as name ↦ memory location ↦ r-value. There
are three attributes that are associated with the variable: name, memory location, and
value. By giving either of the three, the final r-value can be derived. Parameter passing
just does that. If the name is passed as an argument in the actual parameter, then the
parameter passing mechanism is called call-by-name. If memory location is passed as
an argument, then the parameter passing mechanism is called call-by-reference, and if
the r-value is passed, then the parameter passing mechanism is called call-by-value or
call-by-copying.

Most of the time, the called subprogram passes some results derived from the local
computation back to the calling program. Results can be passed using global variables,

146    ◾    Introduction to Programming Language

nonlocal variables, sharing of common memory space, or using parameter passing. Call-
by-name and call-by-reference implicitly handle the memory locations bound to the vari-
ables in the calling subprogram. Call-by-value has three options, as shown in Figure 4.4.

The calling program may pass the information from the actual parameter to the formal
parameter. However, no result is passed back from the called subprogram to the calling
subprogram. This type of parameter passing is called call-by-value.

The calling program may pass the information from the actual parameter to the formal
parameter. After the called subprogram is done, the result is passed back to the calling
program. This mechanism is called call-by-value-result. In call-by-value-result, the com-
munication of information is two way. However, result is passed back only after the called
program is over. The information exchange occurs in a specific order. Generally, it is a left-
to-right order based upon the position correspondence.

The last parameter passing mechanism, where the r-value is explicitly exchanged, is called
call-by-result. In call-by-result, no information is passed from the actual parameter to the
formal parameter when the called subprogram is invoked; the formal parameters are initial-
ized to default value. However, after the called subprogram is over, the result is passed back
to the calling program using the formal parameter and actual parameter correspondence.

Generally, the number of arguments passed as parameters are well defined and fixed.
However, some languages allow a varying number of actual parameters to be passed to the
calling routine. A varying number of actual arguments can be modeled as an extensible
data abstraction in a formal parameter that can be processed by an iterative loop that
derives the size of the extensible data abstraction and processes every element of extensible
data abstraction. Languages such as C# and Java support this feature. For example, C#
will map three arguments such as “Mike,” “Karen,” and “Ambika” in a calling program
using a formal parameter declaration “param string[] names.” The reserved word “param”
instructs the calling routine to treat the remaining arguments of the calling program as an
extensible data abstraction. Here, “names” is a vector that has three data entities: “Mike,”
“Karen,” and “Ambika.” The advantage of an extensible parameter passing as a vector is
that it can be represented and processed like a vector.

The parameter passing mechanism in the logic programming paradigm is unification.
The difference between unification and other parameter passing mechanisms is that uni-
fication allows two-way information passing and assignments and does not evaluate any
expression. However, unification is discussed in detail in Chapter 10.

Calling
subprogram

Called
subprogram

Arg1 Arg1

Value

Value

Result

ResultArgN ArgN

FIGURE 4.4 Parameter passing by copying the r-value of arguments.

Abstractions in Programs and Information Exchange    ◾    147  

4.4.1 Call-by-Value and Variations

In call-by-value, also known as call-by-copying or call-by-in-mode, the expression in the actual
parameter is first evaluated, and then the resulting value is passed to the called subprogram and
is bound to the corresponding formal parameter. The formal parameter has the same status as
the local variable, and binding the formal parameters with the value of the expressions in the
actual parameter is similar to assignment statement. When the called subprogram is invoked,
new memory locations are created in the environment of the called subprogram, and the mem-
ory locations are assigned the value of the evaluated expression in the corresponding actual
parameters. However, copying is strictly one way: from the memory location corresponding to
actual parameter to the memory location of the formal parameter. After the values are copied,
there is no more communication between the formal and actual parameters. The called sub-
program performs computation and terminates without passing back any information.

Call-by-value is used for calling functions that do not return the results using parameter
correspondence. However, functions return the value explicitly using “return (expression)”
as illustrated in Example 4.8.

Example 4.8

Let us take the following code. The program reads the value of the variables, x and y,
passes the value of the variables x and y by using call-by-value to a function “square_
sum” that returns the computed value to the calling program main. The syntax is
generic to explain the concept.

program main
{ integer x, y, z;
 read(x, y);
 z = square_sum(x, y)
 print(“square sum of the numbers: ~d and ~d is ~d”, x, y, z);
}

function integer square_sum(a, b)
{ return(a*a + b*b);}

The formal parameter “a” corresponds to actual parameter “x,” and the formal param-
eter “b” corresponds to the actual parameter “y.” Note that formal parameters are of the
same type as actual parameter. Both “a” and “b” are copies of the variables “x” and “y” caus-
ing allocation of additional memory space in the environment of the function square_sum.

A major advantage of call-by-value is that since no result is passed back to the correspond-
ing actual parameter, the called subprogram does not destructively update the correspond-
ing memory locations, which will avoid side effects—undesired program behavior due to
unexpected destructive updates in the environment of the calling procedure. Call-by-value
is also used where only initial parameter values are needed by the called subprogram to per-
form computation, as illustrated in Example 4.9.

148    ◾    Introduction to Programming Language

Example 4.9

The following program has two program units: main and my_print. The program
main reads two arrays “a” and “b” each of size 100, and calls the subprogram my_
print to add them element by element and print them out.

program main
{ integer x[100]; y[100];
 for (i = 0, i = < 99; i++) read(x[i], y[i]);
 call my_print(x, y);
}

subprogram my_print(integer a[100], b[100])
{ integer c[100];
 for (i = 0; i = < 99; i++) {
 c[i] = a[i] + b[i];
 for (i = 0; i = < 99, i++)
 print(“c[~d]= ” ~d~n”, i, c[i]);
 }
}

There are two disadvantages of call-by-value: (1) the copying requires an additional
amount of memory locations, the same as the memory needed to hold the actual parame-
ters. If the actual parameter is large such as a 10000 × 10000 matrix as is common in large-
scale scientific computing, then it would require an additional 100 million × size-of(single
data entity) memory locations to run the called subprogram, and (2) the copying cost of
the large data structures from the memory area of the calling subprogram to the memory
area of the called subprogram would be quite high.

4.4.1.1 Call-by-Value for Sharing Complex Objects
Complex objects, extensible data structures and dynamic objects in object-based program-
ming languages are stored in the heap—a shared common global space. These objects are
accessed from the environment of a program unit using a reference link. The reference
link points to the base address of the data object stored in the heap. When the calling
subprogram needs to share an object with the called subprogram, then the reference of the
object to be shared is copied to the environment of the called subprogram using call-by-
value, as shown in Figure 4.5. The left side shows the scenario before the called subprogram
is invoked. Since the copied information is an address, the formal parameter carries the
address of the object. This mechanism is used in every language that supports dynamic
objects stored in the heap.

4.4.2 Call-by-Reference and Variations

Call-by-reference, also called call-by-access, passes the l-value or the memory location of
the actual parameter to the formal parameter. The formal parameter is a reference to the
actual parameter. In the called program, the memory location of the actual parameter is
accessed by dereferencing the formal parameter, and the memory location corresponding

Abstractions in Programs and Information Exchange    ◾    149  

to the actual parameter is read or updated. In the case of a collection of data entities such as
an array or vector, the memory location of the first data entity is passed, and all other data
entities are accessed using the offset method that calculates the address of the ith data entity
by adding the offset i * size(one data entity) and adding it to the memory location stored in
the formal parameter.

It is clear from the discussion that changing the dereferenced value of the formal param-
eter is the same as accessing and updating the memory location of the actual parameter.
There is no need for explicitly passing the result back to the calling subprogram from the
called subprogram.

There are many advantages of use of the call-by-reference as follows:

 1. A formal parameter is just a pointer to the first memory location of the complex data
structure and is independent of the size of the data structure.

 2. There is no need to explicitly copy the values from the actual parameter, saving the
overhead of copying cost both in terms of memory locations and execution time.

 3. There is no need to explicitly transfer the result back to the calling subprogram, as the
memory locations of the actual parameters are continuously being updated whenever
the corresponding formal parameters are modified.

Example 4.10

The following program has two program units: main and count. The program unit
main uses a random number generator in the program library to create an integer
between the value 1 to 200, and the called subprogram count counts the number of
elements in a slice of array d that have value greater than 100. We also assume that an
integer occupies 4 bytes, and a pointer occupies 4 bytes.

The program main has an array of integers d, and three additional integer variables:
i, j, and final_count. The program main calls subprogram count using three actual
parameters: array d using call-by-reference; variable j using call-by-value; and the vari-
able final_count using call-by-reference. The argument variable j stores the value of the
last index of the array d. The notation “&” denotes that address is being passed to the

Environment
of the calling

subprogram A

Environment
of the calling

subprogram A

Environment
of the called

subprogram B

Object

Heap

Object

Heap

Before invocation of B After invocation of B

FIGURE 4.5 Using call-by-value to copy reference links to objects.

150    ◾    Introduction to Programming Language

called subprogram, and the notation “*” means that the following symbol is a reference
to the actual parameter and there is a need to dereference to access the r-value.

The program unit count has three formal parameters: the variable b that is a ref-
erence to the data element d[0], the variable last_index that is a copy of the actual
parameter j and the reference variable accum that is a reference to the actual parame-
ter final_count. The reference variables b and accum occupy 4 bytes (32 bits), irrespec-
tive of the size of data elements they are pointing to. The address of the element b[i] in
the program is computed using address(d[0]) + 4 * i. Note that the actual parameter
j is passed as call-by-value, and the formal parameter last_index gets a copy of the
value of j. Figure 4.6 illustrates the reference links in call-by-reference.

program main
{ integer d[100], i, j, final_count;
 for (i = 0; i = < 99; i++) d[i] = random_number(1, 200);
 j = 50;
 call count (&d,j, &final_count);
}
subprogram count (integer *b, last_index, *accum)
{ integer index;
 *accum = 0;
 while (index =< last_index)
 { if (*b[index] > 100) *accum = *accum + 1; %
 end_if
 index = index + 1;
 }% end_while
}

There are some disadvantages of call-by-reference as follows:

 1. The called subprogram updates the store of the calling subprogram. After the called
subprogram is done, the store of the calling subprogram is not the same as before. If
the update was not needed by the calling subprogram, then calling subprogram may
behave erroneously, because it will be reading the values from the corrupted store to
perform the computation.

Base

Environment of main Environment of count

i
x i

Last_index

Accum

j

Final_count

d0

di

...

...

d99

Base + 4 * i

Base + 4 * 99

FIGURE 4.6 A schematic of call-by-reference.

Abstractions in Programs and Information Exchange    ◾    151  

 2. Every time an actual parameter is used, two memory accesses take place: one to access
the memory location of the actual parameter, and then using the memory location of
the actual parameter to access the r-value.

 3. In distributed computing, if the calling subprogram and the called subprogram are
residing on different processors (or computers), then they may have different address
space. Accessing different address space requires the use of communication protocol
and packing and unpacking of data that has significant overhead in addition to the
unreliability of the communication link.

In order to alleviate the problem of inadvertently updating the store of the calling
program due to misuse of the reference parameters, some languages such as C++ and
Modula-3 support an option of read-only call-by-reference. In a read-only call-by-reference,
the actual parameter value can be read only by using the pointer stored in the formal
parameter memory location; the memory location corresponding to the actual parameter
cannot be destructively updated.

Another variation combines first parameter passing as call-by-reference followed by
 subsequent parameter passing using call-by-value. The effect is that all the called sub-
program sequences will have access to the original actual parameter: the first reference
link when copied subsequently using call-by-value creates reference links in every subse-
quent called subprogram. For example, let us take a scenario when a program unit “A” uses
 call-by-reference to pass an actual parameter “x” to the called subprogram “B”. The formal
parameter “y” in the program unit “B” will be a reference link to “x” to the called subpro-
gram "B". If program unit “B” calls another program unit “C” and passes “y” as call-by-value
to a formal parameter “z” in program unit “C,” then the formal parameter “z” will also be a
reference link to “x.” Both program units “B” and “C” can access the actual parameter “x”
through their reference links. This scheme is allowed in many languages, especially object-
based languages such as C#, Java, and C++, and is called call-by-sharing by CLU.

4.4.3 Call-by-Result

Call-by-result, also called parameter passing by copying out mode, is just the reverse of the
call-by-value. In call-by-result, the actual parameter is not copied to the formal param-
eter location at the time of invocation. Instead, the formal parameter is initialized to a
default value according to the type of the object. At the end of the called procedure, the
value of the formal parameter is copied back to the actual parameter. Like call-by-value,
call-by-result also treats the formal parameters as local variables. There is no communica-
tion between the formal parameter and the actual parameter during the execution of the
called program.

4.4.4 Call-by-Value-Result

Call-by-value-result, also called parameter passing by in–out mode, passes the r-value in
two ways: after evaluating the expression in the actual parameter to formal parameter, it
passes back the result after the called subprogram is done. The passing back of the result

152    ◾    Introduction to Programming Language

is done to the same memory locations in a specific order. During the execution of the
called subprogram, there is no communication between the calling subprogram and the
called subprogram.

Like call-by-value, call-by-value-result also treats the formal parameters as local
variables and creates memory locations in the local environment of the called sub-
program. The memory allocation overheads in the call-by-value-result are the same as
the call-by-value. However, the copying overhead of the call-by-value-result is twice as
high as call-by-value, since call-by-value-result also passes back the result to the actual
parameters.

Example 4.11

The following program creates local variables x[100], y[100] and z[100, 100], and cop-
ies the values of a[100] into the corresponding memory locations of x[100], b[100]
into y[100] and c[100, 100] into z[100, 100]. The final result is passed back after the
termination of the subprogram “multiply,” such that from x[100] is copied to a[100];
y[100] is copied to b[100]; and z[100, 100] is copied to c[100, 100].

Program main
{ integer a[100], b[100], c[100, 100], i;
 for (i = 0; i =< 99; i++) read(a[i]);
 for (i = 0; i =< 99; i++) read(b[i]);
 call multiply (value-result a[100], b[100], c[100, 100]);

}
subprogram multiply(integer x[100], y[100], z[100, 100])
{ integer i, j;
 for (i = 0; j = < 99; i++)
 for (j = 0; j = < 99; j++)
 z[i, j] = x[i] * y[j];
}

Although call-by-value-result passes back the outcome of the computations to the
calling program, there is a significant difference between call-by-reference and call-
by-value-result as follows:

 1. Call-by-reference keeps modifying the actual parameters as the computation
proceeds in the called subprogram and retains the last value due to continuous
destructive update. While the final value in the call-by-value-result is depen-
dent upon the arguments’ order in the procedure call and the actual parameters
are updated only after the successful termination of the called subprogram. The
final value of the actual parameter in the call-by-value-result need not be the
same as call-by-reference, as explained in Example 4.12.

Abstractions in Programs and Information Exchange    ◾    153  

 2. Call-by-reference needs only one memory location for storing the reference link
to access a large data structure, while call-by-value-result creates a copy of the
actual parameter. Thus memory allocation overhead for large data structures is
almost negligible in call-by-reference compared to call-by-value-result.

 3. Call-by-reference has additional overhead of accessing the actual values, due to
additional memory accesses. If the calling program is performing computation-
intensive operations on large arrays, vectors, or any large collection of data enti-
ties, then the memory access overhead in call-by-reference may be much more
than the copying cost in call-by-value-result.

 4. In distributed computing, where the calling program and called program reside
on two different processors or computers, the overhead of memory access in
call-by-reference can be significant, and working on a local copy of the actual
parameter is advantageous.

Example 4.12

Let us understand the difference between call-by-value-result and call-by-reference
using the program given in Figure 4.7. The left-hand column shows the call-by-refer-
ence version of the program, and the right-hand column shows the call-by-value-result
version of the same program. The sign “&” shows the address of the variable, and the
sign “*” is used to dereference the pointer to access the value of the actual parameter. In
the call-by-reference version of the program, the actual parameter’s memory location
is updated in the order of the execution of the statements. Hence the final value of the
variable i would be 2. In the call-by-value-result version of the program, the result is
passed back at the end of the called procedure in the left-to-right order. Hence the final
value of the variable “i” would be the final value of the formal parameter “k”; that is, 4.

4.4.5 Call-by-Name

Call-by-name is the third major category of parameter passing, where the formal param-
eter is substituted literally by the whole expression-text of the actual parameter without
any evaluation before substitution, and this substituted body of the called subprogram is
executed in the environment of the calling procedure on a demand basis using a technique
called thunking. Thunk is a parameter-less procedure with an unevaluated expression that
is evaluated every time the actual parameter is accessed in the environment of the calling
procedure. A thunk returns the address of the actual parameter every time the expression

main ();
integer i;
{i = 1; sub(& i, & i);}

void sub(integer *j, *k);
{*k = 4; *j = 2}

main ();
integer i;
{i = 1; sub(value-result i, value-result i);}

void sub(integer j, k);
{k = 4; j = 2}

FIGURE 4.7 Comparison of call-by-reference and call-by-value-result.

154    ◾    Introduction to Programming Language

is evaluated in the environment of the calling procedure. If the body of the called subpro-
gram after substitution contains a local variable that has a name conflict with a variable
declared in the calling program, then the name of the local variable in body of the called
subprogram is altered to avoid the naming conflict. The difference between call-by-name
and call-by-value is that the expression in the actual parameter of call-by-name is not
evaluated immediately before the substitution. Rather, it is delayed until after the substi-
tution and is evaluated every time afresh when the actual parameter is accessed.

Example 4.13

The program in Figure 4.8 shows the call-by-name parameter passing. The left-hand
side shows the actual program, and the right-hand side shows the run-time behavior
after the called subprogram “sub” is invoked. The formal parameters a, b, and w are
substituted by the expression-text x + y, x + z, and w, without any evaluation.

The variable z in the right-side expression of the assignment statement corresponds
to the variable z declared in the environment of program main and is in name conflict
with the local variable z in the subprogram sub. Thus, the local variable z is renamed to
z1 and the substituted body in the called subprogram is logically substituted in place of
the call. The effect is shown on the right side of Figure 4.8. Essentially, after the substitution
of the expression, the body of the subprogram sub acts as a block of the calling program.
The execution of the program binds z1 to the evaluation of (3 + 4) * (3 + 4) + (3 + 5) *
(3 + 5), and the variable w gets the final value. Call-by-name is a powerful mechanism.
However, it has two drawbacks:

 1. Delayed evaluation using thunking has implementation and computational overhead.

 2. Resolution of name conflict is an additional overhead.

The delayed expression evaluation in thunk means that the mapping of the identifier
to the memory location can change at run time, and this can cause serious problems with

Program Run time behavior after call to sub

program main
{ integer x, y, z;
 real r;
 x = 3; y = 4; z = 5;
 call sub(x + y, x + z, w);
}

subprogram sub (name a, b, w)
{ integer z;
 z = a * a + b * b;
 w = square _ root(z);
}

program main
{ integer x, y, z;
 real w;
 x = 3; y = 4; z = 5;

 { integer z1; % rename the variable
 z1 = (x + y) * (x + y) + (x + z)
 * (x + z);
 w = square _ root(z1);
 }
}

FIGURE 4.8 An example of call-by-name mechanism.

Abstractions in Programs and Information Exchange    ◾    155  

run-time behavior of the program that may have different behavior than the program com-
prehension based upon program structure. It is very difficult to reason about the programs
with call-by-name, specially when indexed elements such as a[i] are involved, because the
value of “i” can be computed as an expression at run time, changing the memory location
bound to the identifier “a[i],” while the programs may be written with a[i] being bound to a
fixed memory location in mind, as illustrated in Example 4.14 and Figure 4.9.

Example 4.14

Figure 4.9 shows a program that swaps the values of variables using multiple calls
to the subprogram swap. In the first instant, it swaps the value of j and k; and in the
second instance, values of k and a[k] are swapped. The swap procedure is standard.
The right-hand side of the figure shows the behavior of the program execution under
call-by-name.

The first call to swap(j, k) works correctly, giving the value of j = 3 and k = 2.
However, the second call gives the value of k = a[2]; that is, 0. Since k is equal to 0,
instead of updating a[2], the program updates a[0] to the old value of k; that is, 2.

Owing to this mix-up of the memory locations, call-by-name has found limited use in
imperative languages. Call-by-name was originally proposed in ALGOL-60. It has been
dropped later from other imperative programming languages. However, a variation of
call-by-name, called call-by-need, is used in the functional programming languages that
delay the evaluation of an expression until needed. Haskell is one such language that uses
call-by-need.

4.4.6 Call-by-Need

Call-by-need is a variation of call-by-name. Unlike call-by-name, where the address of
the actual parameter is computed every time the expression is evaluated, the call-by-need
caches the value generated by the expression the first time it is evaluated and retrieves
the cached value every time the expression is evaluated. The first evaluation is delayed.
However, subsequent evaluations are not delayed.

program main
{ integer i, j, k; integer a[5];
 k = 3; j = 2;
 for (I = 0; I =< 4; i++) a[i] =0;
 swap(name j, k);
 swap(name k, a[k];
}

subprogram swap(name m, n);
{ integer temp;
 temp = m; m = n; n = temp;
}

program main
{ integer i, j, k; integer a[5];
 k = 3; j = 2;
 for (I = 0; I =< 4; i++) a[i] =0;
 { integer temp;
 temp = j; j = k; k = temp;
 }
 { integer temp;
 temp = k; k = a[k]; a[k] = temp;
 }
 }

FIGURE 4.9 Problem with memory locations mix-up in call-by-name.

156    ◾    Introduction to Programming Language

In most of the cases, where the index is not being recomputed such as in the example of
Figure 4.9, the address does not alter, and call-by-need acts in theory like an efficient call-
by-name, where the value need not be computed every time. The effect of caching becomes
like evaluate once, and then copy every time. Call-by-need can be seen as call-by-name fol-
lowed by repeated call-by-value, where value is copied from the cache.

Example 4.15

Let us compare the efficiency issue in call-by-name and call-by-need using a simple
example. In Figure 4.8, two expressions x + y and x + z are evaluated two times in the
right side of the assignment statement “z1 = (x + y) * (x + y) + (x + z) * (x + z);.” Call-
by-name will evaluate the expression both times, while call-by-need will evaluate the
expression x + y once and store the resulting value in cache. Next time it encounters
the expression x + y, it retrieves the cached value. Similarly, call-by-name will evalu-
ate the expression x + z both times, while call-by-need will evaluate the first occur-
rence of x + z, cache the resulting value, and the next occurrence of the expression
retrieves the value from cache.

Call-by-need is used in functional programming languages such as Haskell, which
defers evaluation of expression until needed, and improves the execution speed by
storing the value of a subexpression and utilizing the resulting value to avoid evaluat-
ing the same subexpression occurring at another location in the expression.

4.4.7 Passing Subprograms as Parameters

Languages supporting the functional programming paradigm such as Lisp, Scheme,
Haskell, Ruby, and Scala, and many imperative programming languages, such as ALGOL
and Pascal, support passing functions/subprograms as parameters. Passing functions as
parameters involves passing the reference to a function’s first instruction and the reference
to the corresponding environment of the function to check for the number and types of
the argument at run time. This is quite difficult for statically typed languages—languages
where type of the data entities is declared at compile time—because different subprograms
can be invoked by different calls at run time, and the compile-time analysis has to make
sure that the environment, including argument types received by the called function, is
same as the environment and the argument types of the function passed as the parameter.
In dynamically typed functional programming languages, this is not a problem, as type
checking is done at run time.

4.4.8 Parameter Passing for Distributed Computing

Distributed computing requires invocation of remote procedures on different processors.
That means that different subprograms execute in different address spaces. Distributed
computing uses three types of parameters passing: (1) call-by-moving, also called call-
by-copy; (2) call-by-reference; and (3) call-by-visit, also called call-by-copy-restore. These
parameter passing mechanisms are distributed address-space counterparts of call-by-value,

Abstractions in Programs and Information Exchange    ◾    157  

call-by-reference, and call-by-value-result in single-processor implementation of pro-
gramming languages. The invocation of the remote procedure involves evaluation of the
expression, relocating a copy of the object to the remote site and binding it to the formal
parameter, executing the remote procedure, and returning the result or object back to the
calling procedure.

Call-by-visit makes a copy of the object temporarily on the remote processor and copies
back the object after the called procedure successfully terminates. Call-by-moving makes
a copy of the object for the execution of the called procedure on the remote processor.
However, the object is not copied back. Call-by-visit is analogous to call-by-value-result,
and call-by-move is analogous to call-by-value. Call-by-reference just copies the reference
of complex objects.

Passing the address of the object on the processor of the calling procedures to called
procedure on a remote processor has got significant overhead in distributed computing,
due to communication overhead and going through system routines to distributed address
space. Despite this overhead, there is an advantage of call-by-reference that the reference
of an object can be easily passed between the distributed processors without excessive data
transfer overhead.

Distributed programming language Emerald uses all three parameter passing schemes,
namely, call-by-reference, call-by-visit, and call-by-move. The parameter passing for dis-
tributed computing is revisited in Chapter 8 on concurrent programming.

4.5 SIDE EFFECTS
A procedure has access to stores other than the ones created by local variables, due to the
presence of global variables, nonlocal variables, reference to the environment of the calling
procedures, and persistent data objects. Side effect is defined as an effect that outlives the
called subprogram. Side effect is caused by (1) the updates that are made in the store that
do not correspond to the environment created by local variables of the currently executing
procedure; (2) an observable interaction with the outside world, such as writing into a file
or a stream; or (3) raising an exception. While changes caused in the store corresponding to
the local variable expire after the termination of the procedure, the changes caused in other
stores or persistent objects or dynamic objects and recursive data structures that outlive the
subprogram that created them remain even if the currently executing procedure terminates.

In imperative languages, side-effect-based programming is used to send the result
back to the calling subprogram. However, if the store is altered in an indiscriminate
way by some scratch pad computation in the called subprogram, then other program
units, unaware of the memory locations being corrupted, may use corrupted values inad-
vertently. This causes an unexpected behavior, resulting in an incorrect computational
outcome.

One of the serious problems of the side effect is the loss of commutativity. Commutativity
is a fundamental property of many operators in expression evaluation, such as addition
and multiplication. Given an expression e1 + e2, both subexpressions e1 and e2 are evalu-
ated under the same original store by reading the value of the variables and ideally should

158    ◾    Introduction to Programming Language

not modify the store. However, if the evaluation of the expression e1 or e2 has a side effect,
then the original store will change after evaluation of the subexpression e1 or e2, and the
expression evaluated next in the sequence will read the values from the new store, giving a
different final value of the expression, as shown in Example 4.16.

Example 4.16

Let us consider the following program that uses call-by-reference to pass the param-
eters to the called function square_sum. The function square_sum squares the two
variables x and y, adds them, and returns the result back to the main program.
However, it destructively updates the actual parameters x and y to 9 and 16. After the
return, when the value of x is added to the result of the function square_sum, it gives
the value of B as 34, which would be different if the subexpressions were commuted
to x + square_sum(x, y), which would derive 28.

program main
{ integer A, B, x, y;
 x = 3; y = 4;
 A = square_sum(&x, &y) + x; % A becomes 34 instead of 28
 B = x + y;% B becomes 25 instead of 7
 print(A, B, x, y);

}

function integer square_sum(integer *x, *y);
{ *x = *x * *x; *y = *y * *y; % Assignment updates
 the variables x and y
 return (*x + *y);
}

4.5.1 Aliasing and Side Effects

Aliasing is defined as two identifiers mapping to the same memory location, or two point-
ers pointing to the same memory location. If one of the variables is assigned a value, the
other variable gets automatically updated. This may have a drastic effect if the programmer
is unaware of the aliases, or the called subprogram has been compiled separately from the
calling subprogram. Let us see the effect using Example 4.17.

Example 4.17

The following program describes a combination of aliasing and call-by-reference to
illustrate the unexpected behavior that can be caused by aliasing. Independently,
both the program units—main and swap—behave correctly. These two units may be
compiled separately and linked later, or swap may be loaded from another module,
without any knowledge of its source code.

Abstractions in Programs and Information Exchange    ◾    159  

The main program calls the subprogram swap twice: (1) in the first call, it swaps
the value stored in two different memory locations and (2) in the second call, it
swaps the value of the same memory location. The swap routine is unconvention-
ally written to avoid the use of any local variable to swap the value. Instead it uses
 arithmetic expressions. The new value of x is equal to xold + yold. The new value of y
is xnew – yold → xold + yold – yold → xold, and the new value of x is xold + yold – ynew → xold
+ yold – xold → yold.

Clearly, the subprogram swaps the value of y and z correctly. However, when
swap(&x, &x) is called, both the formal parameters refer to the same memory loca-
tion, and the first assignment statement *x = *x + *y doubles the value of the actual
parameter x. The second assignment statement subtracts the value with itself, storing
0 in the memory location of actual parameter x.

program main
{ integer x, y, z;
 x = 3; y = 4; z = 5;
 swap(&y, &z); % swaps the value of y and z
 swap(&x, &x); % stores 0 in the memory location
 x – an unpredictable behavior
 print(x, y, z) % x becomes 0; Y = 5 and z = 4
}
subprogram swap(integer *x, *y);
{ *x = *x + *y;
 *y = *x - *y;
 *x = *x - *y;
}

When multiple pointers are pointing to the same data structure in the heap, then
releasing one pointer marks the memory location for recycling or garbage collection,
as shown in Figure 4.10.

In Figure 4.10, two pointers P and Q point to different parts of a linked list: P points
to the beginning, and Q to a few data cells. After the pointer P is released, then the whole
linked list will become recyclable, the garbage collector will recycle it, and the memory
locations will be allocated to other dynamic data structure. Thus the memory location will
be corrupted, and the program will not behave correctly.

Another problem that causes undesired change in the store is the violation of a data
abstraction boundary during run time, caused either by pointer arithmetic or the value of

P

Q
Shared data-structure

^

FIGURE 4.10 Pointers sharing a data structure.

160    ◾    Introduction to Programming Language

an index accessing an array or vector that exceeds the upper bound of the data structure.
For example, if we declare an array a[100], and during execution the value of the index
variable i is equal to 130, then a[i] will cross the boundary of the memory allocation for the
data structure a[100], and retrieve an incorrect value from some other memory location.

4.5.2 Regulating Side Effects

There are various causes of the overt side effects resulting in incorrect run-time behavior
of the programs. The different causes are as follows: (1) scratch-pad computation in vari-
ables whose scope is not local, (2) pointer arithmetic, (3) independent allocation of pointers
and allowing them to point independently to a data structure, and (4) destructive update
of variables or data objects whose scope is not local. There have been many approaches to
handle the problem of the side effects. The approaches have been to provide restriction at
the language level as well as the disciplined approach to programming. The approaches are
as follows:

 1. Programmer’s discipline: Use local variables for scratch-pad computations. Variables
with scope outside the local environment should be modified only for information
transfer. This is by far the most popular approach to handle undesirable side effects
caused due to modification of variables whose scope is beyond the local environment.

 2. Disallow pointer arithmetic: The pointers are not allowed any arithmetic. This takes
care of type violation caused by a pointer crossing over the boundary of a data entity
during run time.

 3. Disallow independent pointers: Pointers can be declared only when describing a
recursive data structure and internally to point to an object. This solves the problem
of inconsistent operation on different data types.

 4. Disallow destructive updates: Variables can be associated programmatically with
value only once. Since the destructive update is a major cause of updating the store in
the calling subprogram, this source of side effect will be removed. This solution has
been tried in the earlier version of declarative languages. However, the assign-once
property: (1) restricts the memory reuse (2) causes excessive generation of variables;
and (3) forces recursive style of programming due to lack of support for iteration that
needs destructive update of index variables in every cycle. The restriction on the use
of mutable objects has resulted in some interesting recursive programming styles and
the use of iterators in declarative programming languages. Iterators were later bor-
rowed in most modern languages, as they provide a level of information hiding about
the implementation level details.

4.5.3 A Comprehensive Example

This section describes a hypothetical programming example that exploits call-by-value,
call-by-reference, call-by-value-result, and the mix-up caused by aliasing. Call-by-reference
uses “&” in front of the actual parameter to denote that the address is being passed and

Abstractions in Programs and Information Exchange    ◾    161  

uses “*” in front of the formal parameter to show dereferencing to access the value in the
actual parameter. Presence of the symbol “#” in front of the actual parameter denotes that
parameter passing uses call-by-value-result. Placing a symbol “$” denotes that the param-
eter is passed using call by-result. Figure 4.11 illustrates the effect of various para meter
passing mechanisms using a program main, and a subprogram messy.

After the call to subprogram messy, the variable a[1] is passed using call-by-value,
the variable a[2] is passed using call-by-reference, the variable j in the third and fourth
argument is passed as call-by-reference, the fifth argument a[3] is passed as call-by-
value-result, and the variable k is passed as call-by-result. The formal parameter A
gets assigned the value 10—the value of the variable a[1], the formal parameter B is a
pointer to the actual parameter a[2], and the formal parameters C and D are pointers
to the memory location of the actual parameter j. Since formal parameters C and D
point to the same memory location, changing the value of the memory location using
the pointer stored in the memory location of the formal parameter C will also change
the value *D and vice versa. The formal parameter E gets a copy of the value of a[1]
= 10. The formal parameter F gets initialized to 0, because the value is not copied in
call-by-result.

The first statement retrieves the value of the actual parameter a[2] = 10 and the
value of actual parameter j = 0 and adds them up to modify the value of A as 10. The
second statement retrieves the value of the actual parameter j = 0 and adds the value
of E that has been initialized to 10 (copy of the value of a[3]) and the value of F that
has been initialized to 0 to derive the value 10 that is written back into the memory
location of the actual parameter a[2]. The third statement reads the values of the vari-
ables A and E, adds them to derive the value 20, and stores in the actual variable j. The
fourth statement reads the value of the actual parameter j and subtracts the value of
the actual parameter j to derive 0 that is stored in the memory location of the actual
parameter j. The fifth statement reads the value of the actual parameter a[2] and the
value of actual parameter j and adds them to derive the value 10 that is assigned to the
variable E. The last statement reads the value of the variable E is assigned the value 10,

program main()
{ integer i, j, k, a[6];
 i = 0; j = 0; k = 2;
 for (i = 1; i =< 5; i++) a[i] = 10;
 messy(a[1], &a[2], &j, &j, #a[3], $k);
}

subprogram messy(integer a, *b, *c, *d, e, f)
{ a = *b + *c; % a = value(a[2]) + value(j) = 10 + 0 = 10
 *b = *d + e + f; % a[2] = value(j) + value(e) + value(f) = 10
 *c = a + e; % j = value(a) + value(e) = 10 + 10 = 20
 *d = *c - *d; % j = value(j) – value(j) = 20 – 20 = 0
 e = *b + *c; % e = value(a[2]) + value(j) = 10 + 0 = 10
 f = e + a; % f = value(e) + value(a) = 10 + 12 = 22
}

FIGURE 4.11 Illustrating the combined effect of parameters and aliasing.

162    ◾    Introduction to Programming Language

adds the value of the variable A that is 10, and assigns the resulting value 20 to the
variable F.

After the procedure messy terminates, only the result for the variables E and F are cop-
ied back. The value of the variable E is copied back to the memory location of the actual
parameter a[3], and the value of the variable F is copied back to the memory location of
actual parameter K. The final values are i = 0, j = 0, k = 20, a[0] = 10, a[1] = 10, a[2] = 10,
a[3] = 10, a[4] = 10, and a[5] = 10.

4.6 EXCEPTION HANDLING
One of the major concerns in executing a program is the successful termination and
not a sudden abortion due to unrecoverable errors such as “file not found,” “invalid
memory access,” “divide by zero,” “unable to open a file,” or “array out of bounds.”
Many times, errors are data dependent and cannot be attributed to as the logical error.
The errors may show once in a while depending upon the input data or system condi-
tion. In such cases, the program should be able to terminate, releasing all user-allocated
resources such as files, buffers, and i/o devices, rather than abort prematurely, blocking
the resources.

Exception could be at the system level, such as “file not found”; or the exception could
be a user-defined error condition. Exceptions can be handled by the operating system
using the concepts of the traps—software interrupts checked at the end of an instruction.
However, traps are at the operating system level and will not allow graceful handling of the
error condition. In order to gracefully handle the error condition, so that program does not
abort abruptly, a provision has to be made for programmer-defined exception handlers in
a programming language.

Exception handling is a programming language level abstraction to initiate an action
in response to error conditions or undesired conditions that may potentially abort a
program or cause a pathological situation, where the result of computation is errone-
ous. Exceptions can be built-in or user-defined. The languages that support exceptions
also support user-defined exceptions. The built-in exceptions set a predefined Boolean
condition that is tested in the exception handler. User-defined exception handlers
need to be declared as an exception type. An exception type is a static Boolean variable
that can be tested in a subprogram invocation in the chain of invoked subprograms.
Different languages use different mechanisms to handle the scope of the exception
conditions between the procedures that raised them and the exception handlers. One
scheme is to use call-by-value to pass the exception condition to the exception handler
routine.

If the exception handler can verify the exception flag, then the corresponding subrou-
tine or the sequence of specified instruction is executed. In the absence of the appropriate
exception handler, the control is passed back to the next higher level calling routine. Before
the control passes to the next level, it executes the optional block, followed by the reserved
word “finally.” Note that the declaration of final block is optional.

Abstractions in Programs and Information Exchange    ◾    163  

If the control finds the appropriate exception handler at this level, then the exception
handler is executed. Otherwise, the process is repeated, and the control keeps going up to
the next level of calling subroutines in the chain of calling subprograms, until the con-
trol reaches the main program. If no appropriate exception handler is found, the program
 ter minates after reaching the main body of the program.

Different languages have different syntaxes for exception handlers. An abstract repre-
sentation of an exception handler is as follows:

<extended-statement> ::= try <statement>
 if <expression1> raise <exception1>;
 if <expression2> raise <exception2>;
 …
 if <expressionM> raise <exceptionM>;
 exception-handlers
 { when <exception1>: <block1>
 when <exception2>: <block2>
 …
 when <exceptionN>: <blockN>;
 }
[finally <blockF>]

An exception handler can take many actions such as (1) passing the control to another
routine; (2) releasing the resources; (3) correcting the source of error condition and pass-
ing the control back for retrying the actions; (4) returning the control to the next instruc-
tion after the exception handler, after notifying the programmer about the error condition;
(5) raising the exception handler and returning to the calling routine to be processed at
higher level; (6) skipping the data that caused the exception, and (7) returning to the calling
subroutine.

Different parts of the program executing the same statement may have different excep-
tion handlers associated with the statement. Different statements may have the same
 exception handler.

Exception handling was first started in PL I. However, most modern-day languages such
as ADA, Java, C++, and Ruby have robust exception-handling capabilities.

Example 4.18

The program in Figure 4.12 illustrates exception handling using an intuitively clear
syntax. The program opens a file “myfile,” and the corresponding stream “mystream”
is read for the debt amount for a credit card company. The program raises a built-
in exception “file-not-found” if the file is missing. There is a user-defined exception
“incorrect_debt” that is raised if the account value is greater than zero. The first
exception handler writes a statement “Account-file missing,” and returns to the call-
ing subprogram. The second exception handler writes a statement, closes the stream,
and returns.

164    ◾    Introduction to Programming Language

4.7 NONDETERMINISTIC COMPUTATION
Nondeterministic computation allows for alternate control flow of the program during
program execution. The only condition for nondeterministic computation is that the
final state should give the correct solution to the problem. If we represent the execution
of a program as a graph traversal problem, where each node of the graph is a computa-
tional state, then a program is nondeterministic if we can find out more than one path
from the initial state to the final state. Part of a computation is nondeterministic if the
final state is independent of the order of execution of the statement. There are many
fundamental properties of programming that support nondeterministic computation
as follows:

 1. Commutativity of operators in arithmetic expression and logical expression sup-
ports nondeterministic evaluation of the expression at the lower level. By definition,
“commutativity” is independent of the order of evaluation. Some of the operators that
support “commutativity” are addition, multiplication, logical-AND, and logical-OR.
For example, if we evaluate an expression 4 + 5 + 3 + 9 using an intermediate-level
instruction set, then it can be translated to multiple ways of adding two numbers at a
time. The final result would be the same, because addition is associative and commu-
tative in nature. Similarly, if we solve a logical expression (exp1 ∧ exp2 ∧ exp3) involv-
ing logical-AND, it is immaterial in what order the expression is evaluated, the result
will be the same, since “logical-AND” and “logical-OR” are individually associative
and commutative operators.

 2. If a store σS can be decomposed into disjoint union of sets of the form σΙ
S ⨄ (σ1

S ⨄
σ2

S) and a sequence of commands C1 ; C2 works, such that C1 works on σ1
S and C2

works on σ2
S, and σΙ

S is invariant during the execution of C1 and C2. Furthermore, σ1
S

is independent of σ2
S; the effects on them would not interfere with each other. After

the command C1, σ1
S would be mapped to a new store σ’1S; and after the command

C2, σ2
S would be mapped to a new store σ’2S. Thus the total effect of the command

subprogram illustrate _ exceptions
integer i;
real deposit, account;
file myfile;
stream mystream;
exception incorrect _ debt; % user defined exception
open _ file(myfile, mystream, read);
exception-handler {
 when file-not-found: write(‘Account file missing’); return }
read(mystream, account);
if (account > 0) raise incorrect _ debt; % raise the user defined exception
exception-handler { % handle the user defined exception
 when incorrect _ debt: write('Incorrect debt'); close(mystream); return;

}
close(mystream);
return

FIGURE 4.12 An illustrative example of exception handling.

Abstractions in Programs and Information Exchange    ◾    165  

sequence C1; C2 will give the new store σ’S = σΙ
S ⨄ (σ’1S ⨄ σ’2S). If we commute the

order of the commands, then they will produce the same final store σ’S = σΙ
S ⨄ (σ’2S

⨄ σ’1S). For example, if we take two assignment commands, x = 4; y = 5, such that x
and y are not aliases, then they will be altering two different memory locations and
can be executed in any order.

 3. If we take a selection command, such as if-then-else statement, and write it into a
form such that all conditionals statements are freed from control flow dependency
and are treated as equally likely to be executed, then changing the order of execution
does not alter the final condition.

Let us take the following example from Dijkstra’s famous article on guarded commands:

if (x >= y) smaller = y;
elseif (y >= x) smaller = x;

The above code finds the smaller of two values and can be transformed to two semanti-
cally equivalent codes as illustrated in Table 4.1.

The statement is nondeterministic, because, there are two possibilities of executing the
statement and getting the same final condition. If x > y, then also the program can be
executed in the order: the Boolean condition y >= x will fail if tried first, and the first state-
ment will be executed. In general, a nondeterministic conditional command can be written
in the following abstract syntax form:

if { <Boolean-Expression1> —→ <Command1> |
 <Boolean-Expression2> —→ <Command2> |
 … |
 <Boolean-Expressionn> —→ <Commandn>
 }

In the above abstract construct, there is no control flow dependency, which means all
conditional commands of the form (<Boolean-Expressioni> → <Commandi>) (1 ≤ i ≤
N) are equally likely. Each conditional statement is connected to the other using logical-
OR denoted by the symbol ‘|’. The symbol ‘→’ implies that the command part follows the
successful execution of the Boolean expression. At least one of the Boolean expressions
<Boolean-Expressioni> (1 ≤ i ≤ N) has to succeed to generate a solution. If all the Boolean
expressions fail, then an error is generated. After the execution of the first successful
Boolean expression, the corresponding command is executed to get a possible solution,
and other Boolean expressions are not tried.

TABLE 4.1 Semantically Equivalent Programs

if (X > = Y) then smaller = Y |
if (Y > = X) then smaller = X

if (Y > = X) then smaller = X |
if (X > = Y) then smaller = Y

166    ◾    Introduction to Programming Language

4.7.1 Guarded Commands

Dijkstra proposed a model of the nondeterministic programming where each Boolean
expression was a weakest necessary condition, which needed to be true for the execu-
tion to commit to the conditional statement, and, once the execution was committed to
one of the conditional statements, other conditional statements were not tried, although
other Boolean expressions may also result in successful execution. Dijkstra called these
Boolean expressions guards, and the conditional statements were called guarded com-
mands. A guarded command consists of two components: guards and commands. Guards
are Boolean expressions that do not modify the store. Commands contain the assignment
statements and change the precondition to postcondition.

Guarded commands have the following properties:

 1. Guards are the weakest preconditions for the commitment to a guarded command.

 2. Guards are necessary but not sufficient conditions. Guarded commands can be tried
in any order.

 3. Once a guard succeeds, the corresponding command is committed, and other guards
are aborted.

 4. Owing to commitment to one of the guarded commands, and guard being only a
necessary and not a sufficient condition, a guard may succeed without yielding a
solution in the command part. A solution may exist in another guarded command.
However, the other guarded commands are not tried after commitment to the first
successful guard. Thus a program with guarded command is incomplete: it may not
yield a solution, although a solution may exist.

Given the postcondition Q and the statement S, the notion wp(S, Q) = P means that P
is the weakest precondition for a nondeterministic statement, so that Q is the postcondi-
tion. Alternately, given a precondition P and a statement S, Q is the strongest postcondition.
There are many properties of the weakest preconditions: for example, if wp(S, Q) = P1 and
wp(S, R) = P2 then wp(S, Q ∧ R) = P1 ∧ P2. Similarly wp(S, Q ∨ R) is equal to P1 ∨ P2; wp(skip,
Q) = Q for all the postconditions; and wp(abort, Q) = fail, which means that initial condi-
tions must be fail to derive the final condition abort.

Given a sequence of statements S1; S2 and the final condition Q, the postcondition of S1
is the weakest precondition of S2. Thus the equation can be written as wp(S1; S2, Q) = wp(S1,
wp(S2, Q)).

There are two types of constructs in guarded commands: guarded command selection
and guarded command iteration. A guarded command selection is of the following form:

if
{ <guard1> —→ <command1> |
 <guard2> —→ <command2>|
 …
 <guardN> —→ <commandN>
}

Abstractions in Programs and Information Exchange    ◾    167  

The symbol ‘→’ separates a guard from the corresponding command in each guarded
command, and the symbol ‘|’ separates the guarded commands. The above construct tries
out the guards in any order. If the guard succeeds, then the corresponding command
is executed, and the remaining guarded commands are not tried. If a guard fails, then
another guard is tried, until all the guards have been tried or one of the guards succeeds.

The guarded command iterative construct is described below

loop
{ <guard1> —→ <command1> |
 <guard2> —→ <command2> |
 …
 <guardN> —→ <commandN>
}

The iterative construct keeps looping until all the guards fail. If any of the guards suc-
ceeds, the corresponding command is executed, and the next iterative cycle starts again.
When the control comes out of the iterative constructs, all the guards have failed, which
means that the postcondition Q is equal to P ∧ ¬ guard1 ∧ ¬ guard2 ∧ … ∧ ¬ guardN. Using
De Morgan’s theorem, the final condition can be rewritten as P ∧ ¬ (guard1 ∨ guard2 ∨ …
∨ guardN). The iterative construct adds the Boolean condition ¬ (guard1 ∨ guard2 ∨ … ∨
guardN) to the precondition.

Example 4.19

In the following example taken from Dijkstra’s seminal work on nondeterministic
programs, we see a toy example of nondeterministic iteration. Suppose we want to
sort in a sequence of four numbers a0, a1, a2, and a3. We can use the nondetermin-
istic iteration to solve this problem.

loop
{ a0 > a1 → swap(a0, a1) |
 a1 > a2 → swap(a1, a2) |
 a2 > a3 → swap(a2, a3)
}

For an initial condition P, after the execution of the iterative loop, the final condition is
P ∧ not (a0 > a1) ∧ not (a1 > a2) ∧ not (a2 > a3), which can be rewritten as P ∧ (a0 ≤ a1)
∧ (a1 ≤ a2) ∧ (a2 ≤ a3). By comparing the postcondition and precondition, the iterative
construct makes (a0 ≤ a1) ∧ (a1 ≤ a2) ∧ (a2 ≤ a3), which is the same as the sorted ascend-
ing order a0 ≤ a1 ≤ a2 ≤ a3.

4.7.2 Stepwise Program Construction

The intended final condition, and the axiomatic semantics of the statements, can be used to find
out the weakest precondition that needs to be tested for the previous statement, and the process
can be repeated backward to develop a nondeterministic program in a stepwise manner.

168    ◾    Introduction to Programming Language

Given the final condition and the initial condition, the difference is taken. If the differ-
ence can be represented using conjunctive form B1 ∧ B2 ∧ … ∧ Bn, then iterative construct
could be used as follows: the guards are identified using the De Morgan’s law by taking
negation and using the rules about weakest preconditions described in the previous sec-
tion. By using De Morgan’s law, not (B1 ∧ B2 ∧ … ∧ Bn) gives guard1 as not (B1), guard2
as not (B2), and so on. Similarly, if we have the difference in the disjunctive form as B1
∨ B2 ∨ … ∨ Bn, then the guarded command selection could be used such that guard1 is
wp(command1, B1), guard2 is wp(command2, B2), and so on, such that each weakest precon-
dition wp(commandi, Bi) is included in the initial condition P.

Example 4.20

Let us take the case given in Example 4.2, and reason backward to develop the non-
deterministic program. The final condition for the sorted sequence is a0 ≤ a1 ≤
a2 ≤ a3, which can be written in conjunctive form as (a0 ≤ a1) ∧ (a1 ≤ a2) ∧ (a2 ≤ a3).
Looking at the conjunctive form, we know that nondeterministic iterative construct
can be used. Guard1 will be not (a0 ≤ a1) that gives the guard1 as a0 > a1. Similarly,
other guards can be derived as a1 > a2 and a2 > a3.

4.8 PROGRAMS AS DATA
In programming languages, generally data is separated from the command, and data is
something that is transformed, while command remains the same. However, many times,
such as in artificial intelligence, there is a need to build a program as a data object and then
convert into a program at run time that can act on data.

If a program is built as data at run time and then converted into a program, the program
is being treated as a first class object. A first class object can be constructed at run time,
bound to an identifier, passed as a parameter, or returned as a result of a computation.

Similarly, many times a program needs to analyze or process another program as data.
For example, an editor needs to treat another program as data. A language can be written
that can reason about its own execution in an abstract domain. All these are examples of
when a program is treated as data. The process of representing program as data using some
data structure is called reification.

4.8.1 Functions as First-Class Objects

Declarative languages such as ML, Haskell, Lisp, Scheme, and Prolog support programs
as first-class objects. For example, most of the functional programming languages have
a function-forming function that takes a function name and the corresponding argu-
ments as data, and maps the data to an active function. The function (apply ‘first ‘(Arvind
Programs)) in the programming language Lisp will take two data arguments: function-
name first and the list ‘(Arvind Programs), and transform the data to a function (first
‘(Arvind Programs)) that returns the data element ‘Arvind. Note that data elements have
an additional quote marker in the Lisp family to separate them from the functions. The

Abstractions in Programs and Information Exchange    ◾    169  

syntax used here has been used in Lisp and Scheme and is different for other functional
programming languages.

4.8.2 Meta-Programming and Reflexivity

Meta-programs are the programs that manipulate or reason about other programs as
their data. If a language can write meta-programs for its own programs, then it is
called a reflective language. The declarative languages that support first-class objects
support meta-programs. When a declaration is found, then the environment is updated
by the meta-programs, and when a command string is found, then it is transformed
to the program and executed. An example of meta-programs is an abstract interpreter
that reasons about another program in an abstract domain to analyze the run-time
behavior of the program. An example of an abstract domain is type domain, where
the concrete values are transformed to their corresponding types. Another example of
a meta-programs is writing an engine that executes the program of a language. Meta-
programs can also be used to generate another program. Meta-programming can also
be used to generate templates of programs that can be easily filled by the programmers,
saving coding time and effort. Languages such as Ruby, Scala, Lisp, and Prolog provide
natural support to meta-programming.

4.9 SOFTWARE REUSE
As software size is growing due to complex automation problems, it has become impera-
tive that, everytime software is developed, the previously developed software be reused to
avoid duplication, to improve the software development time, and to reduce errors in the
software development process. Different subproblems can be coded efficiently using dif-
ferent paradigms. A complex software development requires integration of the programs
developed using multiple programming paradigms.

Different languages support different programming paradigms, as shown in Appendix I.
Different programming paradigms differ in the implementation of the supported data
and control abstractions. For example, imperative languages traditionally use mutable
indexible arrays or vectors to implement collections. Declarative languages traditionally
use immutable sequences to implement collection of data entities. Paradigms even dif-
fer in the data and control abstractions they support. Some data abstractions and con-
trol abstractions are more suitable for different classes of problem domains needed in
the development of complex software. An integration of multiple paradigms requires
 interoperability—interface with other languages, and capability to handle libraries devel-
oped in other languages.

Modern-day software uses both the approaches: use of the external off-the-shelf
library, and interoperability with the software developed in other languages. The
library is a set of executable functions that has been made public and can be imported
in the software being developed. A library can be imported by a command “import
<library-name>.”

170    ◾    Introduction to Programming Language

4.9.1 Interoperability Revisited

Language interoperability provides the ability to call a program written in another lan-
guage, programming features present in another language, and to improve the execution
efficiency.

The major problem in language interoperability is to interface the arguments in the
calling program to the called program. There are two approaches to solve this problem: (1)
develop a common middleware language, and all the languages are translated to this com-
mon language or (2) develop a data-format conversion interface across two interoperable
languages. Both approaches have been used.

The common middleware language provides interoperability by specifying a type
system and metadata. The type system of every interoperable language is translated
to this common type to provide the interface. Metadata provides a uniform mecha-
nism to translate the type of information from other languages to the common type in
 common interface language and to store and retrieve the information about common
types. The metadata contains tables and data structures that hold information about the
 compiled program. The table contains information about the classes, fields and their
types, exported types, and references to other metadata tables in a language-neutral
interface, and removes the need for a specific interface definition language and custom-
ized interoperability code.

Despite the support provided by a common type system and metadata to translate one
type to another type, different languages support different data abstractions, and it is diffi-
cult to map one implementation of data abstraction completely to another implementation
of the same data abstraction exploiting full features.

The common language approach has been taken by .NET framework for many pro-
gramming languages supported by Microsoft such as C#, C++, and Visual Basic. The .NET
framework describes a common language specification (CLS) that describes the features
and rules about the common language. XML has become a standard common language
interface for web-based languages and databases.

4.10 CASE STUDY
In this section, we see multiple modern programming languages and discuss the abstrac-
tions supported by them. It should be noted that not all languages support all the data
abstractions discussed in this chapter. We take simple examples from the languages ADA
2012, C++, C#, Fortran 2009, Java, Modula-3, Ruby, and Scala. ADA is a rich language that
supports an imperative style of programming along with objects and modules. Fortran
2009 is a scientific block structured imperative programming language that supports the
notion of objects. C++ is a combination of imperative and object-oriented programming.
Java also supports the imperative and object-oriented programming paradigm. Lisp sup-
ports the functional programming paradigm, along with a limited imperative style of
programming and is rich in control and data abstractions. Modula-3 supports explicit
modules and object-oriented programming. Ruby integrates the notion of modules and
class, and supports an integrated functional and object-oriented programming paradigm.

Abstractions in Programs and Information Exchange    ◾    171  

Scala is a modern multiparadigm language that integrates functional and object-oriented
programming paradigms. The language Prolog representing logic programming language
has been left out, as it requires explaining many concepts such as unification and AND-OR
tree, which are different from abstractions in other programming languages and is dis-
cussed in detail in Chapter 10.

4.10.1 Data Abstraction in Programming Languages

In modern programming languages, many data abstractions are quite common. Almost
all the modern languages support composite types, collections, and extensible data struc-
tures. Multiparadigm languages that support both declarative and imperative program-
ming separate between mutable and immutable objects and support both types of objects.
Mutable objects can be destructively updated, and immutable objects support assign-once
property.

4.10.1.1 Single-Entity Abstraction
Single-entity objects such as integer, Boolean, real, and char are common and come
from the mathematical world. In many languages such as ADA, Pascal, Modula, C, and
C++, a user can define an enumerable set. However, enumerable sets were dropped from
Oberon—a successor of Modula-2. The declaration of subrange and its use in arrays are
standard in ADA, Fortran, ALGOL, Pascal, Modula-2, and ADA. However, range type has
been dropped from C, C++, and Oberon due to limited use of this facility, and the lower
bound of an array was fixed to “0.”

Set type is supported in Pascal, Modula-2, and in a more recent language, Scala.
However, set-based programming has not been adopted in many languages due to the
limited use by programmers during commercial software development. An example of
set type using Modula-2 syntax is given below

Type week = (Mon, Tue, Wed, Thu, Fri, Sat, Sun)
Var workdays: set of week;

First enumeration type week is declared. The variable workdays is declared as a set of
type week. The variable workday can take any value that is a proper subset of week.

Scala uses the reserved word ‘Set’ to create a set. For example, a statement var major =
Set(“CS,” “Math,” “Finance”) will create major as a set of three elements.

Enumeration type could also be a subrange, as shown below in an example from ADA:

Type week is (Mon, Tue, Wed, Thu, Fri, Sat, Sun);
Type year is 1..12;
Subtype weekend is week range Sat..Sun;
Subtype workingdays is week range Mon..Fri;
Subtype fall_semester is year 8..12
Subtype summer is year 6..8

172    ◾    Introduction to Programming Language

ADA also supports a subtype that inherits all the properties of the original type and
is discussed in detail in Chapter 7. Oberon extends Modula-2 type system by inclusion
of multiple arithmetic types shortint ⊆ integer ⊆ longint ⊆ real ⊆ real. The value of an
included type can be assigned to variables of including type. For example, if N is an inte-
ger and M is a longint, then M = N will be valid. This is inherently a case of coercion, as
 discussed in Chapter 7.

Scala or its extended variation Escala, a modern multiparadigm language that supports
integration of functional programming, object-oriented programming, and event-based
programming (supported in Escala), supports basic types such as integers and Booleans.
In addition, it treats string declaration.

In addition to regular single-entity abstraction, many languages support types needed
for concurrent execution such as monitors, coroutines, and semaphores, which are dis-
cussed in Chapter 8.

4.10.1.2 Composite-Entity Abstraction
Composite objects are tuples. Named tuples are called “struct” in ALGOL, C, and C++,
and are called “record” in ADA, Pascal, and the Modula family of languages. The “struct”
in C and C++ is written under a reserved word ‘struct’ followed by an identifier naming
the structure followed by various fields. The group of fields is placed under the left and
right curly brackets. For example, let us take a record student containing three fields: name,
department, degree. Assuming that all three fields are strings, the composite abstraction is
written in C++ using 'struct' as follows:

struct student {
 char* name;
 char* department;
 char* degree;}

where char* is used to represent an array of characters. The above declaration says that
name is a pointer that points to an array of characters. Similarly, department is a pointer
pointing to an array of characters. The pointer points to the first memory location of the
array. The tuple can be initialized by associating a tuple of concrete values with a variable
of type student as follows:

student plstudent = {“John”, “Computer Science”, “BS”};

ADA represents the named tuple using ‘record’ as follows:

Type PERSON is
record
 Name : STRING(1..30);
 Department : STRING(1..20);
 Degree : STRING (1..20)
end record;

Abstractions in Programs and Information Exchange    ◾    173  

The user-defined type can be used in another type definition. For example, the follow-
ing definition of record student can be extended to a new record definition alumni by add-
ing a field graduationYear. In Oberon, it can be written as follows:

student = RECORD
 name: ARRAY 30 of CHAR;
 department: ARRAY 20 of CHAR;
 degree: ARRAY 20 of CHAR;
 END
 alumni = RECORD
 person: student;
 graduationYear: INTEGER;
 END

Many languages, such as ADA, Pascal, and Modula-2, support variant record. Variant
record is a composite structure that has two parts: fixed part and variable part. Variable
part is a mutually exclusive groups of fields that can be allocated to the same mem-
ory space. Variant record interprets the shared memory space in the variant part of the
record based upon the value of an enumerated variable. In case the value of the enumer-
ated variable changes at run time, the same memory space may be interpreted as a dif-
ferent type of data. Incorrect interpretation can cause type-violation error, as discussed
in Chapter 7.

Example 4.21

The following example representing composite entity in ADA syntax shows a variant
record declaration. The type Date is a record having three fields of the type integer
with different ranges. The type assignment is a variant record that contains the record
name as one of the fields. The fields problem, solved, and date_assigned are fixed
fields, and the field starting with the enumerated type submission is a variant field.
There are three possibilities: submitted, tobe, and missed. If the value of submission is
submitted, then the variant field is of the type integer with a range 1..100. If the value
of submission is tobe, then the field is treated as the record type date. If the value of
submission is missed, then the type of the field is integer with a score 0. Note that the
variant record has different ranges and different types. However, the interpretation of
the variant field is dependent upon the value of the field submission.

type Date is
 record
 month: INTEGER range 1..12;
 day: INTEGER range 1..31;
 year: INTEGER range 2012..2015
 end record
type status is (submitted, tobe, missed);

174    ◾    Introduction to Programming Language

type assignment (submission : status) is
 record
 Problems: Integer range 1..10;
 solved: Integer range 1..10;
 date_assigned: DATE;
 case submission is
 when submitted => score:
 Integer range 1..100;
 when tobe => expected: Date;
 when missed => score: Integer := 0
 end case
 end record

ADA, Pascal, and Modula-2 support variant record. However, variant record was
dropped from Oberon, and is not explicitly present in many languages due to type
violation error in the variable part as discussed in Chapter 7.

Prolog and Scala support dynamic tuples of the form (1, 2, 3). Scala can create
tuples using the command new tuple<no-of-entries> ‘(‘<tuple-values>’)’. For exam-
ple, a statement could be val instructors = new Tuple2(“Arvind,” “Paul”), and indi-
vidual elements can be accessed using instructors._1 and instructors._2.

4.10.1.3 Collection of Data Entities
Collections are modeled as sequences that are implemented using indexible arrays, linked
lists, association lists, or vectors. The arrays can be declared by (1) using the size of an
array, (2) giving the values stored in different dimensions, or (3) creating a jagged array that
may carry indefinite extensible size data elements in each dimension.

Example 4.22

For example, let us take the various array declaration schemes in C#.

int[] x = new int[5];//single dimensional array of size 5
int[] y = new int[] {1, 30, 44, 33, 8};//size is number
 //of elements
int[] y = {1, 30, 44, 33, 8}; //size is number
 //of elements
int[,] z = new int[2, 3]; // Two dimensional array
int[,] w = {{1, 2, 3}, {4, 5, 6}}; //2 × 3 matrix
int[] [] jagged1 = new int[6][]; //jagged array with 6 rows
jagged1[0] = new int[3] {10, 20, 30};
jagged1[1] = {1, 30, 44, 33, 8};

Abstractions in Programs and Information Exchange    ◾    175  

Similarly, Ruby arrays can be declared for definite size or indefinite size that can be
extended dynamically as follows:

x = Array.new # create a new array dynamically of indefinite size
x = Array.new(3) # create an array of size 3
x[0] = Array.new # first element is again an array
x[1] = [4, 5, 6, 7] # second array is of size four

Ruby also uses abstract operations such as pop, push, shift, and unshift as array is
nothing but an indexible sequence. Pop operation removes the last element from the
sequence. Push operation inserts an element at the end of the sequence. Shift operation
removes the first element from the sequence and moves all the elements of the array one
position toward the first element to fill in the empty space. Unshift operation moves all
the elements toward the last position and inserts the given element at the beginning of
the array.

Example 4.23

Let us implement the following statements in interactive Ruby:

p = [10, 20, 30, 40] # Create an array of four integers
p.pop # Remove the last element and p will have value [10, 20,
30]

p.push(80) # Insert 8- at the end and p will have value [10,
20, 30, 80]

p.shift # Remove the first element and p will have value [20,
30, 80]

p.unshift(100) # Insert 100 as the first element and p will be
[100, 20, 30, 80]

Languages supporting imperative programming paradigms such as ADA, Fortran,
C, C++, C#, Java, Pascal, Modula-2, and Modula-3 support arrays. ADA also supports
semidynamic arrays. Object-oriented languages such as C++, C#, Scala, and Ruby
support dynamic arrays, as arrays can be represented as any other object that can be
created dynamically. Dynamic languages such as Lisp and many implementations of
Prolog also support dynamic arrays. Dynamic arrays are allocated in the heap of a
program. Some of the syntax of declaring arrays in different programming languages
is given in Table 4.2.

Languages such as Modula-3 also support ordinal type in array declaration. For exam-
ple, an array in Modula-3 can also be represented as ARRAY ['A'..'D'] OF INTEGER, where
‘A’ maps to the index 1, and ‘D’ maps to the index 4. This array is equivalent to ARRAY[1..4]
OF INTEGER.

176    ◾    Introduction to Programming Language

4.10.1.4 Extensible Data Entities
Almost all the modern languages that support pointer, explicitly or implicitly at the
implementation level, can create any recursive data structure such as linked lists, trees,
and graphs through the use of pointers. Pointers can be strongly associated explicitly with
recursive data structures, as in Pascal and Modula-3. In many languages such as ADA,
C, and C++, pointers are supported as an independent entity that can be associated
with any data structure. A data element in pointer-based data structure is accessed using
pointer dereferencing—a mechanism to read the memory location pointed by the pointer.
Declarative languages such as Lisp and Prolog embed the pointers in the language imple-
mentation and do not allow programmers to directly manipulate the pointers; data struc-
tures can be extended using higher-level kernel operators, such as cons, insert, and append.
These operators are discussed in Chapters 9 and 10.

Linked List declaration in ADA:

type List_Pointer is access My_List;
 type My_List is
 record
 Info : INTEGER;
 Next : List_Pointer;
 end record;
 Start : List_Pointer; — Always points to start of the list
 Last : List_Pointer; — Points to the end of the list

Linked list declaration in C and C++:

struct My_List
{ int info;
 My_List* next;
}

Linked list declaration in Modula-3:
Modula-3 supports reference type, and extensible data entities are built using pointers.

TYPE
My_List = RECORD

TABLE 4.2 Array Declaration in Selected Languages

Language Array Description
ADA array(1..5) of INTEGER
C, C++: int x[5]
C# int[] x = new int[5];
Java int[] x = new int[5];
Modula-3 VAR x : = ARRAY [1..5] OF INTEGER
Ruby x = Array.new(5)
Scala var x = new Array [integer](30)

Abstractions in Programs and Information Exchange    ◾    177  

 info: INTEGER;
 next: Ref My_List
END

Linked list declaration in Scala:
Scala is a high-level multiparadigm language and hides the use of pointers at the pro-

grammer’s level. Its list is more like Lisp and Prolog. A list in Scala can be represented in
many ways, as shown below. A signature may be declared for the list, or it can be inferred
automatically by the value given.

val num : List[Int] = List(1, 2, 3) // num is a list of integers
val num = List(1, 2, 3) // The type of the list is inferred
val num = List()// Num is an empty list that can be extended later
val nested = List (List (1, 2, 3), List(4, 5, 6)) // Nested list

The concatenation of a data entity with a list is given by the operator ‘::’; thus, List(1, 2, 3)
can also be represented as Val num = 1 :: List(2, 3). Many languages such as Lisp, Ruby, and
Scala support key-value pairs. These key-value pairs are called associative maps in Lisp,
map in Scala, and hash in Ruby.

4.10.2 Control Abstractions in Programming Languages
4.10.2.1 Mutations
Languages that support imperative programming paradigms support mutable objects
and destructive updates. For example, languages such as ADA, Java, C++, C#, Fortran,
and Pascal support destructive update. Functional programming languages support
immutable objects. In addition, many functional programming languages such as the
Lisp family, Scala, and Ruby also support mutable objects and destructive updates in
addition to immutable objects. Lisp supports destructive update of global variables and
also allows index variables inside do-loops to be bound to different values inside the
iteration. Multiparadigm languages such as Ruby and Scala support destructive updates
and both immutable objects and mutable objects. Generally, linked lists and strings
are treated as immutable objects, and indexible sequences such as arrays are treated as
 mutable objects.

4.10.2.2 Conditional Statements
Conditional statements in programming language are generally standard. Almost all lan-
guages support the nested if-then-else statement. Most of the languages also support the
case statement. A few languages such as Haskell and some concurrent logic program-
ming languages such as Parlog and GHC support guards. Functional programming lan-
guages have a functional version of the if-then-else statement. Lisp also has a general
purpose conditional statement that groups multiple conditions within the same condi-
tional construct.

178    ◾    Introduction to Programming Language

4.10.2.3 Iteration and Iterators
Almost all programming languages that support imperative programming paradigm
explicitly support index-variable based for-loop and indefinite iterations, such as while-
loop and do-while loop. Some languages such as C simulate for-loop using while-loop.
Many functional programming languages such as Lisp, Ruby, and Scala support indefinite
iterations such as while-loop and for-loop for invoking functions repeatedly. Functional
languages that support destructive update of variables also support iterative loops. Ruby
and Scala are examples of such multiparadigm languages. Scala supports while-loop,
 do-while loop, for-loop, and iterators; and Ruby supports while-loop, for-loop, indefinite-
loop, and iterators. An indefinite loop keeps iterating until exited using an exit condition.
Since every data element in Ruby is an object, iterators and loops are treated as methods in
Ruby. Following is an example of iteration constructs in Ruby.

[4, 5, 6].foreach {|i| puts i} will write 4, 5, and 6 in that other.
10.times {|i| puts i} will write 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 in
separate lines

4.10.3 Information Exchange in Programming Languages

Different languages support different parameter-passing mechanisms. For example, the
language “C” uses call-by-value, and call-by-reference is simulated by copying the address
of the data objects. The language “C++” uses call-by-value and call-by-reference and
“const call-by-reference”. The parameter-passing mechanism “const call-by-reference”
allows read-only access and does not allow writing in the actual parameter. The access to a
dynamic object stored in heap is always passed using call-by-value. This allows the objects
to be shared. Java uses call-by-value. Since objects in the heap are accessed using pointers,
call-by-value allows sharing of the objects by copying the pointers.

ADA uses call-by-value (in mode), call-by-result (out mode), call-by-value-result (in out
mode), and call-by-reference (access). The entities are matched position wise, and access
to the actual parameters in the calling program can be protected against modification
by using the reserved word “protected” in front of the actual parameter. ADA also allows
the use of named parameters of the form formal parameter → actual parameter to provide
flexible binding of the actual and formal parameters; named parameters need not have
position matching.

C uses call-by-value. However, C can pass the address of a data structure that is equiva-
lent to call-by-reference. C++, C#, F#, Modula, Modula-2, Modula-3, Pascal, Fortran 90
onward, PHP, and Python use two parameter passing mechanisms: call-by-value and call-
by-reference; call-by-reference is tagged with a reserved word to separate from call-by-
value. All the heap objects’ reference is passed using call-by-value, and any reference to
objects stored in control stack is passed using call-by-reference. In addition, smaller data
structures and single data entities stored in the control stack are copied using call-by-value.

Ruby passes the parameters by call-by-value. Every data entity in Ruby is an object
stored in a heap; every variable is a reference to the corresponding object. Assigning a
value to a variable is equivalent to creating a new object and pointing to that new object.

Abstractions in Programs and Information Exchange    ◾    179  

Assigning the value of a variable to another variable is equivalent to copying the address
of the object. Call-by-value in Ruby copies the address of the object, so that the formal
parameter starts accessing the object. The following program in interactive Ruby clears
up the concept:

def entityId(Object);
 puts(“passed parameter: #{Object.object_id}\n”);
end
 y = 4.5;
puts(“actual address: #{y.object_id}\n”);
entityId(y)

The above code will give the same address in both the cases: the identifier y.object_id
gives the address of y before passing the parameter, and the identifier Object.object_id
gives the address of object pointed by the formal parameter Object.

Programming language Emerald supports parameter passing call-by-object-reference
that is same as call-by-value for object sharing, since Emerald variables store pointers to
objects stored in heap. Emerald supports distributed computing, and passing the reference
of an object to the remote processor makes the memory access slow. Hence Emerald also
uses call-by-visit and call-by-moving to create a local copy of the objects that can be pro-
cessed by the called procedures on the remote processors.

Scala supports both call-by-name to pass complex expression for functional program-
ming and call-by-value to pass the reference of the objects. Functions are first-class objects
and can be passed as parameters. Programs can be developed using a functional style as
well as an object-oriented style.

Haskell uses call-by-need instead of call-by-name to handle complex expressions during
parameter passing. The advantage of call-by-need is that complex expressions are evalu-
ated once and cached, and in the subsequent occurrence, the cached value is used.

ADA, C++, Clojure, Common Lisp, Fortran 90 onward, Python, Ruby, and F# allow for
the default values in the parameter. This means that if the corresponding actual parameter
is missing in a particular call to the subprogram, then the formal parameter will take the
default value in the body of the subprogram.

4.11 SUMMARY
In this chapter, we discussed various program abstractions. Program abstractions include
data abstractions, control abstractions, abstractions encapsulating data and control, pro-
grams as data, meta-programs, information exchange mechanisms, and interoperability
between languages.

Data abstractions are single entities, composite entities with multiple attributes,
collection of data entities, run-time extensible collection of data entities, network of
data entities, and transient objects with global scope and persistent objects. Single
data entities are modeled using a basic type declaration such as integer, float (or real),
character, string, or an element in an enumerated set. A composite attribute contains

180    ◾    Introduction to Programming Language

multiple different fields that may be of different types and is abstracted as a named tuple.
Programming languages use named tuples with named fields for better access to the
tuple and the field. A collection of data entities can be abstracted as a set, an ordered set,
a bag, an ordered bag, or a bag of (key, value) pairs. A key is unique for every data entity
in the collection of (key, value) pairs. All these collections of entities are associated
with names for ease of access and update during a program execution. Different data
structures can be used to implement a collection of data entities. It can be implemented
using linked lists, indexible arrays, vectors, and hash tables. Extensible collections can
be implemented using linked lists, vectors—indexible as well as extensible—trees, and
hash tables.

Control abstractions are assignment statements, including multiassignment, sequence
of commands, block of statements, conditional statements, iterative constructs involv-
ing index variables, iterators, recursion, and subprograms like functions and procedures.
Blocks are identifier-less structures of declaration and command sequence, such that the
scope of the declaration is limited to the block. Blocks provide natural boundaries to regu-
late the visibility of the data and code. The regulation of visibility is important to allow
flexibility to have same identifier name within blocks and modules, and to avoid naming
conflicts.

Modules are another layer of abstractions that provide a natural boundary for embed-
ded subprograms and data abstractions. The difference between block and module is that
blocks are contained within one subprogram, and modules may contain more than one sub-
program. Modules can be separately compiled and archived for future use. Subprograms
and data abstractions from other modules can be used using export–import mechanism.
An entity in a module becomes visible to other modules only after it is exported from the
source module, and can only be used in a module after the entity is imported using an
explicit import declaration. Class is a passive template containing both data abstractions
and subprograms that operate on the data abstractions; objects—instance of classes are
active components, and have a run-time state.

Information between subprograms can be exchanged using (1) global variables,
(2) nonlocal variables, (3) class variables in object-oriented languages, (4) common memory
space in low-level implementation and earlier FORTRAN implementation, and (5) param-
eter passing in the block-structured languages. Since variable is a value holder, all the attri-
butes that can derive the r-value of the variables can be used in parameter passing. Broadly,
there are three attributes: name, memory-location, and the r-value itself. On the basis of
this, we discussed five major types of parameter passing mechanisms: call-by-name, call-
by-reference, call-by-value, call-by-value-result, and call-by-result.

Call-by-value evaluates the expression in the actual parameter, and copies the value to
the formal parameter and treats the formal parameter as a local variable. The communica-
tion is one-way only, and computation results in the called subprograms not being passed
back. Call-by-reference passes the address of the memory location of the actual parameter
to the formal parameter. In case of composite data entity or collection of data entities,
the base address of the data structure is transferred to the formal parameter. The data

Abstractions in Programs and Information Exchange    ◾    181  

structure remains in the environment of the calling procedure and is accessed using the
base-address + offset of the individual element (or subfield in the case of composite entity).

Object-based languages use heap for storing the objects. Complex objects and dynamic
objects stored in the heap are referenced using a reference link. Using call-by-value, the
reference links to the objects can be copied. We also discussed briefly two variations
of call-by-reference: read-only call-by-reference, and call-by-sharing. In read-only call-
by-reference, actual parameters can be read using the reference stored in the formal
parameter, but not updated. It is important to avoid any accidental destructive update
of the actual parameters that can cause incorrect program behavior. Call-by-sharing is
a combination of first call-by-reference and then on subsequent procedure invocation in
the chain of invocation using call-by-value to share the reference link with other called
subprograms.

We discussed the unpredictable run-time behavior of call-by-name, due to the run-
time computation of indexed variable that may map an identifier to a different memory
location. Call-by-need is a variation of call-by-name, where a subexpression is evaluated
once, and the value is cached for subsequent occurrence of the same expression. Instead of
evaluating the subsequent subexpressions, cached value is used to improve the execution
efficiency.

We discussed side-effect as modifying the store that is accessible and modifiable by the
called program but has lifetime beyond called programs. The outcome of side-effect is that
the effect of modification remains even after the called subprogram is over. If the effect is
unintended, then fundamental principles of programming such as commutativity of the
expressions can be violated causing program to behave incorrectly at run time. Aliasing
combined with reference links can also cause unpredictable behavior of the programs.

First-class objects can be built as data at run time, and then transformed into a program.
Meta-programs treat another program as data in some abstract domain to derive the prop-
erties of the program or to interpret the program behavior.

Exception handling makes the programs to be more robust and allows for graceful exit
from the exceptions. Interoperability can be handled by interfacing data types and data
abstractions of the calling and called programs. It can be done using specific interface defi-
nition languages or using a common specification language and metadata that specifies the
conversion details between data types of two different programming languages.

Finally, we looked at some examples of data and control abstractions in various lan-
guages such as ADA, C, C++, C#, Java, Modula-3, Ruby, and Scala. More examples from
paradigm-specific languages have been deferred to the chapters on specific paradigms: the
programming examples from Lisp, Scheme, and Haskell have been deferred to Chapter 9
on functional programming paradigm; programming examples and information exchange
mechanism from Prolog have been deferred to Chapter 10, on logic programming para-
digm; detailed examples showing object-oriented features from C#, C++, Java, Ruby, Scala,
and Modula-3 have been deferred to Chapter 11 on object-oriented programming para-
digm; programming examples from scripting languages such as Python, Perl, and Lua
have been deferred to Chapter 14 on scripting languages.

182    ◾    Introduction to Programming Language

4.12 ASSESSMENT
4.12.1 Concepts and Definitions

Actual parameter; aggregate; aliasing; assertion; blackboard; block; call-by-copy; call-by-move;
call-by-name; call-by-need; call-by-reference; call-by-result; call-by-sharing; call-by-value; call-
by-value-result; call-by-visit; chained assignment; class; collection of data entities; common
middleware language; common type; composite data entity; conditional statement; control
abstraction; data abstraction; declaration; destructive update; exception handling; extensible
data entity; first-class object; formal parameter; global variable; guards; guarded commands;
immutable object; import–export; information exchange; information hiding; inheritance;
iteration; iterator; map; meta-data; meta-programming; module; multiple assignment; muta-
ble object; mutator; mutual recursion; named tuple; nondeterministic programming; nonlo-
cal variable; object; object class; override; para meter passing; persistence; postcondition;
precondition, private method; protected method; public method; read-only call-by-reference;
recursion; reflective language; reflexivity; reification; self-recursion; sequence; sequential
assignment; shadowing; side-effect; single data entity; single-entry; single-exit; symbol file;
thunking; tuple; type system; unless; visibility; weakest precondition; when.

4.12.2 Problem Solving

 1. Write a quicksort program in programming languages Modula-3, C++, and Java,
and compare the various abstractions used in the programming languages.

 2. Write a program in Modula-3 and ADA 2012 to perform a merge-sort in a module
called “my_sort,” and then use it in the main program to read and write a sequence
of data elements.

 3. A hotel is abstracted as a two-dimensional array hotel[5, 120], where the first dimen-
sion shows the floors, and the second dimension shows the rooms within a floor. Each
data entity occupies b bytes. Give an equation to compute the offset of hotel[i, j], and
apply it to derive the offset for the location 4th floor room number 18. Assume that the
numbering starts from 1 and not 0.

 4. A class is modeled as an array of 30 composite data entities called students. Each
composite data entity is modeled as a tuple of the form (name, age, department, year).
Assume that name is modeled as a fixed size string having 32 characters, age is mod-
eled as an integer with 4 bytes, department is modeled as an integer with 4 bytes, and
year is modeled as an integer with 4 bytes. Compute the offset of various fields in the
following declarations such as class[i].name.

 5. Assume that a language supports four types of parameter passing: call-by-value, call-
by-reference, call-by-value-result, and call-by-result. For the following program, show
the trace after the execution of every statement in the form of a two- dimensional
matrix where the rows show a statement, and columns show various variables and
formal parameters. Assume that & is the actual parameter that passes the reference, #
is the actual parameter that passes the parameter using call-by-value-result, and $ in
the actual parameter that is used to pass the parameter using call-by-result.

Abstractions in Programs and Information Exchange    ◾    183  

Program main ()
integer i, j, k, a[6];
{ i = 0; j = 0; k = 2; a[0] = 1
for (i = 1; i =< 5; i++) a[i] = a[i-1] * 2;
messy(a[3], &a[4], &j, &j, #a[3], $a[4]);
}

void messy(integer a, *b, *c, *d, e, f)
{ a = *b + *c + e;
 *b = *d + f;
 *c = a + *b;
 *d = *c - *d;
 e = *b + *c + e;
 f = e + a;
}

 6. Write a program to perform bubble sort in ADA, Modula-3, C#, and Java, and com-
pare the control abstractions and parameter passing used in four programs.

4.12.3 Extended Response

 7. How are extensible data abstractions implemented? Discuss.

 8. What is the advantage of export–import in the development of a reusable library?
Explain.

 9. What is the difference between the concept of class and modules? Explain clearly.

 10. What are the problems of call-by-name? Explain using simple examples.

 11. What is call-by-need? How does it improve the execution efficiency over call-by-
name? Explain using a simple clear example.

 12. What is call-by-sharing? How is it similar to call-by-value? Explain using a simple
figure.

 13. What are the differences between call-by-value and call-by-reference? Explain in
terms of mechanism and access efficiency.

 14. What are the advantages of modules and export–import mechanism over nested pro-
cedures that support nonlocal variables? Explain.

 15. Under what circumstances is call-by-value-result preferred over call-by-reference
and why?

 16. Explain and compare various parameter passing mechanisms for distributed
computing.

 17. What are the different mechanisms to provide interoperability across different pro-
gramming languages? Explain.

184    ◾    Introduction to Programming Language

 18. What is the mechanism to handle exception? Explain.

 19. Compare the export–import mechanism with nonlocal variables and inheritance.

 20. What is the difference between module, class, and objects? Explain.

FURTHER READING
Abelson, Harold, Sussman, Gerald J., and Sussman, Julie. Structure and Interpretation of Computer

Programs, 2nd edition. MIT Press. 1996.
American National Standard Institute. Programming Language ADA. CSA ISO/IEC 8652:201z. 2012.

Available at http://www.adaic.org/ada-resources/standards/ada05/
Birrell, Andrew D. and Nelson, Bruce J. “Implementing remote procedure calls.” ACM Transaction of

Computer Systems, 2(1). 1984. 39–59.
Black, Andrew, Hutchinson, Norman C., Jul, Eric, and Levy, Henry M. “The development of the

Emerald programming language.” In Proceeding HOPL III Proceedings of the Third ACM
SIGPLAN Conference on History of Programming Languages. 2007. 11-1–11-51.

Collingbourne, Huw. The Book of Ruby. No Starch Press. 2011.
Dijkstra, Edsger W. Discipline of Programming. Prentice Hall. 1976.
Hoare, Charles A. R. “An axiomatic basis for computer programming.” Communications of the ACM,

12(10). 1969. 576–583.
Hudak, Paul, Hughes, John, and Jones, Simon P. “A history of Haskell: Being lazy with class.” In

Proceedings of the Third ACM SIGPLAN Conference on History of Programming Languages.
2007. 12-1–21-55.

Kennedy, Ken, Koelbel, Charles, and Zima, Hans. “The rise and fall of high performance fortran: An
historical object lesson.” In Proceedings of the Third ACM SIGPLAN Conference on History of
Programming Languages. 2007. 7-1–7-22.

Klein, Peter. “Designing software with Modula-3.” Technical Report 94-16. Department of Computer
Science III, Aachen University of Technology. 1994.

Liskov, Barbara and Guttag, John. Abstractions and Specification in Program Development. MIT
Press. 1986.

Liskov, Barbara and Guttag, John. Program Development in Java: Abstraction, Specification, and
Object-Oriented Design. Addison-Wesley. 2000.

Odersky, Martin, Spoon, Lex, and Venners, Bill. Programming in Scala: A Comprehensive Step-by-step
Guide, 2nd edition. Artima Incorporation. 2011.

Stroustrup, Bjarne. “Evolving a language in and for the real world: C++ 1991-2006.” In Proceedings
of the Third ACM SIGPLAN Conference on History of Programming Languages. 2007. 4-1–4-59.

Watt, David A. Programming Language Concepts and Paradigms. Prentice Hall, 1990.
Wirth, Nikolas. “Modula-2 and Oberon.” In Proceedings of the Third ACM SIGPLAN Conference on

History of Programming Languages. 2007. 3-1–3-10.

185

C h a p t e r 5

Implementation Models
for Imperative Languages

BACKGROUND CONCEPTS
Abstraction and information exchange (Chapter 4); Abstract concepts in computation
(Section 2.4); Data structure concepts (Section 2.3); Program and components (Section 1.4);
Recursion (Section 2.2.4); von Neumann machine (Section 2.1).

In this chapter and the following chapters, we study the abstract implementation of the
programs using a low-level abstract machine. An abstract machine abstractly explains
the step-by-step execution of high-level programming constructs at an intermediate level.
Using an abstract implementation model, we will be able to understand and analyze low-
level execution behavior of data and control abstractions that is necessary for (1) writing
better and efficient programs and (2) developing a code generator for a compiler.

The low-level translated code can be executed using four types of memory allocation
schemes: (1) static allocation; (2) stack-based allocation; (3) heap-based allocation; and
(4) hybrid allocation, which integrates the first three allocation schemes for optimum
memory allocation. In this chapter, we discuss static allocation, stack-based allocation,
and hybrid allocation. Our focus would be the hybrid allocation that (1) allocates local
dynamic variables in a stack, (2) allocates recursive and dynamic data structures in a heap,
and (3) uses static allocation for the efficient direct memory access of static variables.

Static allocation schemes allocate the needed memory up front, at the compile time, and
do not support memory growth at run time. The advantage of this scheme is that every
data object is mapped to a unique memory location and can be directly accessed using a
single memory access. However, there are drawbacks too. Static allocation does not sup-
port (1) recursive procedures, since recursive procedures can call themselves an indetermi-
nate number of times, which needs run-time memory growth; (2) extensible recursive data
structures such as linked lists, trees, and vectors, since recursive data structures can extend
indefinitely and need run-time memory growth; and (3) dynamic creation of objects at
run time because it requires mapping dynamic objects to memory locations at run time.

186    ◾    Introduction to Programming Language

All three limitations are caused because run-time growth of memory is not supported by
static allocation. Static allocation is also wasteful of memory, because every object gets
mapped to a unique memory location, and allocation does not allow reallocation of mem-
ory locations after the lifetime of the currently allocated object is over. So static allocation
scheme is not good for (1) block-structured programs that support multiple calls to func-
tions and procedures within a subprogram, as it does not support memory reuse; (2) an
object-oriented programming paradigm that creates dynamic objects; (3) recursive data
structures that can be extended at run time; and (4) language features such as recursive
procedures that require run-time growth of the memory.

Stack-based allocation uses a stack, called local stack or control stack. There are many
advantages of the use of a stack. The stack-based allocation supports recursive procedures,
because the stack grows with the procedure invocation and is not fixed at compile time.
The size of the stack is limited only by the operating system. The local store of the called
procedure is pushed on the control stack upon a subprogram call during run time, because
the stack can grow. After the called subprogram is over, the local store of the called sub-
program is popped, vacating the memory locations that are reused when another subpro-
gram is called. The major disadvantage of stack-based allocation is the lack of support for
dynamically extendible data structures, such as linked lists, trees, vectors, or dynamically
created objects, that outlive the lifetime of the subprogram that created them.

Heap-based allocation uses a common memory area called heap that is seen by all sub-
programs, has the same lifetime as the program, and can accommodate all types of data
structures including extensible data structures and dynamically created objects. Heap-
based allocation uses a pointer from the processor registers or from the control stack to
point to the first data cell of a data structure stored in the heap, and then uses internal
pointers between the data cells to traverse to other data cells in the same logical data struc-
ture. Since each pointer is a memory address, traversal of recursive data structures requires
multiple memory accesses. Heap space can be extended at run time either automatically by
the operating system or by the programmer directives embedded inside a program. After
an allocated data structure is deleted, the memory is released and marked for recycling.
After the allocable memory space has been consumed completely, there are two options:
(1) extend the memory space using the operating system or (2) recycle the released memory
for reallocation. The first approach is dependent upon the available memory space with
the operating system. The second approach reutilizes memory and is known as garbage
collection.

All three models have their advantages and drawbacks. The major advantage of the
static implementation is that the memory location of a variable can be accessed directly
using a single memory access. The major advantages of a stack-based allocation are (1) the
ability to handle recursive procedures and (2) memory reuse due to memory reclaim after
a called subprogram is over. The major advantages of a heap-based allocation are (1) alloca-
tion of extensible data entities and dynamically created objects and (2) memory reuse when
the lifetime of dynamically allocated extensible data structures or dynamic objects is over.

Modern programming languages use a hybrid allocations model that exploits the advan-
tages of all three approaches. The hybrid allocation model uses a static allocation for static

Implementation Models for Imperative Languages    ◾    187  

variables and global variables, stack-based allocation for dynamic local variables in a program
unit, and heap-based allocation for recursive data structures and dynamically created objects.

In this chapter, we discuss the translation of control abstractions to low-level code, static
allocation scheme, and stack-based allocation scheme. We also discuss how control stacks
handle various parameter passing mechanisms. In the following chapter, we will discuss
dynamic memory management using heap.

5.1 ABSTRACT COMPUTING MACHINE
Abstract implementation of a program on von Neumann machine is composed of five
major components: data area, code area, instruction pointer to step through the instructions
in the code area, registers to perform scratch pad computation, and program status word
(PSW)—a set of flags stored in a special register. The flags in the PSW are set accordingly
after every instruction and form an important part of the computation state of an executing
program. The memory area where the code is stored is called code area, and the memory
area where the data is stored is called data area. For the languages that do not support
first-class objects, the code area is fixed and reentrant, which means that every time a called
subprogram starts from the beginning in the same initial state.

Data area is a pair of the linear structures (heap, control stack). Both heap and control
stack grow in opposite directions starting from the opposite end. They grow toward each
other for maximum utilization of the available memory space. A control stack is a sequence
of frames reflecting the calling pattern of the subprograms in last-in-first-out order. Each
frame, also called an activation record, is an indexible sequence of memory locations that
store (1) information needed for computation in the current subprogram, (2) information to
return the control back to the calling subprogram, and (3) frozen state of the calling program
when the called subprogram was invoked. The information in a frame includes (1) memory
locations for the local dynamic variables—variables that are not static variables; (2) image of
the registers that would be updated in the called subprogram; (3) various pointers to the data
entities in the calling program, the code area, and top of the control stack; (4) the archived
part of environment and store of the calling program that are shadowed in the currently
executing subprogram; (5) simple dynamic objects that are created once in a subprogram
and do not outlive the subprogram; (6) the frozen state of the calling subprogram at the time
of the call to the current subprogram; and (7) parameters passed to the called subprogram.

Each invocation of a subprogram pushes the corresponding frame on top of the control
stack. The frame is discarded to release the memory locations after the called subprogram is
over. A frame is indexible to support access to different data entities stored within the frame
and through references to other frames or heap. After the called subprogram is over, the
state of the calling subprogram is retrieved, and the execution of the code area in the calling
program resumes from the next instruction following the call to the executed subprogram.

Code area is the sequence of low-level instruction blocks. Each instruction block is a
sequence of low-level instructions representing a subprogram. The control flow can use
a stepwise movement to the next instruction or jump from one instruction to another
instruction using a jump instruction. Control moves from one subprogram to another
subprogram using jump statements. The control flow in the code area is controlled using

188    ◾    Introduction to Programming Language

an instruction pointer that is similar to the program counter in assembly-level instruc-
tions. There is one major difference between the instruction pointer described here and
the program counter used in processors: the instruction pointer is incremented after
the current instruction has been executed successfully, while the program counter in
processors is incremented right after fetching the current instruction. This difference is
only for our convenience, to explain the concepts, and reduces the confusion in handling
offsets. A sequencer—jump instruction—takes the control to an instruction specified by
the user-specified value rather than the adjacent instruction in the sequence. A jump
instruction is essential for the low-level translation of control abstractions such as con-
ditional constructs and iterative constructs. In the next section, we discuss how various
control abstractions are translated to low-level abstract instructions using a control flow
diagram.

Low-level instructions can be categorized as subsets of instructions: (1) to load values
stored in a memory locations, (2) to load constant into a register, (3) to store values
from registers to a memory location, (4) to store constant value in a memory location,
(5) arithmetic and logical operations to evaluate expressions, (6) operations involved in
 comparing arithmetic and logical expressions, (7) conditional and unconditional jumps
to an instruction, (8) pushing a data on the control stack, and (9) popping a data from the
control stack.

We assume three types of memory accesses: (1) direct memory access, (2) indirect memory
access, and (3) offset-based memory access. Direct memory access performs a single memory
access to read or write data from (to) the given memory location and is fastest. Direct
memory access is suitable for static variables. Indirect memory access uses a pointer to
access a memory location that stores another memory location or value. Indirect memory
access may go through a chain of pointers before accessing the value and needs more than
one memory access. Indirect memory access provides independence from fixed memory
locations. However, it is slower due to multiple memory accesses. Many times, pointers for
frequently used indirect accesses are stored in processor registers to improve the efficiency.
Offset-based memory access is used to access a data entity in a collection of data entities
or a subfield inside a composite data entity. Offset-based addressing requires two units of
information: base address and an expression that shows the offset of the data entity or the
subfield. Base address is the address of the first memory location in RAM where the object
is located.

The status f lags in PSW are needed to handle the outcome of expression evalu-
ation. Negation-bit N is set to “1” when the comparison yields a negative value and
“0” if the comparison yields a positive value. Zero-bit is set to “1” when the compari-
son yields a zero and “0” when the outcome is a nonzero value. Evaluation of a logi-
cal expression sets a Boolean f lag to “1” when the outcome is true and 0 when the
outcome is false. Conditional branch statements need these f lags to make the condi-
tional jumps to an instruction area. Some of the conditional jump statements are brlt
(branch on less-than), brgt (branch on greater-than), breq (branch on equal-to), brne
(branch on not-equal to), brle (branch on less-than-or-equal-to), and brge (branch on
greater-than-or-equal-to).

Implementation Models for Imperative Languages    ◾    189  

Figure 5.1 illustrates a low-level abstract machine for the implementation of program-
ming languages. After compilation, store is translated to data area, and control abstrac-
tions are translated to code area. Both the code area and the data area are modeled as
single-dimension arrays. A memory location in the code area is denoted as c[code-index],
where “code-index” is an expression when evaluated gives the offset from the first instruc-
tion in the code area. A memory location in the data area is denoted as d[data-index],
where the data index is an expression when evaluated gives the offset from the base address
of the currently visible data area.

Depending upon the programming paradigm, the data area and the code area can be
further refined to define a specific abstract machine. Most of the abstract machines need at
least control stack, heap, and directly accessible memory area for global and static variables.

In static allocation schemes, the base address after compilation is 0 and is omitted.
However, in the stack-based allocation scheme, frames are placed at different memory
 locations on the stack, and data elements are accessed using (1) the base address of the
frame using a pointer called frame pointer and (2) the offset with respect to the base address
of the frame.

The simplest abstract machine for functional programming paradigm is called a SECD
machine, which has four stacks: S, a stack for expression evaluation; E, a stack to hold envi-
ronment; C, a stack to hold command string; and D, a stack to hold the dump—a sequence
of environment of calling procedures in last-in-first-out order.

The logic programming paradigm also supports backtracking—a way to go back
and undo some of the computations and try out alternate paths to search for solutions.
Implementation of backtracking needs an additional stack called trail stack as well as a
regular control stack. The trail stack keeps track of control points to go back and undo the
actions for trying out alternate actions.

Object-oriented languages use a stack-based virtual machine such as Java Virtual
Machine, and use heap to store the objects. Imperative languages support one stack- and
one heap-based implementation.

In this chapter, we discuss the von Neumann–based abstract machine for imperative
programming paradigm. Other abstract machines are discussed in the corresponding
chapters. For example, SECD machine is discussed in Chapter 9, and Warren Abstract
Machine (WAM)—an abstract machine for logic programming—is discussed in Chapter
10. A schematic of implementation of object-oriented languages is discussed in Chapter 11.

Instruction
pointer

Code area Data area

Registers

FIGURE 5.1 A schema of an abstract machine for implementation.

190    ◾    Introduction to Programming Language

5.2 TRANSLATING CONTROL ABSTRACTIONS
The translation of control abstraction can be grouped as follows: (1) translation of evalua-
tion of expressions, (2) translation of assignment statement, (3) translation of conditional
constructs, 4) translation of iterative constructs, and (5) translation of subprogram call.
In this section, we discuss all other control abstractions except the call to a subprogram,
which is be discussed separately in Sections 5.3 and 5.4.

5.2.1 Translating Expressions

Evaluation of an expression is done using a combination of processor registers and mem-
ory locations. To reduce the overhead of memory access, the intermediate values after the
evaluations of subexpressions are retained in the processor registers. Common subexpres-
sions are evaluated once and retained in the registers for future use; after the first evalua-
tion of common subexpressions, register allocation is done at compile time analysis using
various optimization techniques. For example, evaluation of an expression (X + Y + 5) +
2 * (X + Y) will be translated as the following:

load X, R1 % load value stored in memory-loc(X) into register R1
add Y, R1, R2 % add value stored in memory-loc(Y) into register R2
add #5, R2, R3 % add constant 5 to R3 and store in the register R1
multiply #2, R2, R4 % value-in(register R4) = 2 * value-in(register R2)
add R3, R4, R4 % add the values stored in the registers R3 and R4

The above example illustrates the breaking of the evaluation of expressions to a sequence
of low-level abstract instruction to load the variable values from the corresponding mem-
ory locations and the storing of the partial results temporarily in the registers. Note the
common subexpression (X + Y) is evaluated only once and stored in the register R2 for
future reuse. In the future, to discuss the translation of other control abstractions, we will
avoid translation of an expression and denote it by evaluate (expression).

5.2.2 Translating Assignment Statement

Assignment statement <variable> = <expression> is equivalent to a sequence of low-level
abstract instructions that evaluate the expression first and then store the resulting value
into the memory location of the left-hand-side variable. For example, an assignment state-
ment such as X = Y + 5 is equivalent to the following:

load Y, R0 % load the value in Y-location into register R0
load # 5, R1 % load constant 5 into register R1
add R0, R1, R0% add value of R0 and R1, and store the result in R0
store R0, X % store value-in(R0) into location of variable X

Knowing that assignment operation is a combination of load, evaluate, and store oper-
ations, we denote the assignment operation by a simple command assign (<variable>,
<expression>).

Implementation Models for Imperative Languages    ◾    191  

5.2.3 Translating If-Then-Else Construct

The control flow of the if-then-else statement has three steps: (1) evaluate the predicate; (2)
based upon the evaluation of the predicate set status flags at hardware level; and (3) based
upon the value of the status flags’ branch conditions, make the jumps to execute either
the block of statements in then-part or the block of statements in the else-part. Figure 5.2
shows a control flow diagram of an if-then-else statement and the corresponding sche-
matics for low-level translation.

A control flow diagram is a two-dimensional planar figure. It has to be translated to
code area, which is single dimensional. To ensure mutual exclusion of <then-block> and
<else-block> and to avoid stepping into the <else-block>, a jump statement is needed after
the execution of <then-block>.

After the control flow passes through <then-block>, a jump statement is executed to
bypass the <else-block> and to take the control to the location after the <else-block>. The
control jumps to <else-block> if the conditions are false. Since the control flow moves in the
forward direction by default, jump is needed only to go to <else-block>, as the control will
automatically flow to <then-block> if the conditions are true. To facilitate this, negation of
the condition is checked. If the negation of the condition is true, then control jumps to the
<else-block>. Otherwise, the control passes through the <then-block> by default.

5.2.4 Translating Case Statement

Case statements can be simulated by using a sequence of if-then-<then-block> statements,
as shown below, to execute one of the mutually exclusive possibilities as follows:

1. result = evaluate(<expression>);
2. if (result == value1) then {<block1>; jump-to exit;}
3. if (result == value2) then {<block2>; jump-to exit;}
 …
 If (result == valueN) then {<blockN>; jump-to exit;}
 <default-block>;
 <exit>:

1. evaluate not (<condition>)
2. branch-on-true else
3. execute <then-block>
4. jump exit
5. else: execute <else-block>
6. exit:

<condition>

<then-block> <else-block>

true
false

FIGURE 5.2 A schematics of translating control flow diagram to abstract machine.

192    ◾    Introduction to Programming Language

Alternately, it can be implemented using a hash table that stores the array of locations
where the control can jump based upon the evaluation of the <expression>, as shown in
Figure 5.3.

After evaluating the expression, the result is fed into a hash table. The hash table contains
a triple of the form (expected-value, label-number, pointer to next triple). If the expected
value is the same as the derived value, then the corresponding label is returned; otherwise
“null” value is returned, and control jumps to the default label. After executing a block
of statement corresponding to the expected value, the control bypasses other blocks by
 jumping to label “exit.”

5.2.5 Translating Iterative Constructs

Iterative constructs can be translated using the translation of if-then-else construct.
If we translate while-loop using if-then-else statement, then the statements looks like the
following:

1. Initialize the variables;
2. loop: if (evaluate(not <expression>) = true) {
 3. jump-to exit;
 4. else {execute <while-block>
 5. jump-to loop;}
 }
 6. exit:

if we translate {if <expression> then {<while-block>; jump-to loop} using prior knowledge
of translating if-then-else statement, then the translation would be as given in Figure 5.4.
First not (<expression>) is evaluated. If not (<expression>) is true, then the control exits
out the while-loop. Otherwise, the control falls through the <while-block>, executes it, and
jumps back to the start of the while-loop.

value = evaluate(<expression>);
label-id = hash value;
if (label-id .ne. null) jump label-id;
else jump default-label
label-1: {<block1>; jump exit;}
label-2: {<block2>; jump exit;}

label-4: {<blockN>; jump exit;}
default-label: <default-block>;
exit:

...

^

^

^

^

(value-4, label-4)0
1
2
3
4
5
6
7
8
9
10

(value-1, label-1)

(value-2, label-2)

(value-3, label-3)

FIGURE 5.3 Translating case statement using a hash table.

Implementation Models for Imperative Languages    ◾    193  

5.2.5.1 Translating for-loop
A for-loop construct is of the following form:

 for (i = <initial-expression>’;’<final-expression>’;’<step-expression>)
 <for-loop-block>’;’,

For-loop is simulated using while-loop, where the final condition is (index >
evaluate(<final-expression>)). The translation of the for-loop using while-loop would be as
follows:

1) assign(i, evaluate(<initial-expression>);
2) while (not evaluate(<final-expression>))
 {3. execute <for-loop-block>;
 4. assign(i, i + evaluate(<step-expression>));
 }

Using the knowledge of iterative constructs, the for-loop, is translated as shown in Figure 5.5.

1. loop: evaluate not (<condition>)
2. branch-on-true exit
3. execute <while-block>
4. jump-to loop
5. exit: not <condition>

true

exit
false

<while-block>

FIGURE 5.4 A schematics to translate while-loop to low-level abstract instructions.

1. assign(i, evaluate(<initial-expr>))
2. loop: evaluate not (<final-expr>)
3. branch-on-true exit
4. execute <for-block>
5. assign(I, i + evaluate(<step-expr>))
6. jump loop
7. exit:

i = i + eval(<step-expr>)

<for-block>

i = eval(<inital-expr>)

evaluate
<final-expr>

false
true exit

FIGURE 5.5 A schematics for translating for-loop to low-level abstract machine.

194    ◾    Introduction to Programming Language

Everything in Figure 5.5 is similar to the translation of while-loop, except two statements:
(1) assignment statement to initialize the index variable and (2) update of the index variable
in a user-transparent way. The box to increment the index has been shown using dashed
lines to indicate that the user has no control over incrementing the index variable within
the statement block other than specifying an expression for the step-size at the beginning
of the for-loop.

A similar exercise can be done for the do-while loop and has been left as an exercise to
the students. Iterators are very similar to the translation of while-loop and for-loop. The
only difference is that iterators step through the collection of elements one by one, and at
the beginning of the loop they check if they have reached the end of the collection.

5.3 STATIC ALLOCATION
Modern-day languages support recursive procedures, memory reuse, recursive data struc-
tures, and dynamic data objects. Hence, a hybrid model is preferred. However, some of the
concepts of static memory allocations are helpful in understanding stack-based implemen-
tation and the hybrid approach. We take an example from Fortran-66, since later versions
of Fortran support stack-based allocation.

The data area is represented as an array, and the notation d[i] is used to denote direct
access to ith memory location in the data area. The shared memory locations are allocated
first, followed by a memory location storing the return address of the next instruction after
the instruction that called the current subprogram. The return address is stored in the data
area, because its value changes every time a different subprogram calls. All local variables
that are not shared are allocated locally in the activation record of the subprogram.

Different program units can be compiled separately. The compiled codes are linked
together in a user-specified order. The data areas and code areas are linked in the same
user-specified order, and the information available in the symbol tables of different com-
piled codes is merged. The calling program will not have any information about the data
areas and code area of the called subprogram if they were compiled separately; the informa-
tion would be available only after merging the symbol table. The information derived from
symbol tables includes (1) information about imported and exported entities, (2) informa-
tion about where to jump when a subprogram is called, and (3) information about where
to return after the current subprogram is over. During compilation, each subprogram
assumes that the set of missing information would be made available to them through the
symbol table of the corresponding program units during linking period.

During linking, the data areas of different compiled codes are merged such that common
block declarations are joined together, followed by return address, followed by local variables.
Let us assume that the data area of a compiled code is (C, RI (I > 1), LI (I > 1)), where C denotes
the common block, RI denotes the return address memory location of the ith compiled code
area, and LI stands for set of local variables in the ith data area, which then, after linking the
data area would look like (C, R1, L1, R2, L2, …, RI, LI, … RN, LN) in the same order as specified
by the user. All the common blocks having the same name in different compiled codes are
joined together as one shared block and are placed at the beginning of the joint data area.
The memory address of the return addresses and local declarations gets shifted during the

Implementation Models for Imperative Languages    ◾    195  

linking process due to the merging of the data areas. Linking is a two-pass process: (1) in the
first pass, all the data areas are merged, jump to subroutines and return from subroutines
are computed, and offsets for data areas of different program units are computed and (2) in
the second pass, the corresponding offsets are incorporated in the code area.

Call to a subprogram involves (1) storing the memory location of the next executable
instruction of the calling subprogram in the return address, (2) exchanging parameter
information, and (3) jumping to the first instruction of the called subprogram.

Example 5.1

Figure 5.6 illustrates an implementation using the static allocation scheme. We
assume that the main program and the subroutine FIND_MAX have been compiled
 separately. Both the main program and subprogram share a common block consisting
of a variable MAX and a fixed array M of size 4. In the main program, the local
unshared variables are I, J. The program MAIN reads the data in the common array
M and then calls the subroutine FIND_MAX. The subroutine FIND_MAX finds the
maximum of the array M and uses the common block to share the value of the vari-
able MAX. The low-level code uses direct memory access as shown by d[m] and uses
the offset method to access an element of an array.

In the main program, after the compilation, the address of the variables M[0] to M[3]
is respectively d[0] to d[3], the variable MAX maps to memory location d[4], and the local
variables I and J in the main program map to the memory locations d[5] and d[6]. In the
subroutine FIND_MAX, the address of variable data elements M[0] to M[3] is respectively
d[0] to d[3]; the variable MAX maps to memory location d[4]; and the return address in
the subroutine occupies the memory location d[5], followed by the local variable I that
 occupies memory location d[6].

 PROGRAM MAIN 0. assign(d[5], 1)
 DIMENSION M[4] 1. cmp(d[5], 4)
 INTEGER I, J, Max 2. brgt (ip + 4) % ip = 6
 COMMON /DATA/ M[4], MAX 3. read(d[0 + d[5]])
 D0 20 I = 1, 4, 1 4. assign(d[5], d[5] + 1)
 20 READ(M[I]) 5. assign(ip, ip – 4)
 CALL FIND_MAX 6. d[<R>] = ip + 2 % ip = 8
 END 7. assign(ip, ip + <S>)
 8. Halt

 SUBROUTINE FIND_MAX 0. assign(d[4], d[0])
 DIMENSION M[4] 1. assign(d[6], 2)
 INTEGER MAX, I 2. cmp(d[6], 4)
 COMMON /DATA/, M[4], MAX 3. brgt (ip + 5) % ip = 7
 MAX = M[1] 4. cmp(d[0 + d[6]], d[4])
 DO 10 I = 2, 4, 1 5. brle (ip + 2) % ip = 6
 10 IF (M[I] > MAX) MAX = M[I] 6. assign(d[4], d[0 + d[6]])
 RETURN 7. assign(d[6], d[6] + 1)
 8. assign(ip, ip – 6)
 9. assign(ip, d[5])

0 M[1]
1 M[2]
2 M[3]
3 M[4]
4 MAX
5 I
6 J

0 M[1]
1 M[2]
2 M[3]
3 M[4]
4 MAX
5 return
6 I

FIGURE 5.6 Code area and data area for static implementation after compilation.

196    ◾    Introduction to Programming Language

This program shows low-level translation for call to the subroutine FIND_MAX and two
major control abstractions: do-loop (a variation of for-loop) and if-then-else statements.
The translation of do-loop in the main program starts from code area location c[0] and
ends at c[5]. The statement at c[0] assigns the value 1 to memory location d[5] that is the
memory location of the variable I. The statement c[1] compares the value of d[5] with the
constant 4. The statement c[2] branches to IP + 4 if the value of d[5] is greater than 4. Note
the use of “IP + 4” to take the control out of the loop. The technique to add offset to the
instruction pointer makes the low-level code independent of memory locations where a
program is loaded in the computer for execution. The instruction at c[3] uses the offset
method to access the memory location of M[I]: 0 is the base address of M[0], and d[5] stores
the value of the variable I. The instruction at c[4] increments the value of d[5] by 1, and the
instruction at c[5] takes the control back to c[1], which starts the next cycle of the iteration.
The instructions c[6] and c[7] are related to the call of the subroutine FIND_MAX. The
instruction at c[6] stores “IP + 2”—the address of the next high-level instruction after sub-
routine call in the currently unknown return address of the subroutine FIND_MAX. Since
the information is unknown, a new symbol is created and is entered into the symbol table.
During linking, the memory address of the return pointer is looked up from the symbol
table. The instruction c[7] uses the jump offset from the current instruction to jump to the
first executable instruction in the called subroutine FIND_MAX. However, the offset is
also unknown before linking and is computed at the linking time.

The compiled low-level code for the DO-loop in the subroutine FIND_MAX occupies
the memory locations between c[1] to c[8], and the translation of the if-then-else statement,
nested inside the DO-loop, occupies the locations between c[4] to c[6]. The instruction at
c[1] is equivalent to initializing the index variable I to 0. The instruction at c[2] compares
the value of the index variable I with the upper-bound 4. The instruction at c[3] takes the
control out of the for-loop if the index variable is greater than 4. The instruction at c[4]
compares the value of the subscripted variable M[I] with the value of the variable MAX
and jumps to c[7] if M[I] is less than or equal to the value of the variable MAX. Otherwise,
c[6] assigns the value of M[I] to the variable MAX. The instruction at c[7] increments the
value of d[6] (local variable I) by 1. The instruction at c[8] jumps back to the instruction
c[2] to start the next iteration cycle. The last instruction at c[9] picks up the address stored
in the return-address memory location and returns the control to the next instruction
in the calling procedure. Since a subroutine may be called multiple times from different
parts of the code area, the address stored in the return-address-memory-location would be
 different every time.

As shown in Figure 5.7, after linking, the common-block variables M[1] to M[4] and the
variable MAX are merged and placed in the memory locations d[0] to d[4]. The memory
locations of the return address and the local variable I in the procedure FIND_MAX are
placed after the last memory location allocated to the main program in the data area. The
return address is mapped on d[7], and the local variable Isub is mapped on d[8]. The unshared
memory locations of the subroutine FIND_MAX have been shifted by size of (activation
record of program main)—size-of(common block in Subroutine FIND_MAX) = 7 − 5 = 2.
This offset is added to the memory locations in the compiled code part of the subroutine

Implementation Models for Imperative Languages    ◾    197  

FIND_MAX during the linking to generate the linked code. The symbol <R> in C[6]
is substituted by 7—the memory address of the return pointer—and the symbol <S> is
 substituted for the offset value 2 to jump to the first instruction of the subroutine.

5.4 HYBRID ALLOCATION
Block structured languages and languages that support recursive procedures or dynamic
objects use a hybrid allocation that includes control stack, heap, and static allocation, as
shown in Figure 5.8. In an integrated model, a data area is a triple of the form (static area,
control-stack, heap). The static memory allocation is fixed at the time of compilation and is
used for static variables and global variables. The control stack and heap change dynami-
cally with the program execution. The heap and stack grow in the opposite directions,
since, depending upon the input data, different invocation of the same program may need
different sizes of the heap and the control stack. Many times the size of the control stack
is larger, and at other times heap needs more memory to expand. By keeping the heap and
control stack at two ends growing toward each other, the ends of heap and control stacks
are determined by the usage, and the memory space is utilized to the maximum.

The first pointer to an object allocated in the heap resides either in the frame of a proce-
dure or in a register. The heap allocation is discussed in detail in the next chapter. However,
in this chapter heap has been mentioned to allow for discussion of parameter passing when
objects are allocated in the heap.

Each frame of a called subprogram contains multiple information: (1) memory loca-
tions for the incoming formal parameters, (2) saved state for the calling subprogram,
(3) various pointers to access the control stack (including frame of the calling program
and nonlocal variables) and to recover the computational state of the calling subprogram,
(4) memory allocation for local variables, (5) memory locations for scratch pad computa-
tions, and (6) memory locations of the outgoing actual parameters.

 0. assign(d[5], 1)
 1. cmp(d[5], 4)
 2. brgt ip + 3
 3. read(d[0 + d[5]])
 4. d[5] = d[5] + 1
 5. ip = ip − 4
 6. d[7] = ip + 2
 7. ip = ip + 2
 8. Halt
 9. assign(d[4], d[0])
 10. assign(d[8], 2)
 11. cmp(d[8], 4)
 12. brgt ip + 3
 13. cmp(d[0 + d[8]], d[4])
 14. brle ip + 2
 15. d[4] = d[0 + d[8]]
 16. ip = ip − 5
 17. ip = d[7]

 Linked code area

0 M[1]
1 M[2]
2 M[3]
3 M[4]
4 MAX
5 Imain

6 J
7 Return
8 Isub

Linked data area

The common area has been merged,
and subroutine’s remaining activation-
record has been shifted resulting into
update of the code area.

FIGURE 5.7 Linking the code areas and data areas.

198    ◾    Introduction to Programming Language

When a subprogram is called, the part of the computational state that would be altered in
called subprogram is saved. The saved computational state includes (1) the values for those
registers that get altered in the called subprograms, (2) PSW, and (3) various pointers used to
access the code and data area of the calling subprogram. Various pointers are set up to access:
(1) the code and data area of the called subprogram, (2) the frame of the calling program if
parameters are passed by call-by-reference, and (3) the frames of the procedures under which
the current procedure is embedded. A memory location is allocated for each local variable.
Variable may be mapped to data objects of varying size. For example, a character may occupy
just one byte; and an integer occupies 4 bytes on a 32-bit machine. On top of the frame, there are
some memory locations that are used to store the results of partial computations while evaluat-
ing expressions, and finally it holds actual parameters to be passed to the called subprogram.

The expressions in the actual parameter are evaluated, and the resulting value is stored
in a new temporary memory location. If the actual parameter is just a variable (not a com-
plex expression), then there is no need to create an additional memory location. Dynamic
local variables that have nonoverlapping scope can be mapped on the same memory loca-
tions for better memory utilization. After a subprogram terminates, the frame of the called
subprogram is discarded, pointers are set to access the frame of the calling program, and
the top of the stack pointer is reset to point to the memory location right after the frame of
the calling program. This way the whole memory used by the called program is reclaimed
for future reuse.

5.4.1 Roles of Various Pointers

There are five major pointers needed for handling a called subprogram. After saving the
computational state of the calling program and access links to the frame of the calling
subprogram, the control jumps to the first instruction of the called programs. Five pointers
are needed during the execution of a subprogram in the stack-based allocation as follows:

Frame pointer, denoted by FP, allows access to (1) data area of the currently execut-
ing subprogram, (2) incoming parameter locations, and (3) saved state information of

Static allocation for
static and global

variables

Heap

Outgoing actual
parameters

Temporary
computations

Local variables

Saved state +
return pointer,

dynamic link, and
static link

FP

Incoming formal
parameters

Called

Caller

Control stack

(a) (b)

Stack
growth

FIGURE 5.8 Data area for a block-structured language. (a) Overall data area (b) a frame.

Implementation Models for Imperative Languages    ◾    199  

the calling subprogram. The frame pointer points to the first memory location after the
saved state; and all other memory locations are accessed by adding an offset to the base
address stored in the frame pointer. Top-of-the-stack pointer, denoted as TOS, points
to the next free memory location on the control stack. Dynamic link:, denoted by DL,
stores the frame pointer of the calling program and is used to restore the frame pointer
of the calling program. Return link, denoted by RL, stores the address of the next
instruction in the calling program after the instruction that invokes a subprogram.
Static link, denoted by SL, stores an address to access the frame of the subprogram
under which the currently executing subprogram is nested. It is used to access nonlo-
cal variables. Many of the pointers such as FP and TOS are stored in registers for faster
access.

5.4.2 Calling Subprograms

When a subprogram is called, pointer changes occur in the following order:

 1. The current TOS value is copied in the new FP for the called subprogram.

 2. The frame of the calling subprogram is put on top of the stack, and the TOS is
moved to a new address given by value-of (TOS) + size-of(frame of the called
subprogram).

 3. The memory location of next instruction in the calling subprogram is stored in the
return pointer of the called subprogram.

 4. The dynamic link is set equal to the frame pointer of the calling subprogram.

 5. The static link is set to point to the frame of the subprogram under which the called
subprogram is nested.

 6. The instruction pointer is set to the memory location of the first instruction in the
called subprogram.

The order in which these pointers are set is important. For example, if we change the
FP before copying the old value of FP into the dynamic link, then the access to the frame
of the calling subprogram would be lost. Similarly, if we set up the TOS first, then new FP
cannot be set.

The order in which the pointers are arranged is dependent upon the implementation.
Here we assume that RP has offset –3, dynamic link has offset –2, and static link (if pres-
ent) has offset –1. In case the static link is missing, because the language does not support
nesting of procedures, then RP has the offset –2, and DL has offset –1. Thus, the return
pointer is accessed by d[FP – 3] (or D[FP – 2] if SL is missing); dynamic link is accessed by
d[FP – 2] (or d[FP – 1] if SL is missing); and static link, if present, is accessed by d[FP – 1].
We also assume that FP and TOS are stored in a processor register for efficient memory
accesses. In understanding most of the concepts, we ignore the saved registers and PSW for
our convenience, without losing any information.

200    ◾    Introduction to Programming Language

Example 5.2

Let us consider a scenario. Program main calls subprogram A. The subprogram A
calls subprogram B. The subprogram B executes and terminates. Then the main pro-
gram calls subprogram C. Figure 5.9a shows a snapshot of the control stack when the
control is within the main program. Figure 5.9b shows the control stack when the con-
trol is in the subprogram B. Figure 5.9c shows the control stack when the subprogram
B has terminated, and the control is back in the main program. Figure 5.9d shows the
control stack when program C has been called by the main program. Note the reuse
of the memory space that was originally occupied by the frame of the subprogram B.

5.4.3 Generating Data and Code Areas

The store of the called subprogram includes (1) the store created by global vari-
ables, (2) the store created by the nonlocal variables, (3) the store created by the local
variables, (3) the store created by parameter passing, and (4) the store created by the local
variables. The global variables and static variables are allocated statically at the beginning
of the data area and are accessed using a single memory access, without the use of any
pointer. The local variables are accessed by adding an offset to the frame pointer in the con-
trol stack. For example, d[FP + 3] gives access to memory location that is three locations
away from the address pointed to by the FP.

Static link (SL) stores the base address of the frame of the next outer level of the subpro-
gram, a nonlocal variable can be declared N (N ≥ 1) level above the nested procedure. Two
techniques are used to access nonlocal variables: (1) chain of static links and (2) display
registers.

The chain-of-static links scheme uses the knowledge that the static link is stored in a
memory location that has fixed offset: d[FP – 1] in our case. This technique uses successive

Stack
growth

TOS

FPFP

FP

TOS

FP

TOS

TOS

SL

DL

RP

Local
variables

Saved
registers

Formal
param

SL

DL

RP

Local
variables

Saved
registers

Formal
param

Frame
main

Invoke subprogramTerminate BInvoke subprogram BInvoke main

Frame
main

Frame
main

Frame
main

FIGURE 5.9 Frame movement during procedure calls.

Implementation Models for Imperative Languages    ◾    201  

jumps using a static links stored in the frame. If a nonlocal variable is declared “m” nesting
level away, then the low-level data access can be written as d(m, offset), and the algorithm
to access the nonlocal variable is as follows:

while (m > 0) {
 m = m - 1; frame-base = d[SL];
 SL = frame-base − 1;}
 value = d[frame-base + offset]

The chain-of-static-links is a naïve technique, and suffers from the overhead of going
through multiple memory accesses if the nesting level is large. The second technique uses
display registers. Display registers are processor registers or cache memory that holds the
direct address of the nonlocal variables. The display register is populated when the called
procedure is invoked, and the nonlocal variables are accessed efficiently without going
through a chain of pointers.

The variables in the frame of calling procedures are accessed when parameters are
passed as reference. In call-by-reference, the formal parameter is a pointer to the first
memory location of the data entity being referenced. If the data abstraction is a composite
data entity, then different attributes are accessed by adding the offset of the attribute to the
first memory location of the data entity. Similarly, if the abstraction is a collection of data
entities, then offset is calculated by multiplying the index by the size of the individual data
element, and the memory location of the ith data entity is calculated by d[reference-link] +
i * size-of(individual data-element), and the value inside the memory location is accessed
as d[d[reference-link] + i * size-of(individual data-element)].

Called subprograms accesses memory location in local frames using only its frame
pointer and offset. The frame of the called subprogram is pushed on the control stack when
a subprogram is invoked, and the memory occupied by the frame is reclaimed after the
subprogram terminates. The sequence of instructions to call a subprogram is as follows:

 1. Evaluate the expressions in the actual parameters, and copy the values in the outgo-
ing parameter area.

 2. Save the PSW of the calling program and the registers in the saved state area of the
called programs frame. Only those registers that get modified during the called sub-
program are saved.

 3. Copy the FP into the dynamic link of the called subprogram.

 4. Update the static link if nonlocal variables are supported by the language.

 5. Update the frame pointer by copying the TOS as new FP value.

 6. Update the TOS by adding the size of the frame of the called program.

 7. Update the return pointer to point to the next instruction in the calling program.

 8. Make the jump to the first instruction in the called subprogram.

202    ◾    Introduction to Programming Language

The return from the called subprogram performs the following operations to recover
the environment and the store of the calling subprogram:

 1. The stored registers and PSW are copied back to corresponding registers to regain the
computational state of the calling subprogram.

 2. The FP of the called subprogram is copied into TOS to reclaim the memory for reuse.

 3. The dynamic link DL is copied into FP to recover the frame of the calling subprogram.

 4. The return pointer RP is copied into IP to take the control back to the calling program.

After the return from the called subprogram and before executing the next instruction,
the results of the formal parameters are copied from the memory locations of the outgoing
parameter area to the memory locations of the actual parameters.

In our remaining discussions, we omit saving of the PSW and registers without losing
any relevant information related to the implementation of call to the subprograms.

Example 5.3

Figure 5.10 illustrates the concept using a block structured program. Instruction
pointer (IP), frame pointer (FP), and top-of-the-stack pointer (TOS) are stored in
processor registers for efficient access. The program has been tailored to show differ-
ent control abstractions, data abstractions, and static allocations. The program main
reads four data elements into m[4] and calls the subroutine find_max. The snapshot
shows the scenario when the control is inside the subprogram find_max.

The instructions brgt (branch on greater-than), jump (unconditional branch), brle (branch
on less-than-equal-to), and cmp (compare) are intuitive. The instruction “add” updates the
first argument by adding the value stored in the second argument. For example, the instruction
add(TOS, 1) is equivalent to “TOS = TOS + 1.” Many abstract instructions when translated to
assembly-level instructions map to a sequence of instructions. For example, the instruction
“assign(d[FP], IP + 2)” is equivalent to a pair of statements “add(IP, 2, R1), assign(d[FP], R1).”
Similarly, the read statement would invoke an operating system call to read the data. The
instruction “push” the argument in the control stack and increments the TOS by one.

The data area has three partitions: static area for the global variables, frame of the main
program, and the frame of the called subroutine find_max. The global variables consist of
the array m[4] and the variable Max. Global variables are allocated statically: m[0] ↦ d[0],
m[1] ↦ d[1], m[2] ↦ d[2], m[3] ↦ d[3], and max ↦ d[4]. The frame of the main program
lies between d[5] to d[6], and the frame of the called procedure swap is between d[7] and
d[9]. The frame for the main program does not contain the return pointer and the dynamic
link. The locations d[7] and d[8] save the return pointer and the dynamic link to revert the
control back to the main program.

The frame main contains memory locations for two local variables: i ↦ d[5] and j ↦ d[6].
The frame of the subprogram find_max contains the return pointer (RP) ↦ d[7], dynamic

Implementation Models for Imperative Languages    ◾    203  

link (DL) ↦ d[8], and the local variable i ↦ d[9]. FP points to the location d[7], TOS points
to the location d[10], and DL points to the base of the frame of the main program; that is,
d[5]. The return pointer points to the location c[11] in the code area that corresponds to
executing “halt” instruction.

The code area uses the frame pointer (FP) to access the memory locations within the
frame of currently executing procedure. The instructions between c[0] and c[5] correspond
to the execution of the for-loop. The instruction at c[0] assigns the value 0 to the memory
location pointed by FP and is the low-level translation of the statement “i = 0”; the instruc-
tion at c[1] compares the value d[FP] with the constant 3. The execution of this statement
sets the PSW accordingly, and the instruction at c[2] uses the flags in PSW to exit out of
the while-loop by jumping to the statement c[6]. The instruction at c[4] reads the value of
the subscripted variable m[i] by using two memory accesses: first reading the value of d[FP]
(value of i) and then reading the indexed memory. The reading invokes a system-level call.
The instruction at c[5] subtracts 4 from the instruction pointer to jump back to c[1]—the
start point of the for-loop.

0 assign(d[FP], 0)integer m[4], max;
program main ()
{
 integer i, j;
 for (i = 0; i =< 3;
 i++)
 read(m[i]);
 call 	nd_max
}

void 	nd_max ()
{
 integer i;
 max = m[0];
 i = 1;
 while (i =< 3)
 if (m[i] > max)
 max = m[i];
}

11 halt

10 jump(IP + 2)

9 add(TOS, 1)

8 assign(FP, TOS)

7 push(FP)

6 push(ip + 5)

5 jump (IP – 4)

4 add(d[FP], 1)

3 read(d[d[FP]])

2 brgt (IP + 4)

1
0

10
9
8
7
6
5
4
3
2
1

m[0]

i
DL = 5

Previous
TOS = 7

Previous
FP = 5

RP = 11
j
i
max
m[3]
m[2]
m[1]cmp(d[FP], 3)

12 assign(d[4], d[0])

22 assign(IP, d[TOS])

21 assign(FP, d[FP – 1])

20 assign(TOS, FP – 2)

19 jump (IP – 5)

18 assign(d[4], d[d[FP]])

17 brle (IP + 2)

16 cmp(d[d[FP]], d[4])

TOS = 10

Stack
growth

FP = 9

15 brgt (IP + 5)

14 cmp (d[FP], 3)

13 assign(d[FP], 1)

Program Code area Data area

FIGURE 5.10 Code and data generation in a stack-based implementation.

204    ◾    Introduction to Programming Language

The instructions at code area locations c[6] to c[9] are used to set up the various pointers
and jump to the first instruction of the called subroutine. The instruction located at c[6]
sets up the return pointer by pushing “IP + 5” to the top of the stack (at d[7]), and TOS
is incremented by 1. The instruction located at c[7] sets up the dynamic link by pushing
the value of FP on top of the stack (at d[8]), and TOS is incremented by 1. Register values,
if modified, are also pushed on the stack. The instruction located at c[8] sets up the FP to
access frame of the subroutine find_max by assigning FP to TOS. The offset is controlled
by the memory locations needed to save the computational state of the calling subpro-
gram; this would change if there were saved registers, PSW, and a static link to be saved.
The instruction at c[9] sets up TOS by adding the number of memory locations allocated
to the local variables: the size is 1 in our case. The instruction at c[10] passes the control to
the first instruction of the subroutine find_max by looking up the offset from the symbol
table: the offset is 2 in this case. The last instruction c[11] corresponds to the high-level
instruction “halt.”

In the subroutine find_max, c[12] corresponds to the high-level instruction “max = m[0]”:
max ↦ d[4] and m[0] ↦ d[0]. The instruction at c[13] corresponds to the high-level instruc-
tion “i = 1”: i ↦ d[FP]. The instructions between the locations c[14] and c[19] correspond to
the while-loop, and the instructions between the locations c[20] and c[22] correspond to the
return from the subroutine find_max. The instruction at the location c[14] compares the
variable i with the constant 3. The instruction at the location c[15] gets out of the while-loop
if the value of the variable i is greater than 3. The instruction at the location c[16] corre-
sponds to the high-level instruction m[i] > max: i ↦ d[FP], max ↦ d[4], and d[d[FP]] ↦ m[i].
The instruction at the location c[17] corresponds to the vacuous else-part of the if-then-else
part and takes the control to the instruction at the location c[19]. The instruction at the
location c[18] is equivalent to the high-level instruction max = m[i]. The instruction at the
location c[19] subtracts 5 from “IP” to jump back to the start of the while-loop.

The return from the subroutine resets the pointers in the following order:

 1. The instruction located at c[20] copies the value of the FP – 2 into TOS to reclaim the
memory used by the frame of the subroutine find_max. The value 2 is the sum of the
size of the saved-state information that is 2 in our case: return pointer and dynamic link.

 2. The instruction located at c[21] recovers the frame pointer of the main program by
copying the dynamic link (d[FP – 1]) into FP.

 3. The instruction located at c[22] passes the control back to the main program by copy-
ing the address stored in RP (d[TOS]) into IP. After changing TOS in c[20], TOS is
pointing to the same memory location as the return pointer of the called subprogram.

Accessing array variables requires two memory accesses: one to get the value of the
index variable, and the second to get the value of the memory location corresponding to
the array element. This additional memory access is reduced by compilers by storing the
index variables in the registers. Use of cache memory also improves the memory access
overhead.

Implementation Models for Imperative Languages    ◾    205  

5.5 IMPLEMENTING PARAMETER PASSING
Depending upon the type of parameter passing mechanisms, the implementation part
corresponding to information exchange is different. For example, call-by-value requires
copying of the evaluated value of the expression to the memory location of the formal
parameter. Call-by-reference needs to store the base address of the actual parameter in the
memory location of the formal parameter.

The memory space for the actual parameters in the calling subprogram is called outgoing
parameter space, and the memory space for the formal parameters in the frame of the called
subprogram is called incoming parameter space. Outgoing parameter space belongs to the
frame of the calling subprogram, and the incoming parameter space belongs to the frame
of the called subprogram. However, the outgoing parameters space and incoming parameters
space are superimposed into one, so that both the calling subprogram and the called subpro-
gram can access it. The called subprogram saves the computational state into the saved-state
information right after the incoming parameter space. FP points right after the saved-state
information. The offset for a formal parameter is negative with respect to the FP of the called
subprogram. However, offset of the remaining local variables is positive with respect to FP.

5.5.1 Implementing Call-by-Value

During call-by-value, the value of the actual parameter expressions are evaluated and stored
in the outgoing parameters space. The called subprogram saves the PSW, registers modified
in the called subprogram, and various pointers. The incoming parameters are accessed as
d[FP – offset] for single data entities and d[FP – base-address-offset + d[FP + index-offset]]
to access an array element where base-address-offset is the offset of the first element in the
array, and index-offset is the offset of the index variable i to access an array element a[i].
Complex objects allocated in heap are also accessed by copying the reference to the object
into the memory locations of the formal parameter.

Example 5.4

Figure 5.11 illustrates the abstract implementation of call-by-value. The main pro-
gram copies values of two variables, i and j, to the corresponding formal parameters
x and y. The subprogram swap swaps the values of formal parameters x and y. The
results of the computations in the subroutine swap are not passed back.

The frame of the main program consists of location d[0] to d[3], and the frame of the
called subprogram consists of d[2] to d[6]. The overlapping locations d[2] and d[3] corre-
spond to the formal parameters x and y. The locations d[2] and d[3] are treated as outgoing
parameter space by the main program and incoming parameter space by the called pro-
cedure swap. The locations d[4] and d[5] are saved-state information: the return-pointer
location d[4] stores the address of the next instruction write(i); and the location d[5] stores
the dynamic link. The variable temp maps to the location d[6].

Before calling the procedure swap, the control is in the main program, and the FP points
to d[0], and TOS points to d[4]. The FP of the subroutine swap points to the location d[6].

206    ◾    Introduction to Programming Language

D[FP – 1] is the dynamic link location, and d[FP – 2] stores the return address of the next
instruction to be executed in the program main. Static link is missing.

The parameter passing uses the pointer FP to copy the values in the outgoing param-
eter space. The instructions located at code locations c[2] and c[3] copy the value of actual
parameters in d[FP] and d[FP + 1] into the outgoing parameter locations “FP + 2” and
“FP + 3”. Remaining instructions in the main program are used to set various pointers and
jump to the subroutine swap, and have already been discussed in Example 5.3.

The notations d[FP – 4] and d[FP – 3] are used to access the value of the formal parameters
x and y, respectively. The offsets 4 and 3 are calculated by knowing the size of the saved-
state information and size of the incoming parameters. The instruction at c[11] copies the
value of the variable x into the memory location of the variable temp. The instruction at
code-location c[12] copies the value of the variable y into x, and the instructions at code-
location c[13] copies the value of variable temp into the memory location y. The remaining
three instructions located between code locations c[14] and c[16] are the instructions to
pass the control back to the calling program, and have been discussed in Example 5.3.

5.5.2 Implementing Call-by-Reference

During call-by-reference, a calling subprogram stores the base address of a data entity in the
outgoing parameter space that becomes the incoming formal parameter space for the called
subprogram. Referenced objects are accessed by d[d[FP – parameter-offset] + index-offset],
where parameter-offset is the offset of the base-address of the incoming formal parame-
ter in the called subprogram, and the index-offset is the offset of the local index variable

program main ()
{
 integer i, j;
 i = 1;
 j = 2;
 call swap(i, j);
 write(i)
}

void swap (integer x, y)
{
 integer temp;
 temp = x;
 x = y;
 y = temp;
}

0

11
10

9
8
7
6
5
4
3
2
1 0

6
5

7

4
3
2
1

i

temp

TOS = 7

DL = 0

FP = 6

Previous
TOS = 4

Previous
FP = 0

RP = 9
y
x
j

12

16
15
14
13

assign(d[FP], 1)

push(ip + 7)
push(FP)
assign(FP, TOS)

jump(IP + 3)
write (d[FP])
halt

assign(IP, d[TOS])

Code area Data area

Stack

Program

assign(FP, d[FP – 1])
assign(TOS, FP – 2)
assign(d[FP – 3], d[FP])
assign(d[FP – 4], d[FP – 3])
assign(d[FP], d[FP – 4])

add(TOS, 1)

assign(d[FP + 3], d[FP + 1])
assign(d[FP + 2], d[FP])
assign(d[FP + 1], 2)

FIGURE 5.11 Schematics of implementing call-by-value.

Implementation Models for Imperative Languages    ◾    207  

in the frame of the called subprogram. The second term can be replaced by appropriate
 addressing mechanism if the index variable is other than the local variable. Nothing special
is done during the return from the called subroutine, as call-by-reference allows continu-
ous mutation of the actual variable, and there is no need to explicitly pass back any result.

Example 5.5

In Figure 5.12, the memory locations for the formal pointers x and y store the address
of the memory locations of the variables i and j, respectively. Since x and y store the
addresses of the actual parameters i and j, parameter passing in location c[2] assigns
the memory address FP instead of the r-value d[FP], and the location c[3] assigns the
memory address FP + 1 instead of the r-value d[FP + 1].

The instructions at locations c[11], c[12], and c[13] that use the formal parameters
x and y to indirectly access the actual parameter have two memory accesses denoted
by d[d[FP – 4]] to access the actual parameter value for the variable i and d[d[FP – 3]]
to access the actual parameter value for the variable j. Note that d[FP – 4] gives the
memory address of the actual parameter i, and d[FP – 3] gives the memory address
of the actual parameter j. Remaining instructions are similar to the call-by-value and
have been discussed before.

5.5.3 Implementing Call-by-Value-Result

During call-by-value-result, the calling subprogram evaluates the value of the expressions
for the actual parameters and stores the resulting value in the corresponding memory loca-
tions in the outgoing parameters’ space. After the termination of the called subprogram,

Code areaProgram Data area

Stack
growth

program main ()
{

void swap (integer *x, *y)
{

integer temp;
temp = *x;
*x = *y
*y = temp;

integer i, j;
i = 1;
j = 2;
swap(& i, & j);
write(i)

assign(d[FP], 1)
assign(d[FP + 1], 2)
assign(d[FP + 2], FP)
assign(d[FP + 3], FP + 1)
push(ip + 5)
push(FP)
add(TOS, 1)
assign(FP, TOS)
jump(IP + 3)
write(d[FP])
halt
assign(d[FP], d[d[FP – 4]])
assign(d[d[FP–4]], d[d[FP–3]])
assign(d[d[FP–3]], d[FP])
assign(TOS, FP – 2)
assign(FP, d[FP – 1])
assign(IP, d[TOS])

}

}

Previous
FP = 0

FP = 6

i
j
x-ptr
y-ptr
RP = 9
DL = 0
temp

0
1
2
3
4
5
6
7

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

TOS = 7

Previous
TOS = 4

FIGURE 5.12 A schematics of implementing call-by-reference.

208    ◾    Introduction to Programming Language

the result is copied back by the calling subprogram from the outgoing parameter space
to the corresponding variable locations, if needed. Since outgoing parameter space of the
calling program and the incoming parameter space of the called subprogram are superim-
posed, the result is automatically passed back to the calling subprogram.

Like call-by-value, formal parameters are also treated as local variables and are accessed
as d[FP – offset] for single data entities and d[FP – base-address-offset + d[FP + index-
offset]] to access an array element where base-address-offset is the offset of the first data
element in the array, and index-offset is the offset of the index variable i to access an array
element a[i].

Example 5.6

Figure 5.13 shows the same program, with call-by-value-result parameter pass-
ing. The call-by-value-result actual parameters have been tagged using symbol ‘#’.
The data area is the same as in call-by-value. There are two additional instructions
in the code area: the instruction at c[9] and c[10] copies the result back from the
outgoing parameter space to the actual memory location of the variables x and y,

program main ()
{

void swap (integer x, y)
{

integer temp;
temp = x;
x = y;
y = temp;

integer i, j;
i = 1;
j = 2;
swap(# i, # j);
write(i)

}

}

assign(d[FP], 1)

assign(d[FP + 1], 2)

assign(d[FP + 2], d[FP])

assign(d[FP + 3], d[FP + 1])

push(IP+ 5)

push(FP)

assign(FP, TOS)

add(TOS, 1)

add (IP, 5)

assign(d[FP], d[FP + 2])

assign(d[FP + 1], d[FP + 3])

write(d[FP])

halt

assign(d[FP], d[FP – 4])
assign(d[FP – 4], d[FP – 3])
assign(d[FP – 3], d[FP])
assign(TOS, FP – 2)
assign(FP, d[FP – 1])
assign(IP, d[TOS])

0

1

2

3

4

5

6

7

8

9

10

11

12

13
14
15
16
17
18

Code areaProgram Data area

Stack
growth

Previous
FP = 0

FP = 6

TOS = 7

Previous
TOS = 4

i

j

x

y

RP = 9

DL = 0

temp

0

1

2

3

4

5

6

7

FIGURE 5.13 Schematics of implementing call-by-value-result.

Implementation Models for Imperative Languages    ◾    209  

respectively. After the control comes back to the code area, the result of the formal
parameter is copied back to the actual memory locations before executing the next
high-level instruction. Note that outgoing parameter space is reusable, is used by
multiple calls to different subprograms, and cannot be used as an image of specific
variables. All other instructions are similar to call-by-value and have been discussed
in Section 5.5.1.

5.6 LOW-LEVEL BEHAVIOR OF RECURSIVE PROCEDURES
Recursive procedures invoke a new activation record for every recursive call. The return
address in the frames of the each instance points to the same code area location, and the
static link of the frames of each instance of the recursive procedure points to the frame of
the same procedure under which the recursive procedure is nested. However, the dynamic
links of the mth (m > 2) instance points to the base address of the frame of the (m − 1)th
instance, and the first instance of the recursive procedure points to the frame of the proce-
dure that invoked the recursive procedure.

Example 5.7

The difference between static links and dynamic links in the invocation of recursive
procedures has been explained in Figure 5.14, showing the calling pattern of the pro-
cedures for factorial subprogram program invoked by the main program.

The main program invokes factorial(2). Factorial(2) calls factorial(1) and sus-
pends itself waiting for the value from factorial(1). The dynamic link of factorial(1)
points to the base of the frame of the invocation factorial(2). Similarly, factorial(1)
calls factorial(0). The dynamic link of the frame of the procedure invocation for
factorial(0) points to the base of the frame of factorial(1). However, the static links
in the frames of all the invocations of factorial(2), factorial(1), and factorial(0) point
to the base of the frame of the same program under which the factorial program
is nested.

Main

Factorial(2)

Factorial(1)

Factorial(0)

Dynamic links

Stack growth

Static links

FIGURE 5.14 Dynamic and static links in recursive procedures.

210    ◾    Introduction to Programming Language

5.7 IMPLEMENTING EXCEPTION HANDLER
Exception handlers are implemented using jump statements. After the program returns
from executing a statement with exception handlers or from the called routine, a flag
for “successful termination” is checked. If the statement has executed successfully with-
out any exception, the control jumps to the instruction after the exception handlers
using a branch statement. Otherwise, the control falls through the exception handlers.
It checks the conditions in every exception handler and picks up the instruction loca-
tion from the corresponding location in the frame of the procedure if the condition is
true. If an exception is declared, then the activation record has an entry in the frame
of the procedure that stores the location of the routine to be executed. After the excep-
tion handler has been executed, the control returns back to check the next exception
condition.

If the exception handler is successfully executed, then the control remains in the cur-
rently executing subprogram. Otherwise, if none of the exception handlers match the
exception condition, a branch instruction takes the control to the return sequence, and the
control returns to the calling subprogram, which checks the exception flag, and repeats
the process.

Another implementation approach is to keep a separate stack of exceptions called
 exception stack. The address of the first instruction to the exception handler and the top-
most activation frame is pushed on the execution stack. At the end of the successful execu-
tion of the exception handler, all the frames above the frame of the successful exception
handler are removed from the control stack.

5.8 SUMMARY
In this chapter, we studied the abstract implementation model of programming languages.
Exact implementation is much more detailed. However, this discussion gives us a better
understanding of the implementation and access of various data and control abstractions
at an intermediate level.

This chapter has discussed the concept of an abstract machine and its behavior in
terms of data area, control area, instruction pointer, and registers. Data area is con-
tinuously modified using fixed code, except for the languages that support first-class
objects. Data area consists of three parts: static area, control stack, and heap. Static
area is fixed at compile time and does not grow or shrink at run time. Stack and heap
can grow and shrink at run time. Stack grows linearly. Heap is a common memory
area visible to all subprograms, and data cells can be allocated on demand at any time.
Physical cells of a logical data structure in a heap are connected through chains of
pointers.

Static allocation is a fixed memory allocation scheme that allocates memory at compile
time, such that memory locations are accessed directly without the use of any pointer.
Static allocation is used for the data entities that need fixed memory mapping and do not
change memory location at run time. Global variables and static variables are allocated
using static allocation. Dynamic local variables and data objects, whose lifetime is limited

Implementation Models for Imperative Languages    ◾    211  

to the program units or block where they are declared, are allocated in the control stack.
Recursive data structures and dynamic data objects that have lifetime beyond the program
unit they are declared in are allocated in heap.

The control flow diagram is used to translate high level control abstractions to abstract-
level instructions. The negation of conditional expression, followed by the conditional
branch statements such as brlt, breq, brne, brgt, brge, and brne, are used to take the control
to <else-statement> in the if-then-else constructs and to get out of the loop in the iterative
constructs.

Static implementation uses static allocation and direct data access. Procedure calls
require storing the memory address of the next instruction to be executed and making
a jump using the branch instruction to pass the control to the called subprogram. After
finishing all the instructions, the called subprogram assigns the return pointer value
to the instruction pointer to pass the control back to the next instruction in the calling
subprogram.

The stack-based implementation uses multiple pointers and separate frames for each
subprogram invocation. The frame pointer along with the offset is used to access the mem-
ory location of a local variable or a data object. A dynamic link is used to get back the frame
of the calling subprogram after the called subprogram is over. The static link or display
registers are used to access the nonlocal variables. Before calling a subprogram, parameters
are passed to the outgoing parameter space that becomes the incoming parameters space
for the called subprogram. The registers, pointers, and the status word PSW of the calling
subprogram are saved; the pointers are altered to access the frame of the called procedure,
and the control is passed to the first instruction of the called subprogram. After the called
subprogram is over, the reverse process is used to restore the environment of the calling
program, pass the parameter values depending upon the parameter passing mechanism,
and pass back the control to the next instruction in the calling subprogram.

To share a complex object allocated in a heap, call-by-value is used that allows access to
the data object allocated in a heap. During call-by-reference, a pointer to the actual param-
eter is saved in a formal parameter location. The retreival of r-value requires two memory
accesses: one to access the memory location of the actual parameter and the second one to
access the r-value. Call-by-value-result copies the actual parameters to the outgoing area
that becomes the incoming parameter area in the called subprogram. After the return
from the called subprogram, the results from the outgoing area are copied back to the
actual memory locations of the variables, if needed.

Recursive functions create a new frame for every invocation. The static link and dynamic
link of a recursive function point differently: the dynamic link points to the base of the
frame of the calling procedure, and the static link of all the invocations points to the base
of the frame of the procedure under which the recursive function is nested.

Exception handling is implemented using one of the two techniques: (1) keeping the
location of exception-handling routines in the frame of the subprogram or (2) a separate
exception-stack. In the first technique, if all the exception handlers fail, then the control
returns to the calling program, and the process is repeated. In the second technique, if the

212    ◾    Introduction to Programming Language

exception handler succeeds, then all the frames above the successful frame are removed
from the exception-stack.

5.9 ASSESSMENT

5.9.1 Concepts and Definitions

Abstract instructions; abstract machine; active space; call-by-value; call-by-reference;
call-by-value-result; code area; control stack; data area; display registers, dynamic link;
exception handling; exception stack, frame; frame-pointer; heap; idle space; recursive data
structures; recursive procedure; return pointer; stack based allocation; static allocation;
SECD machine; static link; top-of-the-stack pointer; trail stack, WAM (Warren Abstract
Machine).

5.9.2 Problem Solving

 1. Write a sequence of low-level codes to implement the statement X = Y + 2 + 3 + 5.

 2. Draw a control flow diagram for the case statement, and then write a low-level abstract
code to implement case statement.

 3. Write the code area and data area for the following Fortran 66–like program using
static allocation.

 4. Write a function that finds out the factorial(n), and show the control stack for com-
puting factorial(2) when the control is in the invocation that is computing factorial(0).

 5. Write the code area and data area for the following program using stack-based alloca-
tion for the following block-structured language. Assume that the block-structured
language supports three types of parameter passing: call-by-value, call-by-reference,
and call-by-value-result. Call-by-reference is denoted by a “&” tag in the actual
parameter, and call-by-value-result is denoted by an “#” sign in front of the actual
parameter. In the called subprogram, the value of the actual parameter is accessed by
putting “*” before the formal parameter.

PROGRAM MAIN
INTEGER I, J, K[20]
COMMON/B1/K[20]
DO 20 I = 1, 20, 1
20 READ(K[I])
CALL SORT
DO 30 I = 1, 20, 1
30 WRITE(K[I])
END

SUBROUTINE SORT
INTEGER M[20], I, J
COMMON/B1/M[20]
COMMON/B2/J
DO 10 I = 1, 20, 1
J = 20 − I + 1
10 CALL MAX
RETURN

SUBROUTINE MAX
INTEGER M[20], J, K
COMMON/B1/M[20]
COMMON/B2/J
DO 30 I = 1, J, 1
IF (M[I].GT. M[I + 1])
 K = M[I]
 M[I] = M[I + 1]
 M[I + 1] = K
ENDIF
RETURN

Implementation Models for Imperative Languages    ◾    213  

 6. Write a simple program for bubble sort that calls a procedure find-max using
exchanging adjacent values instead of keeping temporary max. It passes the
array using call-by-reference. Show the data and the code area, and highlight the
parameter passing code. Clearly mark the pointers when the control is in the main
program and when it is in the procedure find_max. Assume that the size of the
array is 5.

5.9.3 Extended Response

 7. What are the major drawbacks of static allocation? How does a hybrid allocation
scheme consisting of static allocation, stack-based allocation, and heap-based alloca-
tion solve the problem?

 8. Explain the role of frames in stack-based implementation. Why is it necessary to keep
the visibility restricted mainly to local frame? Explain.

 9. What are the advantages of superimposing outgoing parameters and incoming
parameters area? Explain using schematics.

 10. Assuming that you have both control stack and heap available to you, design a
parameter-passing mechanism that acts like a read-only call-by-reference during the
execution of the called subprogram if the value is being read, and passes any changes
to the actual parameter at the end of the called procedure to update the portion of
the actual parameter that has been modified during the execution of the called pro-
cedure. Discuss the advantages and drawbacks of such a scheme compared to call-by-
reference and call-by-value-result.

 11. Do a literature search to implement iterators, and write various techniques to imple-
ment iterators and the issues with implementing iterators.

 12. What are exception handlers, and how are they handled in a stack-based
implementation?

 13. Draw a control flow diagram for selection construct with multiple conditional exits
in ADA, and write a low-level code for the construct.

program main ()
integer maxvalue;
{ integer i, j, a[20]
 for (i = 0; i = < 19, i++)
 read(a[i]);
 sort(ref & a);
 maxvalue = d[19];
 i = 0;
 do
 write(a[i])
 while (i++ = < 19);
 write(max);
}

void sort (integer *d)
integer i,j
j = 20;
while(j > 1) {
 max(d, # j);
return

void max(integer *d, j)
{ integer i, temp;
 i = 0;
while (i = < j) {
 if (*d[i] < *d[i+1]) {
 temp = *d[i];
 *d[i] = *d[i+1];
 *d[i+1] = temp;
 }
 }
 j = j − 1;
}

214    ◾    Introduction to Programming Language

FURTHER READING

Brent R. “Efficient implementation of first fit strategy for dynamic storage allocation.” ACM
Transactions on Programming Language and Systems. 11(3). July 1989. 388–403.

Diehl, Stephan, Hartel, Pieter, and Sestoft, Peter. “Abstract machines for programming language
implementation.” Future Generation Computer Systems, 16.2000. 739–751.

Hanson, David R. “Fast allocation and deallocation of memory based on lifetimes.” Software Practice
and Experience, 20(1). January 1990. 5–12.

Jones, Richard, Hosking, Antony, and Moss, Eliot. The Garbage Collection Handbook. CRC Press/
Taylor & Francis Group. 2012. 481.

Jones, Richard and Lins, Rafael D. Garbage Collection: Algorithms for Automatic Dynamic Memory
Management. New York: John Wiley. 1996.

Wilson, Paul R., Johnstone, Mark S., Neely, Michael , and Boles, David. “Dynamic storage allocation:
A survey and critical review.” Proceeding IWMM '95 Proceedings of the International Workshop
on Memory Management. Springer Verlag. 1–116.

215

C h a p t e r 6

Dynamic Memory
Management

BACKGROUND CONCEPTS
Abstract concepts in computation (Section 2.4); Abstract implementation (Chapter 5); Data
abstraction (Section 4.1); Data structures concepts (Section 2.3); Principle of locality (Section 2.4.8).

Memory reuse is an important requirement for executing large-scale programs. Different
program subunits and dynamically created objects have a lifetime. Allocated memory
gets released when the corresponding program units have finished execution, or when
the recursive data structures or the dynamic data object are manually released by a
 programmer action. The memory is allocated in the control stack or the heap. The memory
from the control stack is released when the frame of the called procedure is discarded,
and the memory location can be reused for allocating another frame. Heap is a common
area used mainly for recursive data structures and dynamically created data objects as in
object- oriented programming languages such as C++, Java, and C#. The data structures
allocated in heap are extended dynamically based upon run-time programmer request,
and outlive the procedures in which they were created. Heap is visible throughout the
life of a program. The allocated memory in heap is recycled only after the data entity has
been released.

Dynamic memory management is concerned about allocation, deallocation, and recy-
cling of memory locations needed for data structures allocated in heap at runtime. If the
objects are extended piecemeal, then it is difficult to access them in the frame of a pro-
cedure, as different allocations need to be chained and accessed sequentially, while data
objects in a frame are accessed using index and offsets. The data structures and objects
that are constructed once and deleted before the lifetime of the subprogram that created
them can be allocated in the control stack for efficient access and better memory reclaim.
A language that supports allocating complex dynamic objects in the control stack has to
support call-by-reference for sharing the object with the called subprogram. If the dynamic
data objects are allocated in the heap, then the control stack stores only the pointer to the

216    ◾    Introduction to Programming Language

first memory location of the dynamic object, and call-by-value (or call-by-sharing) is used
to pass the pointer for accessing the object in the called subprogram.

6.1 HEAP ORGANIZATION
Heap is organized as a linear array, where dynamic data entities are allocated. Heap has
three types of memory blocks: allocated, released, and free. Allocated blocks are active
blocks being used by a process. Released blocks are not being used by a process and need to
be recycled to be in the free pool. Free memory blocks can be allocated to a process based
upon a run-time request. Each type of memory block contains the size information along
with it. Heap can be modeled as a sequence of quadruples, where an element of the sequence
can be (allocated, <block-size>, <start-address> <end-address>), or (released, block-size,
<start-address> <end-address>), or (free, block-size, <start-address> <end-address>).

Free blocks are grouped together either using a chain of pointers or using an indexible
structure that groups memory blocks of similar sizes together using chains of pointers. The
right chain can be searched using an efficient search scheme such as binary search or hash-
functions. After the chain connecting the similar-sized blocks is identified, the optimum
block can be identified by sequentially following the chain.

The first pointers for heap objects are stored in the processor registers, control stack, or
handles—a tuple of references to resources used by a process. The data cells of the same
data structure scattered within a heap are accessed through a chain of pointers connecting
scattered memory blocks belonging to the same data structure. During parameter pass-
ing, by copying the first pointer to a dynamic object, the data object can be accessed in
the called subprograms. Only call-by-value to copy the reference to objects is required to
access the heap objects.

Example 6.1

In Figure 6.1, the heap starts at location 13,500 and ends at location 0. It stores two
data entities. Data entity 1 is spread over three memory blocks: 13,500–11,501, 8000–
6001, and 5000–3001; data entity 2 is spread over two memory blocks: 10,500–8001

First pointers are
stored in control
stack, or processor
registers, or handles

Data entity 2

Data entity 1

Free block pointer
Data entity 1

13,500

5000

3000

500
0

Data entity 2
10,500

8000

6000

11,500

FIGURE 6.1 Schematics of heap organization.

Dynamic Memory Management    ◾    217  

and 3000–501. The first pointer for the data entity 1 points to the base address 13,500,
and the first pointer for the data entity 2 points to the base address 10,500. The free
blocks are also interspersed into three memory ranges: 11,500–10,501, 6000–5001,
and 500–0, and the free block pointer points to the base of the first free block located
at 11,500.

The heap blocks are allocated on the basis of the run-time request by a process—an
active version of a program. A heap block is a collection of data cells that has three
types of fields: header field, information fields, and fields pointing to other data cells. A
header field carries multiple information such as flags to mark the cells as allocated,
number of fields and their memory offsets from the start of the cell, number of mem-
ory locations in a cell, and number of pointers pointing to a cell. An information field
carries the type of information and the values. For example, a linked list is a sequence
of pair (header, info-field, pointer to next cell), and a cell in a binary tree is a 4-tuple
of the form (header, info-field, left-pointer, right-pointer), as shown in Figure 6.2.
Cells in a logical data structure are traversed using the chain of pointers connecting
the heap blocks in the same data structure.

Free space in a heap can be organized in four different ways: (1) as a chain of
free blocks, as shown in Figure 6.1; (2) as an indexed chain of pointers linking the
blocks of similar sizes together, as shown in Figure 6.3; (3) as a group of indexible
stacks, as shown in Figure 6.4; or (4) as bitmapped allocation markers. The third

Tree cell

Header Value

Header Value

Linked-list cell

FIGURE 6.2 Unit cells in allocation of linked lists and trees.

1

2

3

500–999

Size 13,500

11,500

500
0

1000–1999

2000–2999
10,500

8000

6000

5000

3000

FIGURE 6.3 Size-based organization of heap for fast search of optimum block.

218    ◾    Introduction to Programming Language

scheme is similar to the control stack studied in Chapter 5. The fourth scheme
is popular in system programming to map files on physical blocks in secondary
memory.

Figure 6.3 shows schematics of an organization of the heap for efficient search of
the optimum size free memory block. An indexed table is organized by the similarly
sized blocks. The corresponding chain of free blocks is identified by efficient search
schemes.

In the stack-based allocation, a heap is represented as a chunk of memory loca-
tions that are marked by a begin-address and an end-address. The top-of-the-stack
pointer (TOS) starts from the begin-address and moves toward the end-address after
every run-time allocation of the requested memory block. A TOS pointer is used
to allocate the next requested memory block and to start the garbage collection—
recycling process for released memory blocks that returns them to a pool of free
memory. When the value of TOS goes past the end-address of the stack, garbage
collection starts.

In the bitmapped scheme, the heap space is divided into fixed block sizes that are
mapped on to a bitmap block such that the address offset of a bit from the start of the
bitmap block represents the index of the data block in the heap. If the bit is set to “1,”
then the block having the same index as the address offset of the bit is allocated;
 otherwise it is free. The list of free blocks can be identified by (1) traversing the bitmap
block to identify the bitmaps with zero value or (2) by keeping a sequence of address
offsets of bits having the zero value.

6.2 ALLOCATION OF DYNAMIC DATA OBJECTS
Data objects are allocated through the use of constructors in object-oriented programming,
such as C++, C#, or Java, when a dynamic data object is created or programmatically using
an explicit request for memory allocation as in C. When a request is made, the heap is
checked for the available memory. If the memory is available, it is allocated. Otherwise,
released memory blocks are recycled using garbage collection. There are three popular
memory allocation schemes: first fit, next fit, and best fit (or optimal fit).

Stack
growth

Free
memory

area

End

TOS

Begin

FIGURE 6.4 Stack-based allocation in a heap.

Dynamic Memory Management    ◾    219  

In first-fit algorithm, the first free block that is bigger than the requested memory block
is allocated, and the header of the newly allocated block and chain of pointers connecting
free block are adjusted accordingly. The pointer in the previous block is updated to point
to the next memory address after the last memory address of the newly allocated memory
block.

Next fit scheme is a variation of the first-fit scheme. It is based upon memorization of
the position of the last free memory block during the last search. The search continues
from that position in the following request. After hitting the end of the heap, it starts
again from the beginning of the heap. The advantage of this scheme is that allocated
blocks are more evenly distributed. By evenly distributing the memory blocks, the prob-
ability and amount of fragmentation is reduced. Fragmentation is caused by the creation
of leftover small memory blocks that do not have sufficient contiguous memory space to
satisfy a request for memory blocks. However, the advantage is not that straightforward,
because different subprograms have different lifetimes, and different programs have
 different amounts of allocations and deallocations of objects in a heap. A subprogram
that has many allocations and deallocations of objects in a heap contributes more to frag-
mentation. The allocation can be done either using fixed-sized blocks or using a variable-
sized block. The idea is to avoid fragmentation. If the size of the memory block left after
the allocation is very small, then instead of saving the fragment as a free block, the whole
block is allocated to avoid fragmentation. After allocation of the memory, a pointer is
set from the extensible data entity to point to the newly allocated data cells. If the whole
free block is allocated upon the request, then the free block is deleted from the linked list
of free blocks. Otherwise, the chain of free block is adjusted accordingly to point to the
remaining smaller free block.

The best-fit scheme finds out the most optimum size that is closest to the requested size.
The best-fit scheme is more suited to the indexed structure of the heap, where the heap is
organized in a group of similar sized free blocks connected through linked lists. Efficient
search schemes identify the chain of pointers with the nearest range and traverse the chain
of pointers to find the best fit of the size that matches the allocation request. Again, if the
computation shows that the fragment size of the remaining block is very small, then the
whole block is allocated, and the chain of pointers is adjusted accordingly. If the remaining
block size is bigger than the threshold of a very small fragment, the remnant free block’s
size is computed, and the new free block is deleted from the current linked list of point-
ers and inserted into the linked list of free blocks that appropriately reflects the size of the
smaller free block. In case the current chain of pointers being searched is empty, the search
is carried to the next higher size range, until a nonempty chain of pointers is found. If no
nonempty chain of pointers is identified, then the memory recycling process starts using
garbage collection.

6.3 DEALLOCATION OF DYNAMIC DATA OBJECTS
Deallocation is done in two ways: (1) manual deletion of the data structure by a pro-
grammer action; or (2) automated deletion of the objects when a called subprogram
is over, and lifetime of the dynamically created object is limited to the lifetime of the

220    ◾    Introduction to Programming Language

called subprogram. After a dynamic data object is deleted, the occupied memory block
is released and is ready to be returned to the pool of free blocks. Deallocation of an
object does not require traversal to every memory location occupied by the dynamic
data entity. Instead, the first pointer that pointed to the base address of the first memory
block of dynamic data entity is reset to null. During the garbage collection process,
the traversal starts from the collection of the first pointers to the stored dynamic data
 entities in the heap. The memory locations that are unreachable through the chain of
pointers starting from the collection of first pointers are treated as garbage and are
 collected as free blocks. Hence, the deletion of a pointer from the set of the first point-
ers is sufficient to release the whole dynamic data entity. Deallocation is illustrated in
Figure 6.5.

6.4 FRAGMENTATION
Fragmentation is the process of formation of interspersed, smaller-sized memory blocks
that cannot be allocated to a bigger-sized memory block request. As the process of alloca-
tion and deallocation continues, the block size of the free blocks keeps decreasing, and
the number of very small sized free blocks keeps increasing. These fragments combined
together can be used to allocate requests for bigger memory blocks. However, individually
these free blocks are too small to be of any use.

Example 6.2

Let us consider the example of a heap consisting of the following blocks: {(allocated,
200, 0, 199), (free, 400, 200, 599), (allocated, 300, 600, 899), (allocated, 500, 900, 1399),
(free, 200, 1400, 1599)}. The total sum of the combined free memory space scattered
across fragments is 600 bytes. A request comes for 500 bytes. None of the free blocks
individually can handle the request.

One could argue that the requests could be split into smaller requests and be
chained together to accommodate a bigger request. However, there is another prob-
lem with fragmentation. If the data structure is scattered all over the heap, then it may

Pointer 1
Data entity 1 Release

Released

Released

Data entity 2 Data entity 2
Pointer 2 Pointer 2

FIGURE 6.5 Deallocation of an object from the heap.

Dynamic Memory Management    ◾    221  

be split into different pages in the virtual memory area. Principal of locality states
that a program accessing a data or control entity works in the physical vicin ity of the
program. The computer hardware exploits the principal of locality to (1) populate the
cache memory with a block of physically contiguous memory locations and (2) to
load physically contiguous pages from hard disks into RAM when a page fault occurs.
If a data structure is scattered across the heap, the cache memory will not have the
next cell of the data entity due to physical remoteness, and page fault will not bring
the adjacent data cells of the data entity due to significant distance between the physi-
cal addresses. This means that the overhead of the populating cache or page faults
would increase as the fragmentation in the heap increases.

There are two approaches to solve the problem of external fragmentation: (1) avoid
the external fragmentation or (2) join the external fragments during garbage collec-
tion to form bigger free memory blocks. External fragments can be avoided if we use
fixed-sized blocks and allocate multiple fixed-sized blocks when a request is made.
However, using the fixed-sized blocks causes internal fragmentation, since M × fixed-
block-size − requested memory ≥ 0. This wasted memory in the last allocated memory
block is known as internal fragments. External fragments can be joined if (1) the
adjacent blocks are identified as free-blocks during garbage collection or (2) all the
occupied state blocks are moved to a new memory space. Using copying one logical
data structure at a time such that logically contiguous data structures also become
physically contiguous.

6.5 GARBAGE COLLECTION—RECYCLING HEAP MEMORY
Memory locations in heap go through three states, as shown in Figure 6.6. A mem-
ory location becomes active after it is allocated to a data entity in a process. A process
uses the active memory block and eventually deallocates the block. After the data entity
occupying the memory is released, the memory location becomes released. The released
memory is still not available for allocation to another data entity, because it is not a part
of the chain of free memory blocks. Memory is recycled using a software process, called
garbage collection, that takes the released memory and makes it part of the free memory
blocks. A memory location is free if it becomes part of pool of free memory and can be
allocated to a process.

Released

ReleaseGarbage collection

Free Active
Allocate to a process

FIGURE 6.6 States of memory location in a heap.

222    ◾    Introduction to Programming Language

After an object is released from the heap, there can be many actions, depending upon
the memory recycling techniques as follows:

 1. The released object is collected and recycled immediately. Such garbage collection is
called continuous garbage collection.

 2. The released object is marked for recycling. However, memory recycling is done at
some time in the future when the heap runs out of free memory blocks.

The garbage collection process starts from the set of first pointers (root pointers) and tra-
verses, using the chains of pointers, to mark the live data entities. After identifying live data
entities, two approaches can be used:

 1. Live data entities are relocated to new contiguous locations, freeing the old memory
space.

 2. The nonactive memory space in the heap is chained together as free space and reused.

Garbage collection has run-time and memory overheads that slow down program exe-
cution. The execution time overheads of modern garbage collection implementation are
somewhere between 20–30% of the total execution time. In the garbage collection schemes
that suspend the program execution during garbage collection, important real-time events
or data are lost due to the delay caused by temporary program suspension. For example,
a nuclear plant monitoring system may miss a major radioactive leak; or a spacecraft may
miss an important sensor reading; or a painting robot on the shop floor of a car manu-
facturing company may suddenly stop painting, causing uneven delays in the assembly
line. In interactive programs, this delay causes perceptible performance deterioration. For
example, a video clip may not be rendered in real time.

6.5.1 Garbage Collection Approaches

The garbage collection process can be (1) start-and-stop or (2) real-time. A start-and-stop
algorithm suspends the execution of the program temporarily when the garbage collection
starts. Real-time garbage collectors allow interleaving of program execution with garbage
collection. Real-time garbage collection does not suspend the program completely during
garbage collection and performs better for handling real-time events. There have been
multiple approaches to achieve real-time garbage collection such as (1) incremental garbage
collection, (2) continuous garbage collection, (3) concurrent garbage collection, and (4) hard
real-time garbage collection.

Incremental garbage collection allows program execution during garbage collection by
splitting garbage collection into multiple smaller collections interleaved with program
execution. However, during this smaller garbage collection period, program execution is
still suspended. The interleaving gracefully degrades the execution of programs during the
garbage collection process and allows interaction with the outside world in a limited way.

Dynamic Memory Management    ◾    223  

Continuous garbage collection collects the released memory immediately and puts it in
the chain of free space. However, there is overhead of releasing and putting in the free space.
Reference-count garbage collection is a popular continuous garbage collection scheme.

Concurrent garbage collection allows garbage collection along with the program execu-
tion using multiple threads or using multiple processing units: separate processing units
running the garbage collector and program execution. The processes of recycling the
released memory and the process of allocating memory are possible if the following condi-
tions are met:

 1. The memory space of the collection process and the memory allocation process are
separated.

 2. The two processes are synchronized when working on the same memory location.

With the use of multicore computers and multiprocessors, concurrent garbage collection
is becoming quite popular. Interleaving program execution and garbage collection means
that new memory locations are also allocated during garbage collection time. While incre-
mental garbage collection and concurrent garbage collection schemes help in reducing the
time delay degradation of performance graceful, there are still many real-time jobs—such
as space–shuttle control, automated flight control, engine control in modern cars, robot
control, and many mission-critical tasks—that have hard deadlines that must be met. Hard
real-time garbage collection schemes try to handle this problem at the scheduler level by
temporarily suspending the garbage collection if a high-priority interrupt or process needs
to be processed.

The garbage collection has two types of processes: mutator and collector. A mutator is
the program execution part that may allocate new memory locations or releases a data
 structure during garbage collection. A collector is the garbage collection process that
 converts the released memory blocks to free memory blocks. The data structures in the
heap can be modeled as a directed cyclic graph that contains three types of nodes: active,
released, and free. Active nodes are the union of all the nodes in multiple data structures.
Each data structure is a graph of nodes. These data structures are chained together and
start from the root pointer. Since there are multiple data structures, there are multiple root
pointers. The set of root pointers is the starting point of garbage collection. The process
of garbage collection involves collecting the set of active nodes using a chain of pointers.
Once the active nodes are marked, the remaining nodes are treated as garbage nodes and
are collected. Many data structures share a part of their data structures. Thus, there may
be more than one incoming edge to a node.

6.6 START-AND-STOP GARBAGE COLLECTION
There are two major approaches to stop-and-start garbage collection: (1) mark all the
active cells and then collect all the remaining cells as free cells, and chain them together;
(2) relocate the active cells into another memory space, and free the old memory space.

224    ◾    Introduction to Programming Language

Both approaches have been used: mark-and-scan algorithms use the first approach, and the
copying garbage collection uses the second approach. This section describes three popular
stop-and-start techniques used in modern uniprocessor machines.

6.6.1 Mark-and-Scan Algorithm

Mark-and-scan algorithm, also known as mark-and-sweep algorithm, has two phases:
mark phase and scan phase. In the mark phase, starting from the first pointers stored in
processor registers, control stacks, or handles, a recursive descent algorithm traverses all
the data cells of a data entity by tracking the chain of pointers. The scan phase searches the
entire heap array sequentially, one memory location at a time, and collects all the memory
locations for which the corresponding mark bit is not set. After traversing an active cell,
it resets the mark bit to facilitate the collection of the memory location released in the
next cycle.

The traversal utilizes the depth-first search. For an information node containing more
than one unexplored pointer, the address of the information node is pushed on the stack,
and the unexplored left-most pointer is traversed in a depth-first manner until a leaf
node—a cell with no outgoing pointer—is found. After traversing the leaf node, the top-
most pointer is popped from the stack, and the node is traversed again using the depth-first
search for the remaining unexplored part of the graph, until there are no more nodes to be
traversed. The process is repeated for every data structure. During the traversal, the header
of every active cell sets its mark-bit—a single-bit flag in the header of every data cell of the
data structure. The mark-bit tells the scan phase that the cell is active and should not be
collected.

During the scan phase, the chunks of contiguous memory are grouped together into one
big memory block. These free blocks are either chained in a single chain of free blocks or
as indexible multiple shorter chains arranged by similar size free blocks, as explained in
section 6.1.

Mark-and-scan algorithm has many disadvantages, as described below

 1. Mark-and-scan algorithm traverses the active cells twice: once during the mark phase
to mark the active cells, and then during the scan phase to collect the cells that were
not marked during the mark phase.

 2. Mark-and-scan algorithm uses the depth-first search algorithm to traverse the data
structures. Depth-first search is recursive by nature. Any recursive algorithm has
memory overhead of using a stack. The size of the stack is at least as deep as the depth
of the data structure being traversed. Linked lists are linear and do not need a stack
to traverse the nodes. However, tree and graph traversal requires stack. The depth
is log(N) for balanced binary trees, where N is the number of data cells in the tree.
However, most of the times, due to contiguous insertion and deletion, trees are not
balanced, and the depth is between log(N) and N.

 3. Traditional mark-and-scan algorithm is a stop-and-start algorithm and is not suit-
able for languages supporting real-time events.

Dynamic Memory Management    ◾    225  

 4. Mark-and-scan algorithm coalesces only adjacent free blocks. However, the free
blocks are interspersed with active blocks embedded in. As the time progresses, the
size of the free blocks gets smaller, and fragmentation increases. The fragmentation
causes (1) increase in the number of page faults and (2) increase in the frequency of
invocation of the garbage collector; as memory requests cannot be satisfied in frag-
mented memory space. Fragmentation results in slow execution speed due to (1) the
lack of cache hit; (2) excessive page faults; and (3) frequent invocation of garbage col-
lector due to lack of utilization of very small memory blocks.

 5. Mark-and-scan algorithm’s scan phase is dependent upon the heap size and not on
the number of active cells, since it sequentially scans every memory cell.

6.6.2 Copying Garbage Collection

Copying garbage collection gathers all the scattered free spaces into one big space and does not
suffer from the fragmentation and heap-size dependence problem present in mark-and-scan
algorithm. The major advantages of the copying garbage collection are threefold as follows:

 1. Copying garbage collection compacts all the free memory blocks into one contiguous
memory space removing fragmentation completely.

 2. Copying garbage collection copies one data structure at a time, keeping them in
physically contiguous memory space improving the cache hit ratio and reducing the
page faults that may be caused due to interspersed data structures.

 3. Only active cells are copied.

Figure 6.7 illustrates the basic scheme of copying garbage collection. In copying garbage
collection, the heap is divided into two spaces: active space (also called from-space) and
 inactive space (also called to-space or idle space). At any time, only the active space is used
to allocate the data entities. The allocation is done using stack-based heap organization.

End2
End2

End1

Idle space
TOS2

TOS2

TOS1

Free area

Idle space

TOS1

Begin1 Active space

Active space

Begin1

Begin2

Block 2 released

Block 1

Block 3

Block 4

Entity-1

Entity-2

Begin2

End1

Entity-2

Entity-1

FIGURE 6.7 Copying garbage collection.

226    ◾    Introduction to Programming Language

When the top-of-the-stack pointer hits the end marker, garbage collection is started.
During garbage collection, active data structures are traversed one at a time, starting
from the first pointer stored in registers, control stack, or the handles. All the interspersed
memory blocks corresponding to single logical data structures are copied sequentially in
a physically contiguous space to utilize efficiency due to the principle of locality. After all
the data structures are copied, the spaces are switched: active space (from-space) becomes
inactive space (to-space), inactive space (to-space) becomes active space (from-space), and
the program execution resumes.

The copying garbage collection has the following pointers: start-address, end-address,
TOS pointer, and forwarding pointer. The role of start-address, end-address, and TOS
pointer is the same as used in the stack allocation. The forwarding pointer is used to copy
shared data. Conventionally, a heap grows in the reverse direction: from higher address to
lower address.

The left-hand side of Figure 6.7 shows a snapshot of a heap before the garbage collection,
and the right-hand side shows the snapshot of the heap right after the garbage collection.
The active space before the garbage collection shows two data entities: data-entity1 and
 data-entity2. Data-entity1 occupies memory block 1 and 3, and data-entity2 occupies memory
block 4. Block 2 is a released block that needs recycling, along with the small memory frag-
ment at the top of the stack. TOS pointer is very close to the end marker of the active space.

A request for memory block allocation such that TOS−size-of (requested memory-
block) < end-marker initiates the next garbage collection. During the garbage collection,
blocks 1 and 3 belonging to data-entity1 are copied and placed contiguously, followed by
the block 4 belonging to data-entity2. The free space gets coalesced at the other end.

A forward pointer is used to point from the from-space to the new memory location in
the to-space, where the data has been transferred. Each memory location in the from-space
that has been copied into the to-space is overwritten with (1) a tag that the cell has already
been copied and 2) the forwarding pointer points to the corresponding memory locations
into to-space. The purpose of creating a forwarding pointer is to avoid copying data cells
shared between two data structures in two different memory locations.

Many data structures share part of the memory locations. Once the shared part has been
copied during the copying of the first data structure, the shared space cannot be duplicated
again while copying the second data structure. In order to avoid duplication of the shared
data structure during copying, a forwarding pointer is stored in the old memory location
of the from-space. During traversal, after seeing the forward pointer tag, the forwarding
pointer is copied to the pointer field of the last visited cell of the second data structure, and
the copying process for the second data structure stops. The use of forwarding pointer is
illustrated in Figure 6.8.

Example 6.3

Figure 6.8 has two data entities that share the data cells: “s-1” and “s-2.” After data-
entity1 has been copied into to-space, there is no need to copy the shared data cells
“s-1” and “s-2.” The copied memory locations carry a forwarding pointer to the

Dynamic Memory Management    ◾    227  

memory locations they have been copied to. After copying cell “2-2” of data-entity2
the third cell “s-1” is a shared cell. This forwarding pointer stored in the cell “s-1” in
the from-space is copied into the pointer field of the cell “2-2” into the to-space. There
is no need to copy any additional cells after setting up the pointer, as shared cells are
already in to-space.

Naïve copying garbage collections have following disadvantages:

 1. It is a start-and-stop algorithm and is not suitable for programs handling real-
time events.

 2. It uses a depth-first search that has a memory overhead of stack space.
 3. Only 50% of the heap space is utilized at a time.
 4. The principal of locality states that older data structures are less likely to be

used. These older data structures keep getting copied between the from-space
and the to-space every time garbage collection is done, contributing to the
 execution time overhead of excessive copying.

Entity-2

1-1

Forward pointer
Forward
pointer

1-2

2-1
2-2

Free
area

1-3
s-1
s-2

1-1
1-2
1-3
s-1
s-2

2-1
2-2

Released

1-1Entity-1

1-1

2-1

1-2 1-3 s-1 s-2

Sharing of data structure2-2Entity-2

Entity-1

Entity-2

1-2
1-3
s-1
s-2

2-1
2-2

Released

TOS2

(a)

(b) (c)

FIGURE 6.8 Role of forwarding pointer during copying garbage collection. (a) Two linked-lists
sharing data structure; (b) snapshot before copying garbage collection; (c) snapshot during copying
garbage collection.

228    ◾    Introduction to Programming Language

There are two major approaches to solve the problems in naive copying garbage
collection:

 1. The first approach is to replace the memory overhead of stack by using breadth-
first search and by treating the full to-space as a queue. The use of the breadth-
first search removes the overhead of stack, and the use of to-space as a queue
removes the inherent memory overhead of using queue in breadth-first search.

 2. The second approach uses multiple version spaces instead of two semispaces,
while keeping only one space inactive at a time. This approach improves the
memory utilization to 100 * (n − 1)/n%. With three version spaces, the memory
utilization efficiency is 67%, and with four version spaces, the memory utiliza-
tion efficiency improves to 75%.

6.6.3 Cheney’s Modified Copying Garbage Collection

Figure 6.9 illustrates an algorithm, first developed by Cheney, that removes the mem-
ory overhead of stack by using breadth-first search and utilizing the full to-space as a
queue. The use of to-space as queue avoids any inherent memory overhead of a separate
queue. The data cells in to-space have three states: black cells, grey cells, and white cells.
Black cells are active cells that have been visited and copied into to-space. Grey cells
have been copied into the to-space, but their children are in the from-space. White cells
are unreachable cells that cannot be reached starting from any of the first pointers.
The scheme uses an additional pointer called scan pointer that starts from the pointer
begin2 in to-space and chases the TOS pointer during the garbage collection period.
The scan pointer acts like a pointer that is pointing to the next cell to traverse in the
queue, and the TOS pointer acts as a rear pointer of the queue, where new data ele-
ments are to be inserted. The memory location pointed by the scan pointer is checked
to see if it holds a data value or a pointer.

Stack direction

To-space
End2

End1

Yet to be copied
data structure

Begin2

Begin1

TOS

Black

Free

Scan pointer
Gray

FIGURE 6.9 Cheney’s garbage collection scheme using breadth-first search.

Dynamic Memory Management    ◾    229  

Depending upon whether the memory cell holds a data or a pointer, the following three
actions are possible:

 1. If the memory location holds a pointer to a data cell in the from-space, then a new cell
is allocated on top of the to-space stack, the value of the memory cell in from space is
copied in this new cell, and the pointer is set to point to this new cell. The scan pointer
is incremented by one location.

 2. If the memory location holds a data element, then the scan pointer is incre mented by 1.

 3. If the memory location holds a pointer to a memory location in to-cell, then the scan
pointer is incremented by 1.

After the scan pointer catches up with the TOS, all the cells of one data structure have
been copied from the from-space to the to-space. The process is repeated for every data
structure starting from the first pointer. When all the data structures have been copied and
the scan pointer has caught up with the TOS, the garbage collection process terminates.

6.6.4 Generational Garbage Collection

Generational garbage collection keeps more than two spaces. However, only one space is
kept idle. The space that gets full is copied into the idle space. The major advantage of this
scheme is (1) The memory utilization increases; (2) copying cost into the idle space gets
reduced, as the size of the buckets is smaller; (3) the frequency of garbage collection for
the younger generation of data structures increases due to the principle of locality and the
fact that most recently used spaces are accessed more often and get full first; and (4) the
overhead of copying older data structures that are not being used is minimized by keeping
the older data structures in older buckets.

The principle of locality states that the data accessed in the recent past are accessed more
frequently unless the locality changes due to called subprograms. Splitting the heap into
multiple smaller version spaces exploits this property of program execution: different ver-
sion spaces (subunits of heap) tend to collect data structures according to their age. Each
version space is marked with a version number according to its age. The overall scheme is
illustrated in Figure 6.10.

New data structures are mostly short lived and are collected before the next garbage col-
lection cycle. A smaller percent go through more than one cycle, and the percentage becomes
progressively smaller with age. This means that very old data structures occupy fewer version
spaces and grow very slowly. The garbage collection part does two operations: (1) copies the
newer data structures into the idle space and (2) if a new cell has been allocated for a very old
data structure, it is transferred to the older version space; where the rest of the old data structure
is residing. When the old version space is full, it is also collected like any other version space.

One of the problems that multiple version spaces scheme has is that, unlike copying gar-
bage collection with two semispaces, where all the data structures are stored in one semi-
space, a single logically contiguous data structure is scattered over multiple version spaces.
Large percentages of such data structures are older. There is a need to change the pointers
when the partial data structure from one version space is copied to idle version space.

230    ◾    Introduction to Programming Language

In order to remove the problem of changing pointers in the scattered data structures in
multiple version space, a table of pointers is used in every version space. The table of point-
ers has two functions:

 1. It carries backward pointers to the previous cell of the same data structure that points
to the next cell of the data structure stored in the corresponding version space.

 2. The table points to the next cell stored in the version space. The advantage of this
scheme is that when the data cells are compacted during copying garbage collection,
the address is changed only in the entry tables, and not in different version spaces.

In addition to all the pointers used in copying garbage collection, there are three addi-
tional pointers in generational garbage collection: (1) forward pointer to entry table,
(2) backward pointers from the entry table, and (3) TOS for the entry table. The forward
pointer is used to point from the last cell of a data structure in a version space to the entry
table location that stores the address of the next cell in another version space. The backward
pointer points back to the previous cell from the entry table that stores the address of the
next cell. If more than one data structures are sharing the next cell, then there is a linked
list of back pointers pointing to all the previous cells that point to the next cell in the ver-
sion space. The table of back pointers and front pointers is toward the top end of the version
spaces, as shown in Figure 6.10. The table is extensible, grows like a stack in the reverse
direction to the growth of the heap, and needs another top-of-the-stack.

During garbage collection, when the entry table of the version space is copied into an
inactive version space, two actions have to be taken:

 1. The forward pointer from the previous cell has to be modified to point the new table
entry into the to-space. This is done by using the backward pointer to go back to the
previous cell, then storing the address of the new location into the to-space where the
table entry has been copied.

Data -cell 3

Stack
directions

Entity 1

Entry table

Free area

Data-cell 2

Data-cell 1

Data-cell 4

Data-cell 5

Entry
table

Data-cell 3

Full version space
age = 1

Older version space
age = 2

Idle version space

Copy

FIGURE 6.10 Generation garbage collection and use of entry table.

Dynamic Memory Management    ◾    231  

 2. The compaction is done for each table entry, because each table entry points to the
first cell of the partial data structure stored in the version space.

Example 6.4

Figure 6.10 shows a heap consisting of three version spaces. The left two version
spaces are active, and the right-most version space is inactive. The left-most
 version space is older with age = 2, and the middle-version space is the newer
one with age = 1. The data-entry1 spans across both the version spaces. The ver-
sion space with age = 1 fills up faster, according to the principle of locality, and is
copied frequently into the idle space. The second data cell in the older version space
(age = 2) has a forward pointer to a table entry that points to the third data cell of
the same data structure in the newer version space (age = 1). The same table entry
in new-version space has a back pointer that points to the second data cell in the
older version space (age = 2).

When the middle-version space becomes full, garbage collection starts, and
the middle-version space is compacted and copied in the rightmost version space.
The address of the table entries and the data cells changes. The forward pointer
from the second cell is changed by first using the backward pointer to get the address
of the second cell, and then updating the pointer field of the second cell.

While generational garbage collection improves naive copying garbage collection
by improving the memory space efficiency and by not copying older data structures,
it has an additional overhead of maintaining the table of entries to handle data struc-
tures scattered across the version spaces. As the number of version spaces increases,
the overhead also increases.

6.7 INCREMENTAL GARBAGE COLLECTION
An incremental garbage collector (see Figure 6.11) intertwines garbage collection and
program execution. After the garbage collection starts, the garbage collector does partial
garbage collection followed by some program execution. Garbage collection process once
started goes into the following sequence: pgc, pe, pgc, pe, pgc, pe … where pgc stands for
 partial garbage collection, and pe stands for program execution. The garbage collection
period is quite small. The garbage collection is done quite frequently. More released memory

Intermittent process
execution during
garbage collection

Partial garbage collection
program suspended

Execution

Process

Execution

Process

Garbage collection period

FIGURE 6.11 Incremental garbage collection.

232    ◾    Introduction to Programming Language

is recycled than the new memory allocation during program execution during garbage
 collection period. After the garbage collection is over, regular computation resumes.

6.7.1 Baker’s Algorithm

Baker improved Cheney’s algorithm by periodically collecting K (K >> 1) cells from
the from-space to the to-space before allocating one requested memory location in to-
cell during garbage collection. As soon as the garbage collection starts, the from-space is
sealed, and the new memory allocation requested by the executing process during garbage
 collection period is done only in the to-space. If a memory block of size m is requested,
then the first m * K cells are copied from the from-space to the to-space before allocating
m cells in the to-space. The new cells are allocated from the other end of the semispace to
ensure the physical contiguity of the data structure being copied from the from-space to
the to-space, as shown in Figure 6.12.

As shown in Figure 6.12, there are two pointers—top and bottom—in addition to the
scan pointer. The bottom pointer points to next free space in the free area for copying the
data structures from the from-space, and the top pointer points to the next free area for
new allocations. Bottom and top move in opposite directions. After copying the data enti-
ties from the from-space, the bottom pointers gets fixed, and only the top pointer moves,
until it hits the bottom pointer when the new garbage collection cycle starts.

There are three types of cells: black, grey, and white. Black cells are the cells that have
been copied from the from-space to the to-space along with their children nodes. In the
to-space stack, they lie between the begin marker and the scan pointer. Grey cells are those
cells that have been copied from the from-space to the to-space. However, they still have
possible pointers to other cells in the from-space that have not been copied to the to-space.
In the to-space stack, they lie between the scan pointer and the bottom pointer. White cells
are cells in the from-space that have been released and need not be copied to the to-space.
Newly allocated cells are treated as black cells.

Since the data to be traversed is the same as the copied data from the from-space, no
additional memory space is needed. The total allocated memory is given by N + N/K, where

End2

Begin2

Copied (black)

Gray area

Free area

New alloc. (black)

Top pointer

Bottom pointer

Scan pointer

To-space
organization

FIGURE 6.12 To-space during incremental copying garbage collection.

Dynamic Memory Management    ◾    233  

N is the active memory locations in the from-space and N/K is the new memory allocated in
the to-space during garbage collection. The remaining memory in the to-space is M − (N +
N/K). Assuming a steady state—that the rate of allocation and deallocation are equal—the
remaining memory in the to-space should be the same as the active memory copied from
the from-space. Hence, N = M − (N + N/K), which gives M = 2N + N/K. Using this equa-
tion, one can derive the heap size, given the size of active memory location and the ratio K.

6.8 CONTINUOUS REFERENCE-COUNT GARBAGE COLLECTION
Another popular scheme for garbage collection is reference-count garbage collection,
which is a continuous garbage collection scheme that handles the problem of dangling
pointers in the presence of shared data structures. As described earlier, part of a data
structure may be shared with other data structures. The shared part of the data struc-
ture cannot be recycled, unless all the data structures that share are logically deleted.
Reference-count garbage collection solves this problem by keeping a reference count in
the header of every data cell. The reference count is incremented upon the creation of a
new reference and decremented upon the removal of a reference. Reference can be created
by creating a new data structure that shares the part of the data structure. Reference can
be removed by deleting a data structure.

After a data structure is deleted, all the data cells reachable from the first pointer (root
pointer) of the deleted data structure are decremented by 1. Decrementing the reference
count by one makes the reference count zero if the reference count was equal to one. All the
data cells having reference count = 0 are collected and chained together as free memory
block. The process of decrementing the reference count stops after decrementing the refer-
ence count of a cell with reference count >1 because the following structure is being used
by at least one more data structure.

Example 6.5

Figure 6.13 shows two data entities represented as linked lists. Data-entity1 consists
of a chain of data cells: #1, #2, #3, #6, and #7. Data-entity2 consists of a chain of data
cells #4, #5, #6, and #7. Data cells #6 and #7 are shared, and the data cell #6 is pointed
by two pointers: pointers from data cells #3 and #5. The reference count of cells #1, #2,
#3, #4, #5, and #7 is 1, and the reference count of the cell # 6 is 2.

Consider a scenario when Data-entity1 is deleted. The reference count of cells #1,
#2, and #3 becomes 0, and the reference count of the cell #6 becomes 1. The three

#2#1
Data-entity-1

Data-entity-2

#3

1 1

1 1

#4 #5

#6 #7
Shared data

1 2 1 ∧

FIGURE 6.13 Reference-counts for shared data-structures.

234    ◾    Introduction to Programming Language

cells—cells #1, #2, and #3—are collected and recycled. However, cells #6 and #7 have
a reference count of 1 and are not collected.

There are many problems with naive reference-count garbage collection as
follows:

 1. Reference-count garbage collection makes no effort to compact the free
space, as it is a continuous garbage collection scheme and thus suffers from
fragmentation.

 2. Reference-count garbage collection cannot recycle cyclic data structures effi-
ciently. In case of cyclic data structure, as shown in Figure 6.14, the reference
count of the first cell is equal to 2 and not 1, as in the case of the acyclic data
structures. When the data structure is deleted, the reference count is decre-
mented by 1 for the first data cell, and the decrementing process stops. Since
none of the cell has reference count = 0, the released data structure cannot be
collected unless the cycle is detected. Cycle detection has significant memory
and execution time overheads and is avoided in realistic garbage collectors. The
phenomenon of inability to recycle the released memory cells is called memory
leak, because these memory cells can never be allocated to other data structures
during the lifetime of the program. Since, empirically, only a small percentage
of data structures are cyclic, the memory leak is allowed to maintain the execu-
tion time efficiency of the garbage collection.

 3. Decrementing the reference count of a large data structure has significant exe-
cution time overhead. To reduce this overhead, the reference count decrement-
ing is deferred until there are requests for memory allocation. Instead of eagerly
decrementing the reference count, the address of the first cell of the released
data structure is pushed on the top of a stack called to-be-decremented stack
(TBD). When an allocation request for m memory locations is made, an address
is popped from the TBD stack, and “m” memory locations are collected from
the corresponding released data structure. The collection starts, if after decre-
menting, the reference count is equal to 0, and ends when the reference count
after decrementing is greater than or equal to 1.

 4. Storing the reference count has significant memory overhead. Using just 4 bits
for at most 16 references will cause a significant memory overhead. Many times
4 bits are not sufficient, and there can be more references. Multiple variations of
reference-count garbage collection have been proposed to handle the overflow
caused by excessive references.

2 1

#1 #2

1 1

#999 #1000Data-entity

FIGURE 6.14 Cyclic data structure problem in reference-count garbage collection.

Dynamic Memory Management    ◾    235  

6.9 CONCURRENT GARBAGE COLLECTION
Incremental garbage collection alleviates the problem of program suspension to a large
extent. However, incremental garbage collection still suffers from smaller program sus-
pensions. Concurrent garbage collection allows much finer grain garbage collection by
running the garbage collector and the program execution concurrently on two separate
processors or using two different threads on a uniprocessor machine. While one processor
performs program execution, the second processor performs the garbage collection. There
are two issues in concurrent garbage collection: how to handle the shared data structures,
because the garbage collector (also called the collector) and the program execution (also
called the mutator) cannot simultaneously perform operations on the same data cell. The
process of releasing or allocating a data cell is a multi-instruction operation. Once started,
the operation must be completed without relinquishing the control. This property is called
atomicity, and the operation is called atomic operation. Both atomicity and fine-grain syn-
chronization are crucial for concurrent garbage collection. These restrictions impose addi-
tional overheads compared to sequential garbage collection schemes.

6.9.1 Concurrent Copying Garbage Collection

Concurrent copying garbage collection allows copying and compaction of the live objects
from the from-space to the to-space without ever suspending program execution. Both
collector thread and mutator thread keep executing concurrently. The overall scheme is
illustrated in Figure 6.15.

It uses two special data abstractions: relocation map and mutation log. Relocation map
stores entries of the form (from-space memory location, to-space memory location) to mark
the memory locations that have been copied from the from-space to the to-space, and the
mutation log keeps all the changes made in the objects in the from-space during garbage
collection that have to be incorporated into the to-space before switching the semispaces.

Unlike start-and-stop copying garbage collection, no forwarding pointer is created in
the from-space. Relocation map is used to avoid copying the shared part of data struc-
tures. Relocation map is implemented using a hash table with a from-space address as
the key. Each entry in the relocation map is equivalent to a nondestructive version of the

Free

Gray

Black

Relocation map

Begin1

Begin2

Scan pointer

TOS Stack
direction

End2

End1 Log

FIGURE 6.15 Concurrent copying garbage collection.

236    ◾    Introduction to Programming Language

forward pointer in the incremental garbage collection. The purpose of the relocation map
is the same as the forwarding pointer in the start-and-stop copying garbage collection.
Before copying a memory location from the from-space to the to-space, the relocation map
is checked. An entry in the relocation map indicates that the memory location is shared
between two data structures, and the memory location is not copied.

The concurrent garbage collection does not allow a mutator (program execution) to use
the replicated objects in the to-space until all the live objects have been completely copied.
The new modifications made by the mutator are collected in a mutation log. The collector
keeps checking the log and updates the corresponding replicated image in the to-space.

The overall algorithm is that the from-space is copied one data structure at a time to
the to-space using Cheney’s improvement. When a memory location is copied from the
from-space to the to-space, an entry of the form (from-space-address, to-space-address)
is entered in the relocation map. Any new modification in the from-space during garbage
collection is also inserted in the log. Under the assumption that the collector runs much
faster than the mutator, both copying of the live objects and the log-based updates will be
copied to the to-space in realistic time.

One major issue in concurrent garbage collection is handling the conflict of simultane-
ous modification of the data structure by the mutator, which is also being copied at the
same time by the collector. One scheme is to use atomic operation and copy the data struc-
tures one cell at a time. If it is essential to pass the control to an operating system routine
immediately, then all the effects are undone, and atomic operation starts again from the
beginning to get the correct effect. To insure atomic operations, locks are used. Locks are
special purpose hardware-supported memory locations that provide exclusive control of a
computer resource to a process. The control is released only after resetting the lock.

6.9.2 Concurrent Real-Time Garbage Collection

As described in the previous section, concurrent garbage collection has to go through
atomic operation at the information cell level and synchronization to provide correct inter-
leaving of the mutator and the collector. For real-time concurrent copying garbage collec-
tion, two types of schemes have been used: (1) use of information cell level locks to provide
the cell-level atomic operations and (2) lockless garbage collection by realizing that the
frequency of the collectors and mutator performing operations on the same cell is rare. In
case of the collision of the mutator and the collector, copying is aborted. The avoidance of
the use of locks improves the performance.

6.10 ISSUES IN GARBAGE COLLECTION
Garbage collection requires information for successful recycling of the memory. It needs
the information whether a memory cell is a data or a pointer. Similarly, each cell needs
a mark-bit to mark whether a memory location is allocated or released. The reference-
count garbage collection requires extra memory bits to keep the reference counts. There
is a significant execution time overhead of garbage collection. It takes around 20–30% of
the total execution time. Stop-and-start garbage collection techniques suspend the pro-
gram execution, which can result in missing real-time events and sudden deterioration

Dynamic Memory Management    ◾    237  

in performance, especially in interactive programs. To support the real-time computation
and to avoid sudden deterioration in program performance, collection of released memory
and program execution are interleaved.

Incremental garbage collections solve the problem of long-time suspensions. However,
there are still patches of short-time suspension delays that cause delay in processing of hard
real-time events. To handle this problem, collection and program execution are executed
concurrently on multiprocessor systems and multicore computers. Concurrent execution
relieves the problem of smaller suspensions in traditional incremental garbage collections to
a large extent. However, concurrent execution has its own problem of handling: (1) atomic
operations—multiple instructions treated as one big single instructions; (2) handling shared
memory locations that are accessed both by the garbage collector and program execution;
and (3) and the handling of real hard-time events. In order to handle real hard-time events,
modern systems allow for the suspension of the garbage collection process by the task sched-
uler in the operating system when the real-time events need to be handled.

The process of garbage collection starts with traversing the data cells starting from the
root pointer. The key is to identify a pointer, as both numbers and addresses are combina-
tions of zeros and ones. Many programming languages such as C allow for pointer arith-
metic treating addresses as integers to step through memory locations. This makes the
separation between integers and pointers very difficult. Integers are data and pointers are
addresses of other data cells to be collected after the data structure is released. Generally,
pointers can be identified by knowing the structure of the data cell. However, if a pointer
is missed and treated as data during garbage collection, then the following released data
cells are not reachable, are not marked active, and are collected as garbage cells causing
incorrect program behavior. If a data cell is treated as pointer, then the garbage cells may be
marked as active cells and may not be collected during garbage collection causing that cell
not to be used in the future, which results in memory leak. Memory leak is a situation when
a released data cell is not available for reallocation. Garbage collectors are conservative and
prefer memory leaks over the incorrect behavior of the program. Many other precautions
are taken to distinguish between pointers and data. For example, any data cell that has a
value not pointing to within the heap area is treated as a data cell, and the data cells are
word-aligned and initialized to proper null value to separate from pointers.

Another major issue is the allocation of data on a heap or stack. Those dynamic data,
whose lifetime is limited to the scope of a invoked procedure are allocated in stack for
faster memory access and recovery.

6.11 SUMMARY
In this chapter, we discussed the memory management of dynamic data structures and recur-
sive data structures using heap. The heap is a common area visible to all the subprograms,
and all the subprograms can allocate a dynamic data in heap. This heap is different from the
heap you studied in data structures. The free memory area in a heap can be organized in
many ways: (1) using a single chain of pointers of free memory blocks; (2) using chained
group of free blocks sorted by similar sizes; and (3) a group of stacks. Data can be allocated
automatically either when a new dynamic object is created or requested programmatically.

238    ◾    Introduction to Programming Language

Allocation strategy can be first-fit, next-fit, or best-fit. The memory cells in a heap are in
three states: active, released, and free. Garbage collection recycles memory from the released
state to the free state. Dynamic data cells can be released automatically or programmatically.
During the process of continuous allocation and deallocation, the free space keeps getting
interspersed into isolated smaller memory chunks. Many of the memory blocks are so small
that they individually cannot be used for effective memory allocation. This kind of formation
of interspersed small blocks is called fragmentation, and it negatively affects the execution
time performance of garbage collectors and program execution by decreasing the hit ratio in
cache and increasing the frequency of page faults and garbage collections.

Garbage collection can be done continuously as in reference-count garbage collection
or periodically after no more memory can be allocated in the heap space. Periodic
 garbage collectors can be start-and-stop, and incremental. Start-and-stop garbage collectors
 suspend the program execution completely during garbage collection and are unsuitable for
 handling real-time events, since garbage collection causes significant delay due to memory
and execution-time overhead. To avoid this problem, many approaches have been tried such
as incremental garbage collection, concurrent garbage collection, and continuous garbage
 collection. In incremental garbage collection, one big garbage collection period is divided
into multiple smaller garbage collection periods interleaved with small periods of program
execution, such that the collection rate is faster than the memory allocation rate. Concurrent
garbage collection runs program execution and garbage collection simultaneously. However,
they have to handle the issues of atomicity of multiple instructions involved in a common
atomic operations, and provide synchronization while sharing the memory location between
the garbage collector and program execution. Both incremental garbage-collection schemes
and concurrent garbage-collection schemes alleviate the problem of soft real-time problem
such as video display by graceful degradation. However, they are unable to solve the problem
of hard real-time events involving sensors or mission- critical operations. In order to handle
hard real-time events, the process scheduler in the operating system has to defer and suspend
the garbage collection process when high-priority real-time events occur.

Periodic garbage collectors work in two ways: (1) marking active spaces and collecting
the remaining space in the heap as free memory area and (2) collecting active memory
area and copying it in another memory space to remove fragmentation. Marking active
spaces suffers from many drawbacks such as overhead of stack, overhead of traversal of
active space twice, and fragmentation. Copying garbage collection suffers from wastage of
memory. In order to alleviate this problem, multiple-version spaces are used. Each version
space has an age associated with it. Only one version space is inactive, and all other version
spaces are active. Owing to principle of locality, older data structures are located in the
older version spaces, and younger data structures are located in younger version spaces.
The younger-version space gets full faster than older version space. Increasing the number
of version space also avoids excessive copying of older, less-accessed data structures. The
drawback of the version space is the overhead of keeping a table of forward and backward
pointers to connect the data structures interspersed across multiple version spaces.

Reference count garbage collection is a continuous garbage-collection technique that is
useful in handling shared data structure by keeping a reference count. When a data structure

Dynamic Memory Management    ◾    239  

is released, the reference count is decremented, and all the data cells with reference count = 0
are collected. It faces the problem of handling cyclic data structures that make 2–3% of the
total allocation. To maintain efficiency, reference-count garbage collection schemes prefer
memory leaks over the costly garbage collection of cyclic data structures.

In real-time concurrent garage collection mechanisms, the smallest unit of the collec-
tion is one information unit or an object at a time. This can be done using atomic opera-
tions. Collector uses a lock to copy one information node or an object at a time.

There are many issues with garbage collection. It is difficult at times to distinguish
between data cells and pointers. If pointers are treated as data cells during garbage collec-
tion, then the following memory cells are not marked, resulting into incorrect collection
of active cells as garbage. If the data cells are treated pointers, then additional cells are
marked as active cells and are never collected, resulting into memory leak. Garbage col-
lection programs use a conservative approach and prefer memory leak in case of doubt.
Empirical study shows that 2–3% of memory is lost to memory leak.

There are many variations of the class of garbage collections discussed in this chapter. In
recent years, a lot of effort has gone in developing concurrent versions of garbage collectors
for various parallel architectures. There are also distributed versions of garbage collectors
for Internet-based languages.

Java uses a concurrent version of garbage collection in its implementation. Different
implementations of C++ use variations of mark-and-scan garbage collection as well as
copy garbage collection. C# uses generational garbage collection with three version spaces.
Scala is built on top of Java and uses JVM’s garbage collector. ADA does not have a default
garbage collector. Haskell uses a parallel generational garbage collection. Current imple-
mentations of Ruby use a variant of mark-and-scan garbage collection.

6.12 ASSESSMENT

6.12.1 Concepts and Definitions

Active memory blocks; backward pointer; Baker’s algorithm; best-fit allocation; black cell;
Cheney’s algorithm; concurrent garbage collection; concurrent copying garbage collection;
continuous garbage collection; copying garbage collection; entry table; first-fit allocation; for-
ward pointer; fragmentation; free memory block; from-space; garbage collection; generational
garbage collection; grey cell; hard real-time garbage collection; heap; inactive space; incre-
mental garbage collection; mark-bit; mark-and-scan algorithm; memory allocation; memory
deallocation; mutation log; real-time garbage collection; reference-count garbage collection;
relocation map; scan-pointer; semispaces; TBD-stack; to-space; version space; white cell.

6.12.2 Problem Solving

 1. Consider an indexed chain organization of free spaces, where each range of memory
location is 1000 bytes. For example, the ranges are 0–999, 1000–1999, 2000–2999,
3000–3999, 4000–4999, and so on. Show the indexed heap organization with the free
space sizes as 1024, 512, 1024, 2048, 1536, 4096, 32, 16, and 128. A request for memory
allocation for two blocks of size 480 bytes and 1000 bytes is made. Show the indexed

240    ◾    Introduction to Programming Language

heap organization for the heap after the allocation of requested blocks using an allo-
cation algorithm that picks up the first free blocks in the chain of free blocks in the
best matching range.

 2. Describe a data structure representation for indexed free space organization of free
space in a heap, and write a high-level algorithm to allocate requested data using the
indexed chain for optimum allocation. Show clearly how the table gets readjusted
after the allocation.

 3. A heap has the following free blocks: 1200, 3000, 340, 560, 790, and 4002 bytes.
Assume that the free blocks are chained using a single chain of pointers. Allocate the
three memory block requests of 2000, 450, and 740 using first-fit and next-fit strategy,
and show the remaining free blocks after each allocation.

 4. Write a high-level algorithm for naive mark-and-scan algorithm.

 5. Write a high-level algorithm for naive stop-and-start copying garbage collection.

 6. Write a high-level algorithm for Cheney’s copying garbage collection.

 7. Write a high-level algorithm for incremental copying algorithm with Baker’s
improvement.

 8. In Baker’s algorithms, assume that the size of a semispace is 200 kb, and the ratio of the
cells collected to cells allocated during garbage collection is 8. What would be the number
of memory locations allocated during the garbage collection process, assuming that the
percentage of live data entities in a semispace is 50% at the time garbage collection starts?

 9. For the following data structures sharing memory locations, show the reference count
when the data-entity1 is deleted. Assuming that the deletion uses TBD stack, show the
entries in TBD stack for the following actions: delete(P), delete(Q), new(A1), new(A2),
new(A3). Where A1 is an object that requires 200 bytes, A2 requires 60 bytes, and A3
requires 1440 bytes. Explain your answer using a figure and various snapshots of the
TBD stack.

6.12.3 Conceptual Type

 10. What are the problems with start-and-stop garbage collections? Explain.

 11. What are the problems of naive mark-and-scan algorithm? How can they be corrected?

 12. Explain the problems with naive copying garbage collection. How can they be
corrected?

 13. Explain the problems with reference-count garbage collections. How can they be
corrected?

 14. Explain in detail Cheney’s improvement to traditional start-and-stop copying gar-
bage collection with a clear explanation of the role of breadth-first search and scan
pointer to reduce the memory overhead of a stack.

Dynamic Memory Management    ◾    241  

 15. Explain the role of forwarding and backward pointers in pointer tables stored in gen-
erational garbage collection.

 16. Explain the Baker’s improvement in Cheney’s algorithm to make it incremental gar-
bage collector.

 17. What are the various steps taken to handle real-time events during garbage collec-
tion? Explain.

 18. Explain the differences between Baker’s algorithm and concurrent copying garbage
collections.

 19. How does the age and table-of-pointers affect the overhead in generational garbage
collection?

FURTHER READING
Abdullah, Saleh E. and Ringwood, Graem A. “Garbage collecting the Internet: A survey of distrib-

uted garbage collection.” ACM Computing Surveys, 30(3). 1998. 330–373.
Boehm, Hans. “Space-efficient conservative garbage collection.” In Proceedings of the ACM SIGPLAN

'93 Conference on Programming Language Design and Implementation, SIGPLAN Notices 28(6).
June 1993. 197–206.

Brent, Richard P. “Efficient implementation of the first-fit strategy for dynamic storage allocation,”
ACM Transactions on Programming Languages and Systems (TOPLAS), 11(3). 1989. 388–403.

Dijkstra, Edgar W., Lamport, Leslie, Martin, Alain J., Scholetn, Carel S., and Steffens, Elisabeth F. M.
“On-the-fly garbage collection: An exercise in cooperation.” Communications of the ACM,
21(11). 1978. 966–975.

Hanson, David R. “Fast allocation and deallocation of memory based on lifetimes.” Software Practice
and Experience, 20(1). 1990. 5–12.

Hosking, Antony L. “portable, mostly-concurrent, mostly-copying garbage collection for multi-
processors.” In Proceedings of the 5th International Symposium on Memory Management. 2006.
40–51.

Jones, Richard, Hosking, Antony, and Moss, Eliot. The Garbage Collection Handbook. Chapman Hall/
CRC Press/Taylor & Francis Group. 2012.

Jones, Richard and R. Lins. Garbage Collection: Algorithms for Automatic Dynamic Memory
Management. John Wiley. 1996.

Marlow, Simon, Harris, Tim, James, Roshan P., Jones, Simon P. “Parallel generational-copying gar-
bage collection with a block-structured Heap.” Proceedings of the 7th International Symposium
on Memory Management. 2008. 11–20.

Nettles, Scott M. and O’Toole, James W. “Real-time replication garbage collection.” In SIGPLAN
Symposium on Programming Language Design and Implementation. 1993. 217–226.

Pizlo, Filip, Petrank, Erez, and Steensgaard, Bjarne. “A study of concurrent real-time garbage
 collectors.” In Proceedings of the SIGPLAN Conference on Programming Languages Design
and Implementation. 2008. 33–44.

Wilson, Paul R., Johnstone, Mark S., Neely, Michael, and Boles, David. “Dynamic storage alloca-
tion: A survey and critical Review.” In Proceeding IWMM '95 Proceedings of the International
Workshop on Memory Management. Springer Verlag. 1995. 1–116.

243

© 2010 Taylor & Francis Group, LLC

C h a p t e r 7

Type Theory

BACKGROUND CONCEPTS
Abstract concepts in computation (Section 2.4); Data structure concepts (Section 2.3); Discrete
structures concepts (Section 2.2); Boolean logic and predicate calculus (Section 2.2.2), data
abstractions (Section 4.1).

Type system is an important part of a program. Type may be explicitly declared, may be
derived by compile time program analysis, or may be derived at runtime after a variable
gets the value. The basic question arises, what are types, and what is their relationship with
program execution and program abstractions? Why should we have type at all? Do we get
sufficient advantages of declaring objects of one type or another? With the increase in soft-
ware size, the number of type declarations increase, which makes it difficult for program-
mers to keep track of all the type declarations. So another set of questions is as follows: Is
type declaration user friendly? Is it good for better productivity?

These questions have been debated in programming language community against the
backdrop of efficiency, correctness of program behavior, better memory allocation, and
avoiding runtime crash. On the one hand, inclusion of type declaration makes it difficult
for a programmer to keep track of types of data objects. On the other hand, type declara-
tion provides better execution efficiency, better precision, low memory overheads, much
smaller runtime error, and program crashes. Languages that do not explicitly declare types
suffer from the disadvantages of lower execution efficiency, memory allocation overheads,
and unpredictable runtime crashes due to type mismatches.

Statically typed languages bind specific types to identifiers at compile time and check all
the detectable type-mismatch errors at compile time. The type of a variable once bound to
a type in statically typed language cannot be altered. The type of an identifier can either be
explicitly declared or it can be derived using type-inference. For example, languages such
as C, Pascal, ADA, Scala, C++, C#, and Java are statically typed languages. A language is
strongly typed if it fixes the type of every variable at compile time, or the compiler can infer
the type of every variable at compile time. In contrast, dynamically typed languages allow the
variables to be bound to different types of objects at runtime depending upon the values

244    ◾    Introduction to Programming Language

© 2010 Taylor & Francis Group, LLC

they are assigned to. The type of a variable keeps changing dynamically depending upon
the assigned value. Languages such as Lisp, Prolog, and Ruby are dynamically typed languages.
Dynamically typed languages carry the type information at runtime, and are generally less
efficient in execution time and memory space compared to statically typed language.

7.1 ADVANTAGES OF TYPE DECLARATION
Type declaration provides many advantages at compile time during code generation. Some
advantages are as follows:

 1. Optimum memory allocation

 2. Achieving better accuracy that can handle some of the exception handling problems
due to runtime error conditions

 3. Compile time coercion—converting an object bound to one data type to another data
type without any information loss

 4. Compile time disambiguation of overloaded operators—operators with multiple
meaning

 5. Finding out unsafe operations on a specific type of object

 6. Better long-term evolution and maintenance of software through the declaration of
user-defined types and abstract data types

 7. Code optimization for faster execution of the compiled programs

 8. Use of generic procedures that can handle different types of data objects

 9. Declaring semaphores and monitors to avoid deadlocks and facilitating concurrent
execution

The program in Figure 7.1 illustrates many of these advantages that can be achieved
at compile time due to type declaration. The advantages of types in handling generic
 procedures will become clear when we discuss polymorphism. The advantages of types
in facilitating concurrent execution and deadlock avoidance will become clear when we
discuss concurrency in Chapter 8.

Example 7.1

The variables x and y occupy only four bytes on the control stack. In the absence of
type declaration, the information about the type of the variables x and y is known
only after the first assignment. In that case, it may not be possible to compute the
frame size and the offset of following variables, and the variables will have to be
treated as pointer to objects in a heap that stores the value of the variables x and y.
Stack-based allocation is faster to access than heap-based allocation and the allocated
memory can be easily reclaimed and reused after the called subprogram is over. The
declaration of type in this case facilitates optimum memory allocation on stack and
improves execution efficiency of the program.

Type Theory    ◾    245  

© 2010 Taylor & Francis Group, LLC

The declaration of the struct galaxy provides data abstraction capability that can be
easily modified at high level if certain additional attributes characterizing galaxy would
be needed in future. It also makes the program comprehensible and easy to maintain. For
example, suppose we want to extend the abstraction galaxy by adding an additional attri-
bute such as known planets in the galaxy; it can be easily added.

In line 13, the statement “w = x + y” adds two integer values, and the result is assigned to
a floating point variable. Since the operands of the addition are of the type integer, the over-
loaded symbol gets disambiguated at compile time to integer-addition, and the appropriate
low-level code is generated. After the expression evaluation, the integer value is transformed
to the equivalent floating point value without loss of any information. This process is called
compile-time coercion, and the translated code is generated at compile time avoiding runtime
overhead. The notion of coercion will discussed in detail in Section 7.5 under polymorphism.

In line 14, the statement “z = w + y” mixes up two different types of operands: the
 variable w is of the type floating point and the variable y is of the type integer. The value of
the variable y is coerced to floating point representation at compile time, and the overloaded
symbol ‘+’ is disambiguated as floating point addition during the code generation.

In line 16, the addition operation is not possible due to the type mismatch error. In lines
17 and 18, user-defined type information has been used to pick up appropriate fields of an
element of the collection galaxy. In the absence of extra accuracy, the language would not
be able to represent numbers bigger (or smaller) than the representation possible on one
word size that is 32-bit or 64-bit for modern-day computers. While 32 bit is an extremely
big number: 32-bit is around 4 billion. Yet, 32-bit word is not suitable for very large num-
bers such as planets and stars in observable galaxies that may have around 170 billion stars
and even more planets.

If an object is of integer type, and is used frequently in a computation, then it can be tem-
porarily stored in the processor register during the computation to reduce the overhead of

program main % (1)
 struct galaxy { % (2)
 integer starCount; % (3)
 double float distance; % (4)
 } % (5)
{ % (6)
 integer x, y; % integer takes 4 bytes (7)
 float w, z; % float takes 8 bytes (8)
 double integer a, b; % takes 8 bytes (9)
 string c, d; % (10)
 galaxy neighbors[10]; % (11)
 x = 4; y = 6; % (12)
 w = x + y; % the evaluation is coerced to float (13)
 z = w + y; % ‘y’ is coerced to float (14)
 c = “Milky Way” % (15)
 d = z + c % type mismatch error (16)
 neighbors[1].starCount = 32567823418; % accuracy (17)
 neighbors[1].distance = 4.5 E**12; % (18)
}

FIGURE 7.1 Illustrating some advantages of use of types.

246    ◾    Introduction to Programming Language

© 2010 Taylor & Francis Group, LLC

memory access and to improve the execution efficiency. However, without type declaration
such code optimization would not be possible at compile time.

In summary, programming domains that require efficient execution, better memory
management, and additional accuracy will choose statically typed languages. In contrast,
the domains that are not time critical may prefer specific dynamically typed languages for
programming constructs and the ease of program development.

7.2 NOTION OF TYPE
We have seen from the intuitive understanding of types during program development
that type information can be used for many purposes. Now we ask the question formally:
Is there any mathematical basis of type theory, and how is type theory related to data
abstractions?

Mathematical types such as integers, floating points, and Booleans, define a domain
that has well-defined properties and operations. For example, integers are made of digits;
floating points are made of digits, a period, and possible exponentiation; and Boolean has
two values: true or false. In all of these domains, the operations are well defined that take
as input one or more operands and generate a value. There are two types of operations on
mathematical types:

 1. The operations that generate the value in the same domain as the input operands.
This is called closure property.

 2. The operations generate a truth value. Such operations that map an input domain to
a truth domain are called predicates.

Data entities are of the same type if they belong to the same domain having well-
defined properties. Type theory is deep rooted in the notion of sets because we can take
a set, associate well-defined attributes and operations with the set, and all the elements
in the set will automatically inherit the operations and attributes associated with the
 corresponding set.

So the first notion of type is that types are sets with well-defined properties and well
defined operations. If types are sets, then the natural question arises: What happens to
the definitions if we derive new sets using operations on sets? There are many operations
that can be performed on sets such as union, intersection, Cartesian product, mapping of
one set onto another set, disjoint union, power set of a set, and ordering a set. We know
that these set operations derive yet another set. If types are sets, then these derived sets are
user-defined types and correspond very closely to aggregation in the data abstraction, as we
discussed in Chapter 4.

Abstract data types are sets that have additional user-defined restrictions and well-
defined abstract operations on them. However, the implementations of these operations
are kept private for ease of modification. In most languages, these abstract operations
are made public to be accessed by other subprograms. For example, complex numbers,
rational numbers, stacks, and queues are abstract data types. Complex numbers are
modeled as a pair of floating point numbers with four abstract operations: complex-add,

Type Theory    ◾    247  

© 2010 Taylor & Francis Group, LLC

complex-subtract, complex-multiply, and complex-divide. Similarly, rational numbers are
modeled as a pair of integers with four abstract operations: rational-add, rational-subtract,
rational-multiply, and rational-divide. Stack is a sequence with an additional restriction
that data is inserted and deleted from only one end, and it has four abstract operations on
sequences to simulate push, pop, is_empty, and top.

In compiled statically typed languages, the information about types is not carried at
runtime. After a type is declared statically, declaring a variable of that type means that the
variable can be assigned one or more values that are elements of the set corresponding to
the declared type. For example, a declaration such as “integer x” says that the variable x can
be bound to only an integer value and will support only integer operations. Any attempt to
associate a value that is not an integer will result in type-mismatch condition. This prop-
erty is used to test for type mismatch of operations and coercing a type of an object to
another type of object.

7.2.1 Basic Data Types

A programmer can use mathematical sets such as integers, floating points, define their
own sets that are called enumeration types, or use set operation on previously derived
sets to derive new sets. On the basis of how the sets are derived and what operations are
 associated with them, one can broadly classify the types into three categories: basic types,
structured types, and abstract data types. Basic types can be the following:

 1. Mathematical domains such as integers, Boolean, floating point.

 2. Mathematical domains extended for additional accuracy such as double float, quad
integer, and long integer.

 3. Scalar types, such as fixed type, where accuracy of the representation is user defined.
ADA uses the notion of fixed type using delta, where delta is the minimal accuracy
for a number. For example, delta for the U.S. currency dollar is 0.01.

 4. Text representation domains such as characters.

 5. Information representation domains such as bits, bytes, and words.

 6. Synchronization and concurrency domains such as semaphores.

Basic types are built in as part of the language and need not be defined by the user unless
a user wants to override the default definition of an operation. Object-oriented languages
such as C++ and C# support such an override. Some languages such as Ada, support com-
plex numbers and rational numbers as part of built-in types, and call them numeric types.
However, most of the languages treat complex numbers and rational numbers as user-
defined abstract data types.

Strings have a dubious classification. Strings are sequences of characters. However, many
languages have a separate declaration for string. Similarly, files are sequences of characters
or sequences of data entities. Depending upon the nature of the file, these sequences can be
indexible. Ruby supports strings as indexible sequence.

248    ◾    Introduction to Programming Language

© 2010 Taylor & Francis Group, LLC

7.3 SET OPERATIONS AND STRUCTURED TYPES
The simplest form of user-defined type is to define your own set that can be enumerated.
For example, days-of-the-week is a set of seven data entities, and months-in-a-year is a set
of 12 data entities.

Example 7.2

Let us consider the following declaration:

summer_month = (May, June, July, August);
...
summer_month vacation_month;

The above declaration says that summer_month is an enumerable set containing
four elements. The variable vacation_month can hold one of the four values. Any
attempt to assign a variable that is not one of the four data values will result in an
error condition.

7.3.1 Ordinal Types

An ordinal type is a user-defined, enumerated set where every element is associated with a
position. Ordinal types are ordered bags where each element is associated with the corre-
sponding position in the bag. Most of the programming languages such as Pascal, C, C++,
C#, Java, and ADA take this approach.

Two operations, successor and predecessor, can be performed on a variable that is
declared of the ordinal type. The operation predecessor(<variable>) gets the data element
that occurs immediately before the current value of the variable, and the operation
successor(<variable>) retrieves the data element in the enumerated set that occurs right
after the current value of the variable. The operation predecessor(<variable>) is undefined
if the current value of the variable is the first element of the ordinal type, and should raise
an exception. Similarly, the operation successor(<variable>) is undefined if the current
value of the variable is the last element of the ordinal type.

Example 7.3

The following example shows the declaration of an enumeration set school_year that
is also an ordinal type. The variables senior_student_year, student_year, and junior_
student_year are declared of the type school_year. The variable senior_student is a suc-
cessor of the variable student_year, and the variable junior_student is the predecessor
of the variable student_year.

{
...
school-_year = (freshman, sophomore, junior, senior)
...

Type Theory    ◾    249  

© 2010 Taylor & Francis Group, LLC

school_year senior_student_year, student_year, junior_student_year;
...
student_year = junior;
if (student.ne. senior)
 senior_student = successor(student_year);
if (student.ne. freshman)
 junior_student = predecessor(student_year);
...
}

Some languages such as Ada, also use enumeration type to model Boolean values:
false precedes true because internally false maps to 0, and true maps to 1. Ordinal
type is also expressed as a subrange by just mentioning the lower bound of the range
and the upper bound of the range. For example, date can be expressed as ordinal type
1..31; and month can be expressed as ordinal type 1..12.

7.3.2 Cartesian Product and Tuples

As discussed in Chapter 2, Cartesian product of two sets S1 and S2 produces exhaustively a
set of pairs of the form (a, b) ∈ S1 × S2, where a ∈ S1 and b ∈ S2. The Cartesian product of
n sets S1, S2, …, Sn produces a set of n-tuples of the form (a1

i, a2
i, ⋯, an

i) ∈ S1 × S2 × ⋯ × Sn,
and the jth (1 ≤ j ≤ n) field of an element in an n-tuple comes from the set Sj. The number of
elements in the set is given by multiplying the size of the individual sets.

Tuples are an abstraction used to represent a composite data entity where each field
may be an aggregation. The composite data entities are written using syntactic constructs
“struct” or “record” in different languages. Any language supporting tuples using any syn-
tactic sugar can model composite data entities. For example, a complex number corre-
sponds to a set real × real, and a rational number corresponds to a set integer × i nteger. The
Cartesian product real × real is a set of pairs such that both fields are real numbers, and
the Cartesian product integer × integer is a set of pairs such that both fields are integers.

7.3.3 Finite Mapping and Arrays

In Chapter 4, we saw that collections of data entities can be implemented using arrays,
linked lists, vectors, and trees. Arrays are popular data structures used for implementing
a collection of data entities. An array is an indexible sequence such that the index is a set
of natural numbers that maps using many-to-one into-mapping to a set declared by the
programmer. For example, a declaration integer m[10] has two sets: 0..9 and integer. Every
element of the set 0..9 maps on an integer. The subrange 0..9 forms a finite domain, and
integer forms the range. It is called finite mapping because the domain is a finite set.

Finite mapping in the simplest form that maps a set of index to any data type, and is
equivalent to arrays. However, the concept is easily generalized to association lists. In asso-
ciation lists, the domain is an enumerable set of keys that are associated with a value in the
range. For example, a domain could be the set {world-war II, 1967, Earth} and the range is
{1939, man-on-moon, water}, and the three domain elements can be mapped on the range
values such as {world-war-II ↦ 1939; 1967 ↦ man-on-moon; and Earth ↦ water}

250    ◾    Introduction to Programming Language

© 2010 Taylor & Francis Group, LLC

7.3.4 Power Set and Set Constructs

Given a set of the form S = {x1, x2, …, xn}, a power set is defined as a set of all subsets of S.
Given an enumerable set, a variable can be declared of the type power set of the enumer-
able set. This means that a variable can be bound to any subset of the enumerable set S. This
becomes the basis of set-based programming as one can define all the set operations on
these subsets. Let us understand set-based programming using Example 7.4. The example
uses Pascal’s “set of” construct that is equivalent to the defining power set.

Example 7.4

The declarations shown below declare an enumerable set student, and a variable
 regular_students that is a power set of the enumerable set. The variable regular_
student can be bound to any of the eight subsets: {{}, {tom}, {phil}, {jean}, {tom, phil},
{tom, jean}, {phil, jean}, {tom, phil, jean}}.

type student = (tom, phil, jean) % enumerated set
var regular_students : set of students;

7.3.5 Disjoint Union and Variant Record

Many programming languages support the notion of disjoint union—union of two disjoint
sets S1 and S2 such that individual elements retain the identity about the original sets they
belong to. As described in Chapter 2, two sets S1 and S2 are disjoint if S1 ∩ S2 = ⌀. The elements
in the disjoint sets are colored with distinct colors to maintain the set identity. For example,
let us consider two sets: {Mary, Nina, Ambika, Susan} and the second set {Tom, Rubin, Mark}.
As is evident by the names, the first set is made up of girls, and the second set is made of
boys. If we join them in a classroom setting for the learning purpose, the union will be a dis-
joint union. However, to maintain the distinction between elements of the two sets, we can
color them separately: the first set is colored by the value girl, and the second set is colored
by the value boy. The disjoint union would be {(girl, Mary), (girl, Nina), (girl, Ambika), (girl,
Susan), (boy, Tom), (boy, Rubin), (boy, Mark)}. The disjoint union of sets can be modeled as
the union of the Cartesian product of color and the sets. Given two sets S1 and S2, the disjoint
union is modeled as {Color1} × S1 ∪ {Color2} × S2. For example, the above disjoint union set is
modeled as {girl} × {Mary, Nina, Ambika, Susan} ∪ {boy} × {Tom, Rubin, Mark}.

In programming languages, disjoint unions are used to model variant records. Variant
records have two parts: fixed part that is common to different tuples, and the variant part
that corresponds to disjoint information from different set. The variant part occupies the
same memory location for elements from the different sets. However, based upon the color
value, the location is interpreted differently as shown in Example 7.5. The simplest form of
color is the binary color given by the set {true, false}.

Example 7.5

Let us consider an example of modeling an assignment. An assignment has a number
of questions, and the date assignment was given to a student. This is the fixed part.

Type Theory    ◾    251  

© 2010 Taylor & Francis Group, LLC

The variable part is that a student may have either turned in the homework or may not
have turned in the homework. If the student has turned in the homework, then the
variable part just contains the score; if the students have not turned in the homework,
the variable part contains the date expected. Note that the two fields score and date_
expected are interpreted on the basis of the value of the Boolean variable turned_in. If
by mistake at runtime, the Boolean variable turned_in gets altered, then the variant
part will be interpreted differently and may cause erroneous program behavior.

The set operations in the above example can be expressed as integer × (1..31) ×
({true} × (1..100) ∪ {false} × (1..31)}). In the Cartesian product, the first term “integer”
corresponds to the number of questions, the second term “(1..31)” corresponds to the
date of assignment, and the third term corresponds to the variant part. The Boolean
values true and false act as mutually exclusive colors.

Another problem with disjoint union is that two disjoint sets may be of different
types with different internal format to represent values. If the Boolean variable is set
incorrectly at runtime, the operations on the memory locations can corrupt the values.

We denote a disjoint union using a symbol “⊎.” For example, a disjoint union of
two sets integer and character is represented as integer ⊎ character.

7.3.6 Set Operations for Recursive Data Types

In Chapter 4, we modeled extensible data abstractions using linked lists, trees, and vectors.
These data structures are modeled recursively for extension, as shown previously. Recursive
data types are modeled using a combination of Cartesian product and disjoint union.

As we have discussed earlier, that recursive data structure are defined as multiple defini-
tion involving recursive-part and base-condition.

<linked-list> ::= <data-item> <linked-list> | nil
<binary-tree> ::= <binary-tree> <data-item> <binary-tree> | nil

The above definition of <linked-list> states that <linked-list> could be any sequence of
<data-item>. Alternately, a given linked list is an element of a set that contains all possible
sequences of varying sizes containing <data-item>. Similarly, a binary tree is an element of
the set that contains binary trees of all possible depths.

If we substitute the “|” by disjoint union, the concatenation by the Cartesian product, and
<data-item> by the <data-type> of the <data-item> then we get the following equivalent
recursive data types:

<linked-list-type> ::= <data-type> × <linked-list-type> ⊎ nil
<binary-tree-type> ::= <binary-tree-type> × <data-type> ×
 <binary-tree-type> ⊎ nil

The recursive type <linked-list-type> represents the set of all possible linked lists of
 different sizes including an empty list that contains data elements of the type <data-type>.
Similarly, the recursive type <binary-tree-type> represents the set of all possible binary

252    ◾    Introduction to Programming Language

© 2010 Taylor & Francis Group, LLC

trees of different depths including an empty tree that contains data elements of the type
 <data-type>. A variable of the recursive data type gets bound to one of the elements in the set.

It can be shown using the definition of disjoint union that the set-based definition of
<linked-list-type> generates the set of all possible sequences of the <data-item> by unfold-
ing the Cartesian product and applying the definition of disjoint union. The definition
 <linked-list-type> can be written as {{(false, nil)} ∪ {(true, <data-type> <linked-list-type>)}
using the first unfolding. The second unfolding of the definition <linked-list-type> embedded
inside the first unfolded version gives {(false, nil)} ∪ {(true, <data-type> {(false, nil) ∪}(true,
<data-type> <linked-list-type>)}. By removing the colors in the unfolded part, the expression
becomes {nil} ∪ {<data-type>} ∪ {(<data-type> <data-type>}∪ This expression can be
further unfolded to get an indefinite expression that is a union of sets of all possible sequences
of differing sizes. This set is the same as the set derived earlier by recursive definition of linked
lists. We can reason the same way about unfolding <binary-tree-type>.

Recursive data-type implementation uses pointers because recursive objects extend
indefinitely and cannot be allocated at compile time due to indeterminate size. Pointers
are used to extend recursive data items on demand at runtime. For example, a linked list
is represented as

struct mylist { integer mydata;
 mylist *list _ pointer
 }

The above structure represents a tuple of the form (mydata, list_pointer) where the field
list_pointer points to the next tuple. Each tuple needs memory locations, and tuples are
connected through a chain of pointers. The last tuple contains a null pointer that can be
extended by creating more tuples in the heap and linking the newly created tuple with the
last cell by updating the pointer field of the last tuple.

7.4 LIMITATIONS OF TYPE THEORY
The static declaration of type for variables provides many advantages as described earlier.
However, the explicit information about the types is lost after the compilation. Part of the
information is implicitly embedded in the code and data area in terms of allocated opti-
mized memory and the disambiguated low-level operations. Since most of the type-related
information is lost, it is difficult to reason about the runtime property violation without
incurring additional execution time and memory overhead. Some of the runtime errors
are as follows:

 1. Accessing ith element of an array can lead to array-bound violation. Since the index
variable can be modified at runtime, checking that lower-bound ≤ value of the index
variable ≤ upper bound is a runtime property. Not checking the boundaries will lead
to incorrect program behavior because index may fall out of range of the memory
locations where the array is located. Allowing runtime checks leads to serious run-
time overheads.

Type Theory    ◾    253  

© 2010 Taylor & Francis Group, LLC

 2. Dynamically computing a substring can lead to string-bound violation. String is a
sequence of characters, and the operation substring(String, substring-start, substring-
length) picks up a substring starting at position substring-start of the length substring-
length. If the value of substring-start is greater than the size of the string, or the sum
of the values of substring-start and substring-length is greater than the size of the
string, then it will be a case of string-size violation and will lead to incorrect program
behavior. Since all three arguments of the operation substring can be computed as
runtime, no compile time declaration can check this type of bound error.

 3. Pointer arithmetic on a collection of data items can easily violate the boundaries of
the collection of data items during runtime.

 4. Erroneous runtime modification of Boolean variables controlling the interpretation
of the variant part in variant records may lead to incorrect interpretation of mutually
exclusive variant parts.

Example 7.6

Let us take the following example. The program declares an array a of size 50 data
 elements. The for-loop computes the value of an index variable j = 64. The statement
a[j] = 120.2 tries to assign the value to memory location of a[64] that is memory
address of a[0] + 64 * size-of(one-data-element). The program will write in some
memory location that does not correspond to array a and corrupts that memory loca-
tion. To fix this problem, it has to be checked that j ≥ 0 and j ≤ 49 before the assign-
ment statement. However, that would mean additional execution overhead before
accessing an array element.

program main
integer i, j;
real a[50];
 ...
{j = 1;
for (i = 1; i < = 6; i++) j = 2 * j; % finally j = 64.
a[j] = 120.2; % A non-existent a[64] is assigned a value
 ...
}

Example 7.7

Let us take the following example that calls a built-in function substring with three
arguments as described earlier. It picks up the substring starting from position j up
to the position j + 4. The value of j is computed using a for-loop. The loop is executed
four times, giving the value of j as 16. The length of the string “Arvind” is only six.
However, the function substring tries to pick up the substring from position 16 to
position 20. It will pick up some other memory locations not belonging to the variable

254    ◾    Introduction to Programming Language

© 2010 Taylor & Francis Group, LLC

my_name and return some arbitrary value. In order to fix this problem, it has to be
ensured that the start position j and the end position j + 4 are within the range 0 to 6.
This information cannot be checked at compile time.

program main
 {string my_name, short_name;
 integer i, j, k;
 my_name = “Arvind”;
 j = 1;
 for (i = 0; i < = 3; I++) j = 2 * j;
 short_name = substring(my_name, j, 4);
 }

In summary, the properties that are computed at runtime cannot be checked by
compile-time declarations unless the boundary information is carried at runtime and
checked before accessing the data items. This causes significant runtime overhead
and slows down the execution. Many compilers allow a compile-time switch that
performs the range check during the program debugging phase, and the program is
recompiled without the switch after debugging to improve the execution speed.

7.5 POLYMORPHISM
Till now we have studied types as sets of values with well-defined operations. Sets could be
basic sets, user-defined sets formed using well-defined set operations, or sets with abstract
user-defined operations. The sets could be built-in such as integer or real or they could be
user defined enumerated sets. Infinite sets have infinite subsets. We associate certain proper-
ties with the original set, then these properties can be inherited by the subsets, and program-
mers do not have to duplicate the definition of operations already defined for the original set.

Well-defined operations can be associated with handling the data items or performing
operations on structure-related properties that have nothing to do with the types of data
items in the set. For example, integer addition is an operation that is specific to data items.
However, counting the number of elements in a linked list is a generic operation and is
applicable to any linked list irrespective of the type of the data items stored in the linked
list. These generic operations can be applied on potentially indefinite types of data objects.
A function or a procedure written to implement such generic operations need not be tied
to any specific type of data item.

Earlier in the history of the development of programming languages, language design-
ers did not separate the operations specific to data items and the generic operations asso-
ciated with structures. Functions were associated with a specific data type. For example,
there was a separate function to count the number of elements in a list of integers, and
a different function to count the number of elements in a list of real numbers, and yet
another function to count the number of elements in a list of complex numbers. Languages
that support a separate function for the same generic operation on different types of data
objects are called monomorphic languages as they required programmers to write the same
code multiple times for different types of data objects.

Type Theory    ◾    255  

© 2010 Taylor & Francis Group, LLC

In all of these functions, the generic part is counting the number of elements that needs
to be coded once and types of data items on which the operation occurs may be passed as
parameter to specialize the function behavior for the specific call. In 1978, Robin Milner
developed a language called ML that separated the generic operations on structures from
the operations on data items, and started a new class of languages called polymorphic
 languages—languages where generic functions are written once, and the type of data items
is passed as parameter to specialize the function for specific type of data items. Passing the
types as parameter to a generic function is called parametric polymorphism.

The polymorphism is defined as support of operations that work uniformly on possibly
indefinite types of data objects without redefining the operations every time the type of
data items changes. Polymorphism in languages supports reusability of code for different
types of objects while preserving static typing—the ability to infer and verify potential
computational errors by dividing objects in different classes with well-defined properties
and operations. Static typing along with reusability are important concepts for structured
and robust software development.

Two major classes of polymorphism are supported: universal polymorphism and ad hoc
polymorphism. Universal polymorphism is defined as supporting the same operation on pos-
sibly indefinite number of data types, and ad hoc polymorphism is limited to finite number of
data types. Universal polymorphism is further divided into two categories: parametric poly-
morphism and inclusion polymorphism. Ad hoc polymorphism is divided into two categories:
coercion and overloading. Universal polymorphism is different from ad hoc polymorphism
because universal polymorphism supports operations that act on possible indefinite num-
ber of data types, while ad hoc polymorphism supports only finite number of data types.

7.5.1 Parametric Polymorphism

Parametric polymorphism allows the use of generic functions to perform the same
operation on different (possibly indefinite) types of data objects because the operation is
 associated with the structure of the data objects rather than the property of individual data
elements. Some of the examples of such operations are counting the number of elements in
a list, duplicating the elements, appending two lists, finding the ith element of a list. None
of these operations are specific to the type of the data item. Another situation is adding a
sequence of elements. If the data type of elements in the list is an integer, then the addition
works as integer-addition; if the data type of elements in the list is floating point, then the
addition works as floating-point-addition. On the basis of the value of the type variable
passed as a parameter, the interpretation of the addition operator changes at runtime.

In all these cases, a generic function is written, and the type is expressed in the form of
input-mode → output-mode, and the type of arguments are passed as parameters involving
type variables in the type domain. There are two types of variables: concrete variables, asso-
ciated with values or the objects in the actual call to the subprogram; and type variables,
associated with type information associated with specific data-items in each function or
generic methods in object-oriented languages. The input mode is the set-operations involv-
ing the incoming arguments in type domain, and the output mode is the set-operations
involving the outgoing arguments in type domain.

256    ◾    Introduction to Programming Language

© 2010 Taylor & Francis Group, LLC

Example 7.8

For example, the type information for a function such as counting a list of integers
that takes as input a list of data elements and generates a scalar value of the type
 integer is written as follows:

list(τ) → integer where list(τ)::= τ × list(τ) ⊎ nil

The Greek symbol τ is the type variable passed as parameter, the input mode is
list(τ), and the output mode is integer. We have already seen the definition of the
recursive data type list: list(τ) denotes a set of all possible lists of different lengths
including empty lists that have data items of a generic type passed as parameter. If
the value of the type variable passed as parameter is “integer,” then the input mode
becomes list(integer); and if the value of type variable passed as parameter is “real,”
the input mode becomes list(real).

Example 7.9

The type information for a function that appends two lists of the data elements of the
same type as input and generates a list of data elements as output can be written as
follows:

list(τ) × list(τ) → list(τ) where list(τ)::= τ × list(τ)
 ⊎ nil

The type of the first input argument is list(τ); the type of the second input argu-
ment is list(τ); and the Cartesian product of the two sets gives a set of pairs such
that each field is a list of a generic type passed as parameter, and the output mode
gives a set of lists of the same generic type. If the type passed as parameter is
 “integer,” then the input mode is list(integer) × list(integer), and the output mode
is list(integer).

Parametric polymorphism can be explicitly declared before the procedure;
alternately, it could be inferred at compile time. Polymorphism where parametric
polymorphism of a function or procedure is explicitly declared is called explicit
 polymorphism, and where parametric polymorphism is not admitted explicitly can
be derived at compile time using type-inference is called implicit polymorphism.

7.5.2 Inclusion Polymorphism and Subtypes

As we have discussed that types are sets with well-defined operations working on the
data items in the set, these same well-defined operations can be associated with subsets
of the original set. If the original set is of indefinite size such as integer or real, it will have
 indefinite number of subsets that will inherit the same set of well-defined operations. A
subset can be declared as subtype of the original type, and the subtype will automatically
inherit the well-defined operations on the original type; the operations already defined

Type Theory    ◾    257  

© 2010 Taylor & Francis Group, LLC

on the original type need not be redefined on the subtypes. This form of polymorphism is
called inclusion polymorphism.

For example, probability is a subtype of real numbers, and natural numbers are sub-
types of integers, probability will inherit all the floating-point operations of the real num-
bers, and natural numbers will inherit all the operations of integers. There is one problem:
original type may be closed under an operation. However, a subtype may not be closed
under the operation and may need to have error-handling mechanism. For example, a real
number is closed under addition, subtraction, multiplication, and division (except divide
by zero). However, probability is not closed under addition, subtraction, and division: 0.6 +
0.6 gives 1.2; 0.2 – 0.5 gives –0.3; 0.6/0.2 gives 3.0. All such cases of nonclosures need to be
handled using exception handler.

Example 7.10

The following example taken from language Ada describes subtyping. The first
example tells that month is a subtype of integer with range between 1 and 12. Any
value beyond this range will generate error. Subtype age is an integer between the
range 0 and 150. The declaration Workingdays is a subtype of the enumeration type
Weekday.

subtype Month is INTEGER range 1..12
subtype age is INTEGER range 0..150
type Weekday is (Sun, Mon, Tue, Wed, Thu, Fri, Sat);
subtype Workingdays is Weekday range Mon..Fri

Subclasses and inheritance

Inclusion polymorphism is also present in object-oriented programming as a subclass
inherits all the properties and declarations in a class unless the declarations are sealed
within the class. Inclusion polymorphism for object-oriented programming is given
by Liskov’s substitution principle, which states that objects of a type may be replaced
with objects of the corresponding subtype without altering the program’s extrinsic
public behavior with respect to other objects. We defer the topic of polymorphism in
object-oriented languages until Chapter 11.

7.5.3 Overloading

Many operators such as ‘+’, and ‘*’, ‘/’, ‘−’, reserved words such as function names in the
Pascal family of languages can have multiple meanings. For example, the symbol ‘+’ can
be interpreted as integer addition, floating-point addition, rational-number addition, or
complex- number addition. The meaning of an operator can be disambiguated if the type
of the operands is known. In statically typed languages, the overloaded operator can be
disambiguated at compile time because the information about the type of the operands is
available during compilation. However, in dynamic languages the meaning of an operator
is disambiguated only at runtime, based upon the type of the arguments.

258    ◾    Introduction to Programming Language

© 2010 Taylor & Francis Group, LLC

Example 7.11

Let us consider a simple program segment as follows:

integer x, y;
float a, b;
...
x = 3; a = 5.3;
y = x + 6;
b = a + 7.4;

In this example, the operator ‘+’ is overloaded. The first occurrence of the addition
operator ‘+’ is an integer-addition because both the arguments are integers. However,
the second occurrence of the same operator is a floating-point-addition.

7.5.4 Coercion

Coercion is an automatic conversion of a type of data element to another type of data
 element for computation such that the information is not lost. For example, integer value
1 can be coerced to floating point value 1.0 without loss of any information. However,
if we try to convert a floating point number to an integer, then information may be lost,
and it will be casting and not coercion. An interesting confusion even among computer
scientists is to confuse three different concepts: coercion, casting, and the same low-level
representation for different types of implementation. Coercion is information preserving
conversion to allow for mixed-type operands so that the meaning of overloaded opera-
tors can be disambiguated. Casting causes loss of information, and most statically typed
languages provide a specific library function to provide programmer directed casting.
Without the use of the programmer directed library functions, casting is unsafe.
However, many dynamic, specifically web-programming, languages mix up types and
provide type conversion in an unsafe way to provide user friendliness. For example, lan-
guage Javascript can treat number as a string and concatenate a number to a string when
resolving the meaning of “+” operator that mixes a string with a number. Many times,
low-level abstract machines such as JVM use the same abstract instruction for different
types of high-level instructions due to the availability of limited abstract instruction set.
It is neither coercion nor casting.

Coercion is supported by almost all the modern programming languages to provide
natural interface with the human way of handling the computations in the mathematical
world. Coercion is a antisymmetric and transitive relationship. If we represent coercion by
an arrow symbol “→” then lower-type-value → higher-type-value. For example, integer →
floating-point, floating-point → double-float, integer → long-integer. Using transitivity we
can also infer integer → double-float. However, we cannot infer that long-integer can be
coerced to double-float.

Coercion of the consumer occurrence of variables works well for both statically and
dynamically typed languages. However, for the producer occurrence of variable, coercion
acts differently in statically and dynamically typed languages. Statically typed languages

Type Theory    ◾    259  

© 2010 Taylor & Francis Group, LLC

do not allow the type of a variable to be altered, while dynamically typed language change
the type of the variable based upon the value.

Example 7.12

Let us take the following C++ like code that has three types of variable declarations:
int, float, and double. The statement y = m + x mixes an integer to a floating point
number. The value of the variable m will be coerced to floating point value 4.0 and
y will be assigned the value 7.4. Since float → double, the statement d1 = n + y will
coerce the value of the variable y to double float version of 7.4 and add it to double
float version of the value 5 to derive the double float version of 13.4. The last statement
converts the integer value 5 to double float version and adds to get a double float ver-
sion of the value 18.9.

int m, n;
float x, y;
double d1, d2;
{m = 4; n = 6; x = 3.4; y = m + x; d1 = n + y; d2 = d1 + 5;}

7.6 TYPE SYSTEM IN MODERN PROGRAMMING LANGUAGES
Modern programming languages support monomorphic type, polymorphic type, and
pointers (or reference type). Monomorphic type is further categorized as scalar, structure,
and reference type. Scalar type consists of integer, real, Boolean, char, semaphores, byte,
word, and ordinal type. Ordinal type can be an enumerated set or a subrange. Many mod-
ern languages such as C++, ADA and Java support all four forms of polymorphism: para-
metric, inclusion, coercion, and overloading. Figure 7.2 shows that overall type structure
of modern programming languages. Reference type or pointers are used to access dynamic
objects.

A structured type is derived using set operations on previously declared sets. The set oper-
ations are Cartesian-product to model tuples; finite-mapping to model arrays, association
lists (or maps), and indexed sequences; power set to model set of the subsets for set-based
programming; disjoint union to model variant records, combination of Cartesian-product
and disjoint union to model recursive data types. Strings are sequence of characters.
However, they have been treated in many different ways. Strings have been modeled as
packed arrays of characters as in Pascal and C, or through a built-in class declaration of
the type “string” as in Java.

Pointers are addresses that point to a memory location. Independent pointers can
be potentially unsafe if they allow arithmetic operations to step through memory
locations. Pointers have been treated differently in different programming languages
depending upon the languages’ problem domains and philosophy. For example, Pascal
does not allow an independent status of pointer. Rather, pointers are associated only
with structured types such as recursive data types to prevent unintended runtime
program-crashes.

260    ◾    Introduction to Programming Language

© 2010 Taylor & Francis Group, LLC

7.6.1 Universal Reference Type

Object-oriented languages such as Java, C#, CLU, Modula-3, and Ruby use a reference
type that is an internal representation to access an object in the heap. Reference types
do not permit pointer arithmetic or independent status to references. In Java, this type
is called object type; in C++ and C#, it is called void *; in CLU it is called any; and in
Modula-3 it is called refany. The type of the object referred to by the universal type can
be dynamically altered on the basis of the data type of the assigned object. Compiling
universal reference is generally not type safe because, at runtime, a universal type can be
associated with different incompatible data objects. There are two approaches to handle
this problem of type compatibility at the runtime: (1) casting and (2) dynamic-type tags.
Each data entity in an object has a tag that keeps its type, and the objects are checked
for type compatibility before an operation is performed on the object. If the types are
different, then type casting is used dynamically to make the data entity compatible with
the data type used by a method. As explained in Section 11.4.2, there are two types of
casting: upcasting and downcasting. In upcasting, the information is not lost, and is type

Pointer

Cartesian
Record/
struct/tuple

Type system

Monomorphic Polymorphic

ReferenceScalar Structured

Integer

Real

Boolean

Char

Sema

Universal Ad hoc

Parametric

Inclusion

Overloading

Coercion

Byte

Word

Finite
mapping

Array/string/
association list

Power set Set of subsets

Disjoint
union

Variant record

Cartesian
product +
disjoint
union

Recursive
data type

Abstract type = User-defined type + user-defined abstract operations

Ordinal type

Enumerated set

Subrange

Class

FIGURE 7.2 An overall type structure of modern programming languages.

Type Theory    ◾    261  

© 2010 Taylor & Francis Group, LLC

safe. In downcasting, type information is lost, and is potentially unsafe. Upcasting can
be done automatically. However, downcasting must be explicitly initiated by a program
action.

7.7 TYPE EQUIVALENCE
One important question: Can two variables of seemingly different types be equated?
Ideally, corresponding variables of two types carrying same information should be
equated with each other. A natural approach is to look at two sets that contain the same
information. Mathematically speaking, we can impose a condition for type equivalence
that a bijective mapping should be defined between the two sets, which means that for
every element in one set, there is a corresponding element in the other set that carries
the same information. However, there are two problems with structured types: (1) many
set operations such as Cartesian product of sets can shuffle the fields while preserving
the information and (2) structuring can be nested to any depth. If we model the struc-
tured types using tree representation, then the basic types are at the leaf nodes. If we
collect all the leaf nodes of two trees carrying the same number of fields having same
basic types, then the information they carry is the same. However, it is computationally
difficult to infer that two complex structured types are equivalent due to the following
reasons:

 1. Cartesian product and disjoint union cause permutation of the fields while retaining
the same information.

 2. Different fields may be grouped differently at different nesting levels.

 3. In case of languages that allow flexible base index in the domain in finite mapping,
some computation has to be done to match the types. For example, integer a[1..10]
and integer y[0..9] can be equated since a[i] corresponds to y[i – 1]. However, the
 relationship needs to be inferred.

 4. There may be more than one occurrence of same basic types at the leaf nodes carrying
semantically different information.

 5. The basic types may be the same, but the semantic entity they represent may be
 completely different, because data abstractions may be using the same structure and
basic types to model semantically different entities.

Let us look at two tree-based representations of equivalent structured types in Figure 7.3.
Clearly both the representations potentially represent the same information with different
structures due to permutation and grouping of fields. The two integer fields are difficult
to equate due to multiple occurrences. Humans can disambiguate some of this informa-
tion by associating similar meaning to the name of the fields. In order for the computer
to equate two variables that carry possibly the same information but different structure,
individual fields are programmatically equated to avoid ambiguity of multiple occurrences
of the same basic type.

262    ◾    Introduction to Programming Language

© 2010 Taylor & Francis Group, LLC

Example 7.13

Given the two type declarations for student1 and student2, the corresponding set
for student1 is given as integer × string × float, and the set for student2 is given by
(string × integer) × float where the parenthesis shows a nested structure. Although
two representations have a clear bijective mapping and carry the same information,
the order of the field names is not the same.

 typedef struct {integer age; string name;
 float assignment _ score;} student1;

typedef struct {string name; integer age;} person;
 typedef struct {person individual; float assignment _ score;}
 student2;

7.7.1 Structure versus Name Equivalence

Programming languages support two types of type equivalences: structural equivalence
and name equivalence. Structural equivalence is based upon structural matching, and
name equivalence is based upon two types having the same name in addition to carrying
the same information.

Strictly speaking, structural equivalence means that two structures are equivalent if they
carry the same information even if the individual fields are permuted or if the individual
fields have different names. Even if two named tuples (record or structs) have different
names but have same basic types in permuted order they are structurally equivalent.
However, such a definition of structural equivalence is not practical for equating two struc-
tures because of (1) ambiguity caused by multiple occurrence of the same basic type in the
structure and (2) permutation of the basic types in Cartesian product and disjoint union
that can cause excessive computation in matching the nested structure.

Programming languages take a conservative approach to define structural equivalence.
If the individual fields of two types have the same name and the same basic types, then they
are called structurally equivalent. Some languages put an additional restriction on struc-
tural equivalence by disallowing the permutation in the field arrangement at the basic type
level (leaf nodes of the tree in Figure 7.3). With this definition, two types given in Figure 7.3
will not be considered structurally equivalent, although they may carry the same infor-
mation and are bijective. Languages such as ALGOL-68, Modula-3, C, and ML support
restricted definitions of structural equivalence. In ML, permuted order is allowed if the
field names and their basic types match. Modula-3 supports a restricted form of structural

Float
Float

Char

Char
Integer

Integer
Integer Integer

Float × Char × Integer

Integer × (Float × Char × Integer) (Char × Integer) × (Float × Integer)

Float × IntegerChar × Integer

FIGURE 7.3 Two types carrying same basic types with different structure.

Type Theory    ◾    263  

© 2010 Taylor & Francis Group, LLC

equivalence. The equivalence relationship is defined using subtypes. Two type declara-
tions are structurally equivalent where both are subtypes of each other. The definition of
Modula-3 subtypes is described in Section 7.8 under the case study of Modula.

Another problem with structure equivalence is that it does not distinguish between two
semantically different entities. For example, a point in a two-dimensional plane can be mod-
eled as a pair of integers, and a complex number also can be modeled as a pair of integers.
However, a complex number is semantically very different than a point in a two-dimensional
plane, and the two types cannot be equated despite having same basic type and field names.

Example 7.14

The following structs are equivalent because they carry the same information, have
same basic types, and the same field names specified in the same order.

struct {integer a, b} record1;
struct {integer a, b} record2;

However, if we change the order of fields a and b in the type declaration record2,
then two type declarations will not be structurally equivalent in a language such as
C or Modula-3.

Example 7.15

The following Modula-3 syntax will treat the two structures to be structurally equivalent.
However, the two types represent two different semantic entities. The first type represents
a point in a two-dimensional plane, and the second type represents a complex number.

Type Coordinate = Record x, y : INTEGER;
Type Complex = Record x, y : INTEGER;

Name equivalence states that two types may carry the same information. Yet they
are not type equivalent unless they have the same name. This definition that two types
are name equivalent if they carry the same information and have the same name is
more restrictive, yet it protects the programmer’s intention of giving a different name
to two different types that may model two different entities. Most modern languages
support name equivalence for (1) the ease of type matching during compilation and
(2) to preserve the intention of the programmer to keep the semantics associated with
the names. Languages such as Ada, Java, and C# support name equivalence.

7.8 IMPLEMENTATION OF TYPES
Type information and various attributes are carried in the symbol table. In statically typed
languages, most of the descriptors that are not associated with runtime range checking
are not carried forward after the compilation. Some of the type-related information—such
as memory allocation, coercion, disambiguation of overloaded operator, and additional
 accuracy—are implicitly embedded in the code area of the program.

264    ◾    Introduction to Programming Language

© 2010 Taylor & Francis Group, LLC

The various attributes of a type declaration are collectively called type descriptors. Type
information can be grouped as a pair of the form (type descriptor, memory allocation). The
 information about memory allocation is given as a memory offset from the base address of
an object. The information about type descriptor includes (1) the name of the type declara-
tion; (2) classification of the type such as record, array, and ordinal type, (3) domain-related
information; (4) codomain-related information; (5) memory size of each data element;
(6) number of elements in the type declaration; and (7) the offset of the memory location
where the a specific data element or the field in a composite data-entity starts.

The number of bytes to be allocated for the built-in basic types is known to the compiler
and does not need any additional information. The type descriptor information for user-
defined types has to be built. Tuples carry the information: (name of the tuple, number
of fields in the tuple, information about each specific field of the tuple, number of bytes to
be allocated to individual fields, offset of the individual field where tuple will be allocated).
Arrays carry the information: (name of the array; number of data elements; domain related
information such type of the domain, lower index value, upper index value; codomain related
information such as type of the individual data element, number of bytes used by individual
data element, range of allowed values, if any). In case a user-defined type uses another
user-defined type in its definition, then the name and reference of the corresponding user-
defined type is stored. The exact information allocation is compiler dependent.

After the compilation is over, information needed for type mismatch checking is dis-
carded, and the memory allocation and memory access information for individual vari-
ables of specific type gets implicitly embedded in the code area of the program. However,
all the information related to runtime error checking such as range-check error in arrays
can be either kept dynamically for runtime check or can be embedded in the code area as
conditional checks depending upon the compiler.

The following examples show an abstract representation of various type descriptors
such as record, array, and nested structures.

Example 7.16

Let us take a simple declaration of the record student described earlier. A student is
abstracted as a triple of the form (name: string, age: integer, major: string). It can be
 represented as a named tuple student with the three named fields: name, age, and major.
Let us also assume that the maximum size of the string is fixed to 256 characters. The
type descriptor is as follows:

(record, student, 3, 514,
 (string, name, 256, 0),
 (integer, age, 2, 256),
 (string, major, 256, 258)
).

The type descriptor states that the type is a record. The name of the record is student.
It has three fields, and the total size of the data element is 514 bytes. The information

Type Theory    ◾    265  

© 2010 Taylor & Francis Group, LLC

about the first field is as follows: it is of the type string, has name, size of the field is
256 bytes, and its offset is 0. The information about the second field is as follows: it
is an integer with name age, occupies 2 bytes, and its offset is 256. The information
about the third field is as follows: it is a string with name major, occupies 256 bytes,
and the offset is 258.

Example 7.17

Let us take an array class that is an array [1..30] of student. The domain type is an
integer with lower index value as 1 and upper index value as 30. The range type is
student. The description of student is given by a reference to another type descriptor
student-descriptor. The size of the individual element is 514, which is picked up from
the type descriptor student, and total size of the array is 30 × 514 = 15420. A possible
type descriptor for the above type declaration would be as follows:

(array, class, 30, 514,
 (integer, 1, 30),
 (student, reference(student-descriptor))
)

The implementation could use pointers, index, or hash functions to access the
descriptor of the user-defined type student. The implementation of the type descrip-
tor is implementation dependent, and different implementations may use differ-
ent data structures to implement it. In addition to the above information, the type
descriptor also contains the information about the program subunit where it was
declared to check for the scope rule.

A code generator takes this information from type descriptors, and performs
memory allocation based upon the information of the offsets and the order of dec-
laration of variables. Memory locations are allocated only for declared variables. For
stack-based implementation, memory allocation for the local variables is done rela-
tive to the base address of the frame as zero. Since the current frame pointer is added
to an offset to access memory location in the frame, the relative addressing based on
offset makes the variable allocation independent of the absolute memory location.
The individual fields of a composite type are accessed by adding the base address of
the allocated variable and offset of the field given by the corresponding type descrip-
tor. Similarly, the individual elements of an array are accessed by using the equation
base address of the array + index value * size-of(individual data element).

Example 7.18

A variable cs_class of the type class is being allocated, and the base address of the
array is 12020. The ending memory location is 12020 + 30 × 514 = 27440. Each
 individual element is calculated in the code area using the base address 12020 +
 value-of (index-variable) * 514.

266    ◾    Introduction to Programming Language

© 2010 Taylor & Francis Group, LLC

7.8.1 Type Inference and Checking

Polymorphic type is inferred if it is not declared explicitly. The process of inferring the
 parametric polymorphic type is called type inference. Given an explicit polymorphic
 declaration, the process of checking the declared types with inferred types is called
type checking. In statically typed polymorphic languages such as Scala, parametric type
 information may not be given, and it is automatically derived at compile time using a
robust type checking system. In fact, languages such as Lisp and Prolog are polymorphic
languages where the declaration of parametric type information is implicit.

In polymorphic languages, type information can be as follows: (1) type variables such
as alpha, beta, and so on; (2) a concrete type such as integer, Boolean, float, and so on;
(3) union of types; (4) disjoint union of types; (5) Cartesian product of two types; and
(6) mapping of two types. The parametric polymorphism of a function is expressed in the
most general form as α → γ where α and γ are parametric types that are associated with
input and output arguments. If there are N (N > 1) input arguments in a function, then the
domain is represented as a Cartesian product of the form α1 × α2 × … αN → γ where each αI
(1 < I ≤ N) represents parametric type for an input argument, and γ represents parametric
type for the output argument. A parametric type of a composition of a function f∘g is (α →
β) → γ, where the type variable α denotes the type of the input argument for the function
g, the type variable β denotes the parametric type of the output of the function g, and the
type variable γ denotes the parametric type of the output of the function f. Some of the
parametric types for kernel functions are given in Table 7.1.

In order to infer polymorphic type, each argument is initially treated as most generic
form, and it is specialized progressively to specific types based upon the structure informa-
tion, operand type information, and the operator information.

Example 7.19

defun my _ sum(DataList)
 (if (null DataList) 0 (+ (first DataList)
 (my _ sum (rest DataList))))
)
The program states that my_sum takes an argument DataList. If the argument

DataList is null then return 0. Otherwise add the first element of the DataList to the
output of recursive application of the function my_sum on the rest of the list.

TABLE 7.1 Polymorphic Types of Some Known Functions and Functional Forms

Polymorphic Type Polymorphic Type

Function Type Function Type
First
Rest
Cons
Null

list(α) → α
list(α) → list(α)
α × list(α) → list(α)
list(α) → Boolean

Length
Append
Insert
Apply_all

list(α) → integer
list(α) × list(α) → list(α)
α × list(α) →;list(α)
(α → β) × list(α) → list(β)

Type Theory    ◾    267  

© 2010 Taylor & Francis Group, LLC

Type inference starts with the generic form α → β. After looking at the recursive
definition, we know that the input argument is a list, and output argument is an out-
put on which ‘+’ operator is defined. Thus the input type is refined to list(α) → β where
β could be any type on which ‘+’ operator is defined. Depending upon the language, it
could be an integer, float, long integer, double float, or string. Now we look at the base
case. It verifies that the input argument is a list, and output value ‘0’ is mapped to the
type domain integer. Thus the polymorphic type of the function is further specialized
to list(α) → integer.

Many polymorphic languages, such as Scala, ML, and Haskell, although stati-
cally typed languages, also have the option of inferring the type of the data entities
based upon the known types of the literals and explicitly declared types of data
entities.

7.8.2 Implementing Polymorphic Type Languages

Since polymorphic type procedures containing type variables can be bound to any type
of data object at runtime, it is not possible to allocate memory at compile time since the
actual type is not known. The type variable is specialized at runtime. Owing to runtime
specialization, polymorphic languages have been implemented differently based upon the
mapping of source code to machine code and the way data objects are stored. If the source
code and machine code both exhibit polymorphism, then the implementation is called
uniform polymorphism. For example, the functional programming language ML supports
uniform polymorphism. If polymorphism exists only at the source code level, then it is
called textual polymorphism. In object-oriented languages, the data is represented differ-
ently for polymorphic code, and it is called tagged polymorphism.

Textual polymorphism utilizes multiple possible specialized codes. An appropriate code
is picked at runtime based upon the specialization. The major issue with this technique is
the excessive requirement of memory for multiple specialized codes. This technique has
another problem: it does not allow functions as first-class objects, because low level code is
fixed to a set of specialized codes that can not be altered or expanded. The implementation
of generics in ADA uses a variation of this approach.

Uniform polymorphism uses a uniform machine code for different types of specializa-
tion. This means that memory allocation for different types of data objects should also be
uniform. In this approach, optimum memory allocation for different type of data objects
is not possible, and data is excessed using a pointer. This means that there is an overhead
of accessing the data in heap due to indirect addressing. This type of implementation is
found in ML.

Tagged polymorphism uses the uniform code representation both at the source level and
at the machine level. However, data is tagged by their types, and the generated code uses
this tag to determine how to process the data. The operator overloading is handled using
this technique. Object-oriented methods use this technique to handle same-name methods
for different objects at runtime. Different dynamic sequences of code are executed for dif-
ferent objects.

268    ◾    Introduction to Programming Language

© 2010 Taylor & Francis Group, LLC

7.9 CASE STUDY
In this section, we discuss the type system of Ada and C++. The type system supported
by most of the languages is very similar for basic types and structured types. Recent
 object-oriented languages and multiparadigm languages also support polymorphism
through the use of generics, template-based programming, subtyping, and inheritance. All
the modern programming languages support overloading and coercion. However, the defi-
nition of coercion is loosely defined by many languages. Many languages do not support set-
based programming mainly due to the lack of usage by the programmers. String is treated
as a sequence of characters. However, many languages allow string declaration through the
use of library. Subrange is also not supported by many languages such as C++.

7.9.1 Type System in Ada

Ada is a strongly typed language that supports objects, reference, structured types, and
all the basic types including extensive numeric types. The overall type system of ADA is
described in Figure 7.4.

Access

Object

ReferenceScalar Structured

Integer

Boolean

Char

Overloading

Coercion

Fixed

Abstract type = User-defined type + user-defined abstract operations

Complex
Rational

Ada type system

Monomorphic Polymorphic

Disjoint
union Variant record

Universal Ad hoc

Parametric
(generic)

Inclusion
(subtyping)

Ordinal type

Enumerated set

Subrange Cartesian
product +
disjoint
union

Recursive
data type

Cartesian Record

Finite
mapping Array

Numeric

Real

Float

FIGURE 7.4 Types supported in Ada 2012 programming language.

Type Theory    ◾    269  

© 2010 Taylor & Francis Group, LLC

Complex and rational types are built in the numeric package. Ada supports ordinal
types including enumerations and subrange. Under universal polymorphism, it supports
generics and subtyping, and like any other language, it supports overloading and coercion.
Under scalar type, it supports Boolean, char, ordinal types, and numeric. The numeric
package supports integer, real, complex, rational, and real numbers. Real numbers support
fixed type in addition to traditional float type.

As described in Chapter 4, fixed type allows the decimal number using a delta incre-
ment that makes a quantum jump by delta amount, as additional bits do not provide addi-
tional accuracy. For example, the delta for U.S. dollar is one penny; that is 0.01. Ada also
supports two additional declarations, Task and Protected, for concurrent programming
that has been omitted in type system discussion. These two declarations will be discussed
in Chapter 8 on concurrent programming. Note that Ada does not support set-based
declarations.

7.9.2 Type System in C++
C++ is a strongly and statically typed object-oriented language. C++ also supports basic
types; structured types such as arrays, struct, union, and recursive data types; pointers;
and object class. It also supports parametric polymorphism through the use of template-
based programming, and inclusion polymorphism through inheritance. Template-based
programming declares a generic method using a type variable that is instantiated at run
time. It also supports overloading and coercion. However, C++ does not support subrange.
Built-in basic types include only integer, float, char, Boolean, and string. Unlike Ada, com-
plex numbers and rational number declarations are not built-in. C++ supports string as a
class library. It also supports extra precision integers and floating point declarations such
as double.

7.9.3 Type System in Modula-3

Modula-3 is a strongly and statically typed programming language that supports objects
and modules. Modula-3 uses structural equivalence instead of name equivalence. Structural
equivalence is defined as the leafs of the expanded tree matching in two equivalent types. It
supports ordinal types: both subrange and enumeration types. It supports double precision,
such as LONGREAL. It supports all the structured types including set-based constructs.
It supports pointers as independent type. The pointer can have a value either nil or any
valid address. It also supports procedure type, and procedure can be passed as parameter.
It supports objects that are implemented using a reference type. Under polymorphism, it
supports subtyping, coercion, and overloading.

7.10 SUMMARY
Type system is classifying the values based upon well-defined properties and operations on
them. Most of the primitive types come from the mathematical world or text processing or
information representation inside the computer. The definition of types is deep rooted in
sets, and new types can be created by set operations on the constituent sets. The major set
operations are as follows: ordered bags, Cartesian product, finite mapping, disjoint union,

270    ◾    Introduction to Programming Language

© 2010 Taylor & Francis Group, LLC

and power set. Cartesian product corresponds to a set of tuples and corresponds to struct
(or record) in programming languages. Finite mapping corresponds to arrays or associa-
tive maps. Arrays can be viewed as a subset of integer domain mapping to another domain.
Disjoint union takes union of two disjoint sets and corresponds to variant records. A com-
bination of disjoint union and Cartesian products is used to model recursive data types
where recursive definition and base case are connected using disjoint union. Power sets cor-
respond to a set of all subsets of a given set, and has been used in set-based programming.

Ordered bags have played a major role in defining various types. For example, enumer-
ated types are sets, ordinal types are ordered bags, and sequence of data elements are ordered
bags. Sequence is an important abstract data type. For example, strings are sequence of
characters. Lists are sequence of data elements. Stacks and queues are abstract data types
that can be modeled using sequence.

There are many advantages of declaring types. Type declaration is used for type-
mismatch error, efficient memory allocation, precision declaration, accuracy declaration,
ease of modeling of real-world entities through abstraction, compile-time disambiguation
of overloaded operators, and compile-time coercion. The major advantage of type declara-
tion is to remove a major class of errors in large programs that may save programs from
crashing specially in mission critical applications. However, type declaration cannot cap-
ture runtime errors such as range check, finding out a substring, runtime violation of types
in variant records, and type violation due to pointer arithmetic.

An important concept in type theory is the notion of type equivalence. If two declared
types are equivalent, then the variables of the equivalent types can be equated. Theoretically,
two types are equivalent if they carry the same information and there is a bijective mapping
between the corresponding sets. However, set operations such as Cartesian product and dis-
joint union produce sets that carry the same information yet permute the fields. It is difficult
to find such equivalent sets due to ambiguity caused by multiple occurrences of the same basic
type, change in name of the fields, and permutation of the fields. Programming languages
support two types of equivalence: structural equivalence and name equivalence. Structural
equivalence imposes additional restrictions in identifying the sets carrying the same infor-
mation. Many languages impose the restriction that, when expanded, the field names and
basic types should be in the same order. Some languages such as ML allow permutation of the
fields. One of the major problems in supporting structural equivalence is that two structur-
ally equivalent types may represent two different real-world entities that can never be equated.
Name equivalence puts additional restriction that two types that have been named differently
can never be treated equivalent. Most of the modern languages support name equivalence.
However, there are exceptions such as ML and Modula-3 that use structure equivalence.

A major limitation in early days was the tight integration of functions with the data type.
This tight integration made them unusable for different types of data objects, although the
functions performed operations that were not related to specific type of the data objects.
Some of the examples of such operations are appending two lists, counting the number of
elements in a list, stack operations, queue operations, and swapping two elements. This led to
the development of polymorphism that is closely related to the reusability of the functions
and operations for multiple types.

Type Theory    ◾    271  

© 2010 Taylor & Francis Group, LLC

Polymorphic types can be classified into two broad categories: universal polymorphism
and ad hoc polymorphism. Universal polymorphism allows indefinite number of data types
to be associated with an operation or function, while ad hoc polymorphism allows limited
number of data types to be associated with an operation. Universal polymorphism again
can be divided into two classes: parametric polymorphism and inclusion polymorphism.
Ad hoc polymorphism is also divided into two classes: overloading and coercion.

Parametric polymorphism allows types to be passed as parameters using type vari-
ables. A function instead of being associated with a concrete type is associated with a
definition possibly containing a type variable that can be bound to a specific concrete
type at runtime during procedure call. The parametric polymorphism of a function is
given in the form generic-type(input-arguments) → generic-type(output-arguments). The
generic-type definition includes type variables. The major advantage of parametric poly-
morphism is reusability of code, and indirectly it supports robustness of software devel-
opment because the reusable code can be debugged and included in the library to be
imported; polymorphic function does not have to be duplicated for different type of data
objects. Parametric polymorphism was first implemented in the functional programming
language ML, and since then it has been incorporated in many languages, specifically
modern languages supporting functional programming paradigm and objected-oriented
programming paradigm. Some of the modern popular languages that support explicit
parametric polymorphism are ADA, C++, C#, Java, Scala, Ruby, and Haskell. ADA, Java,
and C# use generic functions and type variables, and C++ calls generic functions as
templates using type variables.

Inclusion polymorphism allows functions and operations on a type to be reused on a
subset of the original set. Again the major advantage is that abstract operations defined
on the original type can also be used on subtype. If the original set is an infinite set,
then it can have infinite possible subsets, and the operations on the original set can
be used on indefinite number of possible subtypes. Inclusion polymorphism is used
extensively in ADA and Modula-3 as subtype and is used in object-oriented languages
through the definition of subclass. Subclass supports inheritance—a common trait in
inclusion polymorphism.

An overloaded operator has multiple meanings. However, the actual meaning can be
derived by looking at the type of the operands. If the type of the operands is available at
compile time through type declaration, then the overloaded operator can be disambigu-
ated at compile time. In dynamic languages, the meaning of overloaded operator changes
dynamically, depending upon the dynamic type of the operands.

Coercion is related to type conversion of values to facilitate computation without loss of
information. For example, integer value can be coerced to a floating point value. Any type
conversion that loses information is not suitable for automatic conversion, because it can
derive erroneous results.

For statically typed information, most of the type-related information is kept in type
descriptor and is not carried during runtime unless it is needed to derive runtime errors.
Type descriptor contains information of basic types or reference to user-defined types,
offset of the various fields, the information about domain and the type and size of data

272    ◾    Introduction to Programming Language

© 2010 Taylor & Francis Group, LLC

elements. All this information is needed to verify the type compatibility at compile time
and to allocate memory for various variables in the frame of a procedure.

Polymorphic types can be either declared explicitly or they may be implicitly present. In
statically typed polymorphic languages, type inference can be used to infer and verify the poly-
morphic type of a function. The technique is to start with the most generic form and progres-
sively make it more specific it by looking at the structure, operators, and type of operands.

Implementation of polymorphic languages is classified into three major categories:
textual polymorphism, uniform polymorphism, and tagged polymorphism. Many modern
languages combine different implementation techniques. Textual polymorphism has poly-
morphism only at the level of high-level source code, while the lower-level code is split into
different cases that can be selected dynamically based upon the specific type information.
It has extra memory overhead. Uniform polymorphism has polymorphism both at the
high-level source code and low-level code. It has an overhead of representing all different
types of objects using a uniform memory space. Tagged polymorphism keeps a tag of data
type with the object and selects the appropriate method by looking at the tag. Tagged poly-
morphism is used to implement object based languages.

7.11 ASSESSMENT

7.11.1 Concepts and Definitions

Abstract type; ad hoc polymorphism; basic type; built-in type; Cartesian product;
 closure property; coercion; concrete type; disjoint union; dynamic type; enumerated
set; enumeration types; explicit polymorphism; finite mapping; fixed type; implicit
 polymorphism; inclusion polymorphism; limitations of types; name equivalence; named
tuples; ordinal types; parametric polymorphism; power set; predicate; recursive type; ref-
erence type; set operations; statically typed; structural equivalence; strongly typed; struc-
tured type; subtype; tagged polymorphism; textual polymorphism; type checking; type
descriptor; type equivalence; type implementation; type inference; type variable; uniform
polymorphism; union type; universal polymorphism; user-defined type.

7.11.2 Problem Solving

 1. Model a student with the following fields: student_id of the type array of characters,
name as string, age as integer, and major as enumeration type. Write the correspond-
ing type declaration in C++ and ADA and the set operations to derive the corre-
sponding set.

 2. For the following set operations, give a realistic type declaration that models a real-
world entity.

 a. [0..30] → real × real

 b. (real × real × real) × (integer × integer × integer)

 c. ℘(1..12) where ℘ stands for power set

 d. T = nil ⊎ T × (string × [0..30] → (string × integer × real)) × T

Type Theory    ◾    273  

© 2010 Taylor & Francis Group, LLC

 3. Using type variables, write a parametric polymorphic declaration for a function that
takes two input arguments that are lists of any type and the output is a list of integers

 4. Write a polymorphic type declaration for the following functions, and explain the
logic:

 a. Sorting a sequence of data items

 b. Searching an element in a sequence of data items

 c. Searching an element in a tree

 d. Merging two sorted lists into a single list

 5. Write a C++ program using template to merge two sorted sequences.

 6. Write data structures for the following real-world abstractions, and then derive the
corresponding set operations:

 a. A class of students where each student is a tuple (name, age, department, year)

 b. A university modeled as a collection of colleges, where each college is a tuple
of the form (area, dean-name, collection of departments-names). You can model
name as a string.

 c. A galaxy as a collection of stars where each star is a tuple of the form (name,
brightness-type, number of known planets, distance from earth).

 7. Write a simple program in Lisp or Haskell to delete an element from a list, and use
the type inference mechanism to show that polymorphic type of the delete function
is given by list(α) → list(α).

 8. Write a simple program in Lisp or Haskell to count the number of elements in a list,
and use type inference mechanism to show that the polymorphic type of the count
function is given by list(α) → integer.

 9. Derive the polymorphic type for all the stack operations and all the queue operations,
and explain your reasoning.

7.11.3 Extended Response

 10. Explain the difference between monomorphic type and polymorphic type using an
example.

 11. What is the purpose of incorporating polymorphism in programming languages?
Explain.

 12. Briefly describe each type of polymorphism in programming languages using at least
one simple example.

 13. Read about the numeric package from ADA 2012 official report, and explain the dif-
ference between fixed point and float using a simple example.

274    ◾    Introduction to Programming Language

© 2010 Taylor & Francis Group, LLC

 14. What are the different set operations and the corresponding structured types?
Explain using simple examples.

 15. Compare all three implementation mechanism for the implementation of
polymorphism.

FURTHER READING
American National Standard Institute. Programming Language—C++, DS/ISO/IEC 14882. 2011.

http://www.ansi.org
American National Standard Institute, Programming Language Ada, CSA ISO/IEC 8652:201z. 2012.

Available at http://www.adaic.org/ada-resources/standards/ada05/
Burstall, Rod M., MacQueen, David B., and Sannella, Donald T. “HOPE: An experimental applica-

tive language.” In Conference Record of the 1980 LISP Conference. 1980. 136–143.
Cardelli, Luca. “Basic polymorphic type checking” Science of Computer Programming. (SCP), 8(2).

1987. 147–172.
Cardelli, Luca, Donahue, Jim, Jordan, Mick, Kalsow, Bill, Nelson, Greg. “Modula 3 type system”

International Conference on Principles of Programming Languages (POPL). 1989. 202–21.
Cardelli, Luca and Wegner, Peter. “On understanding types, data abstraction, and polymor-
phism.” ACM Computing Survey, 17(4). 1985. 471–522.

ECMA International. C# Language Specifications, 4th edition ECMA-334, ISO/IEC 23270. 2006.
Available on www.ecma-international.org/publications/files/ECMA-ST/Ecma-334.pdf.

Ellis, Margret A. and Stroustrup, Bjarne. The Annotated C++ Reference Manual. Addison-Wesley.
1990.

Liskov, Barbara and Wing, Jeannette. “A behavioral notion of subtyping” ACM Transactions on
Programming Languages and Systems (TOPLAS), 16(6). 1994. 1811–1841.

Milner, Robin. “A theory of type polymorphism in programming” Journal of Computer and System
Sciences, 17(3). 1978. 348–375.

Morrison, Ron, Dearle, Alan A., Connor, Richard C. H., and Brown, Alfred L. “An ad-hoc approach
to the implementation of polymorphism.” ACM Transactions on Programming Languages and
Systems, 13(3). 1991. 342–371.

Reynolds, John C. “Types, abstraction and parametric polymorphism” In Proceedings of the IFIP 9th
World Computer Congress, edited by R. E. A. Mason, Elsevier Science Publishers B. V. (North-
Holland) 1983. 513–523.

275

C h a p t e r 8

Concurrent Programming
Paradigm

BACKGROUND CONCEPTS
Abstract concepts in computation (Section 2.4); Abstractions and information exchange
(Chapter 4); Control abstractions (Section 4.2); Discrete structure concepts (Section 2.2);
Grammar (Section 3.2); Graphs (Section 2.3.6), Principle of locality (Section 2.4.8),
Nondeterministic computation (Section 4.7); Operating system concepts (Section 2.5);
Program and components (Section 1.4).

Concurrency is concerned about dividing a task into multiple subtasks and executing each
subtask as independently as possible. There are two potential advantages of exploiting
concurrency: (1) efficient execution of programs; and (2) efficient utilization of multiple
resources, since each subtask can potentially use a different resource. With the available
multiprocessor and multicore technology, concurrent execution of programs has tremen-
dous potential of speeding up the execution.

The goal of exploiting concurrency is in the speedup of large grand challenge software,
such as weather modeling genome sequencing, designing aircrafts with minimal drag,
reasoning about nuclear particles, and air-traffic control. In recent years, because of the
availability of multicore processors, concurrent execution is also available on personal
computers. With the availability of multiple processors, it is natural for processors to map
multiple tasks on different processors for efficient execution.

Parallelization can be incorporated at many levels in solving a problem by (1) designing
a new algorithm more suitable for parallel execution of a task, (2) taking an existing algo-
rithm and identifying subtasks that can be done concurrently, (3) taking an existing sequen-
tial program and developing a smart compilation process for incorporating parallelism,
and (4) writing a parallel program with concurrency constructs. Parallelism can also be
incorporated by speculatively executing conditional computations in anticipation that at
least one of them will be needed in the future. In speculative computation, the input values
should be known. Otherwise, the computation gets suspended waiting for the input values.

276    ◾    Introduction to Programming Language

Executing multiple subtasks requires sharing of the resources because of sharing of the
information. Resources could be shared devices, shared memory locations, shared data
structures, or shared codes. Sharing introduces sequentiality, and there have to be criteria
for executing the different parts of the programs, so that the outcome of the program is the
same whether they are executed sequentially on a uniprocessor machine, a multiprocessor
shared address space machine, a multiprocessor with distributed address space, or on
distributed processors with distributed address spaces. This property is broadly called
“sequential consistency.” Sequential consistency is the foundation of automatic paralleliza-
tion effort in programming languages. Automatic parallelization transforms a sequential
program to a concurrent version of the program, without violating sequential consistency.
Parallelism is exploited by distributing data and code effectively for maximum utilization
of a multiprocessor time while minimizing the communication overhead with the con-
straint of sequential consistency. The programming constructs and compiler technology
are developed to achieve this final goal.

8.1 CONCURRENT EXECUTION AND ABSTRACTIONS
There can be multiple approaches to exploit concurrency: (1) develop parallelizing compil-
ers that transform sequential programs to concurrent programs and (2) develop program-
ming constructs that allow multiple threads-sequence of actions—to run concurrently.
Both the approaches have been used to exploit concurrency with success. However, the
approaches are not free of problems as we will see in the following discussions.

Any effort to exploit concurrency is inherently limited by the dependency between the
actions. Dependency means that an action depends upon another action. Dependency
may be caused because of (1) causality of actions, (2) sequentiality imposed by the control
abstractions in a programming language, (3) sequentiality due to flow of data between the
statements, and (4) sequentiality caused on uniprocessors because of the order of statements
imposed by the programmer. An example of causality-based dependency is turning in the
solution to a homework that is dependent upon the action of getting the homework. A stu-
dent cannot turn in the solution to a homework problem unless a teacher has given him the
homework to solve. An example of control dependence is the iterative-loop, where the sen-
tences in for-loop, and while-loop are executed sequentially after the execution of the condi-
tional expression. An example of data dependency is the execution of sequence of statements
x = 4; y = 5; z = x + y. Here the third statement is dependent upon the successful termination
of the first and second statement. However, the first two statements are independent of each
other under the assumption that the variables x and y are not aliases and are not modifying
the same memory location. Programmer-induced sequentiality is clear in the same example.
Although there is no restriction on the order of execution of statements x = 4 or y = 5, a
uniprocessor machine executes them sequentially because of programmer-specified order.

Dependency causes “sequentiality of execution,” and one of the tasks is to minimize the
dependency. The causality-based dependency is inherent in the solution of the problem and
cannot be avoided. However, the effort is to minimize the control and data dependency that
has been introduced in a program because of the programmer’s action or due to the control
and data abstractions. For example, if we take a for-loop that adds 4 to every element of

Concurrent Programming Paradigm    ◾    277  

a sequence, then there is a control dependency introduced by for-loop: the statement in
for-loop cannot be executed unless the conditional expression is checked. However, if we
unroll the for-loop, and replace for-loop by a set of statement individually adding 4 to dif-
ferent elements of the array, then the program is highly parallelizable.

Exploiting concurrency is a general problem. Sequentiality is also caused (1) if the
 number of available resources at a time is less than the resources needed by the subtasks
at any given time; (2) to avoid racing condition (see Section 8.1.1) to maintain sequential
consistency; (3) by the need for the shared resources at a very fine grain level that is not
explicitly reflected in a high-level instruction; or (4) by limited availability of hardware
components such as a limited number of processors, memory ports, limited bandwidth,
and available memory banks. Shared resources could be memory locations or hard disks
or processors or i/o devices or communication devices.

The subtasks can be executed independently if (1) they do not communicate with each
other to share the information, (2) they do not share a common resource, and (3) they are
not dependent upon each other through data and control dependencies. This means that
given a program with n independent statements and m processors, the execution will take
ceiling(n/m) unit time if the execution of each statement takes one unit time. However,
in reality, different subtasks communicate with each other; share information; and share
resources such as memory locations and I/O devices; and have statement-level dependen-
cies. While one subtask is using a shared resource, other may have to wait, depending
upon the action and the resource being shared. Sharing of resources involved in destruc-
tive update of the information such as write statements, causes inherent sequentiality.

8.1.1 Race Conditions

There are many high-level actions that require more than one low-level instruction to com-
plete while using a shared resource. If the high-level action is done partially by one subtask and
then control is passed on to another subtask, then the overall program behavior may be cor-
rupted. This kind of corruption of the shared resource such as memory space is called “data-
race”, and needs to be avoided. A sequence high-level actions should be completed before
the shared resource is passed on to other subtasks. The shared resource has to be “locked,”
so that other subtasks do not have access to it while the subtask currently holding the shared
resource is using the shared resource. This notion of treating a sequence of actions as a uni-
fied single action is called “atomicity”. Enforcing atomicity using a “memory lock” is essential
if we do not want the concurrent programs to get into data-race condition. This atomicity
of action also enforces sequentiality among subtasks as other subtasks have to wait for the
shared resources until the current subtask is finished. If the current subtask holds the resource
more than the minimal time needed to ensure atomicity, then concurrency is reduced.

Example 8.1

Let us take an example of race condition. Assume that we have a set of sequence of
statements such that the variables x and w are aliases.
x = 4; y = 8; z = x + y; w = 5; y = 2 * w

278    ◾    Introduction to Programming Language

Sequential execution of the above sequence of statement will give the final values as
x = w = 5; y = 10; z = 12. However, if we execute the statements concurrently, without
enforcing sequential consistency, we may get a different inconsistent set of values,
since the order of executions may be different. If the statements terminate in the order
of x = 4; w = 5; y = 8; z = x + y, y = 2 * w, then the final values would be x = w = 5;
y = 10, and z = 13, which is different from the value we get after sequential execution.

8.1.2 Threads and Dependencies

Modern concurrent languages such as Java, C#, and C++, support the notion of threads.
Threads are sequence of activities. A process can spawn multiple threads that merge back to
the process after the corresponding subtasks are over. However, a program cannot be arbi-
trarily split into multiple concurrent threads and executed, because there are dependencies
due to shared variables that cannot be split across threads without enforcing sequentiality
between the statements. Such relaxation of condition would cause race condition violating
sequential consistency.

Example 8.2

Let us take the following sequence of statements: x = y = 2; z = y + 4; x = 4; w = x + 2;
y = 8. Let us split the statements into two threads executing concurrently, as shown
in Figure 8.1. The statement x = y = 2 is executed before spawning two threads.
Thread1 executes the statements z = y + 4; x = 4, and Thread2 executes the statements
w = x + 2; y = 8.

The two threads share two variables x and y. Thread1 produces a new value of x,
and Thread2 consumes the value of x. Thread2 produces a new value of y, and Thread1
consumes the value of y. One could argue that the two threads can be executed con-
currently. However, the presence of shared variables and destructive update of the
shared variables inherently imposes a sequential consistency restriction.

Assuming that within the thread statements are executed sequentially, there are
six possible outcomes as follows:

 1. Statement 1 of Thread1 → statement 2 of Thread1 → statement 1 of Thread2 →
statement 2 of Thread2. In this sequence, the final values are x = 4, y = 8, w = 6,
and z = 6.

x = 4

z = y + 4

y = 8

w = x + 2

x = y = 2

Thread1 Thread2

FIGURE 8.1 Race condition because of shared variables in threads.

Concurrent Programming Paradigm    ◾    279  

 2. Statement 1 of Thread1 → statement 1 of Thread2 → statement 2 of Thread1 →
statement 2 of Thread2. In this sequence, the final values are x = 4, y = 8, w = 4,
and z = 6.

 3. Statement 1 of Thread1 → statement 1 of Thread2 → statement 2 of Thread2 →
statement 2 of Thread1. In this sequence, the final values are x = 4, y = 8, w = 4,
and z = 6.

 4. Statement 1 of Thread2 → statement 2 of Thread2 → statement 1 of Thread1 →
statement 2 of Thread1. In this execution order, the final values are x = 4, y = 8,
w = 4, and z = 12.

 5. Statement 1 of Thread2 → statement 1 of Thread1 → statement 2 of Thread2 → state-
ment 2 of Thread1. In this order of execution, the final values are x = 4, y = 8,
w = 4, and z = 6.

 6. Statement 1 of Thread2 → statement 1 of Thread1 → statement 2 of Thread1 → state-
ment 2 of Thread2. In this order of execution, the final values are x = 4, y = 8,
w = 4, and z = 6.

None of the solutions other than the sequential execution of Thread1 followed by
Thread2 generates values consistent with sequential execution. If we look closely, then
statement 1 of Thread2 is dependent on statement of Thread1 because of the consump-
tion of the value of x and can be executed only sequentially.

8.1.3 Synchronization and Mutual Exclusion

A lock is associated with a shared resource. The purpose of locks is to enforce mutual
exclusion of the subtasks competing for resources. The memory locks, alternately also
called semaphores or simply locks, have two states: released or occupied. When a process
or a thread tries to use a shared resource, they have to check for the state of the lock. If
the lock’s state is occupied, then the subtask waits. Otherwise, it changes the state of the
lock as occupied to block other subtasks from using the shared resource and starts using
the shared resource. After finishing the use of shared resource, the subtask releases the
resource and turns back the state of the lock as released to allow other subtasks to use the
shared resource. The amount of time waiting by other processes while the shared resource
is occupied inherently leads to sequentiality.

There are many problems with the use of locks as follows:

 1. If the locks are allocated aggressively to one process, then other subtasks may starve—
may not get a chance to use the shared resource.

 2. Locks have to be declared and managed. Somehow humans are not very good in
complex concurrent reasoning and make mistakes in lock management, causing the
shared resource to be used unsafely by more than one subtask or blocking out all the
subtasks by keeping the lock in occupied state.

 3. A locking mechanism also causes overhead of waiting if the current subtask holds the
lock longer than needed.

280    ◾    Introduction to Programming Language

Programming languages provide a high-level construct called monitor that ensures only
one of the competing subtask is using a resource at a time. A monitor is a passive high-level
construct that includes many mutually exclusive subtasks sharing a common resource. The
small chunk of code where a subtask uses the shared resource is called critical section and
is treated as an atomic operation. During the execution of an atomic operation, the execu-
tion of the currently executing subtask cannot be broken; the shared resource cannot be
allocated to another subtask. Other subtasks have to suspend their execution and wait until
the current subtask is out of the critical section.

Example 8.3

Let us take an example of presidential opinion poll conducted by a newspaper com-
pany. It uses a central computer with an array that notes the vote of the person polled
over the Internet. There is a global variable storing the maximum number of voters to
be surveyed. The program also has a global shared variable that is incremented every
time a person votes ‘yes’ or ‘no’ for a candidate. Let us assume the code of a single
thread spawned to poll a candidate.

integer counter; max-to-be-surveyed = 3000;
string vote_array[max_to_be_surveyed]
Thread vote-count:
{
 ask ; read(Vote); if (response(Vote) = “yes”)

counter = counter + 1’
 if (counter < max-to-be-surveyed) vote_array[counter] = vote;
}

All these threads are sharing the shared variables “counter” and the shared array
“vote-array.” Let us assume that two people are voting at the same time: two threads are
executed simultaneously. Let us also assume that the counter value before two threads
start running is 10. Assume that the first thread read a vote and incremented the counter
to 11. At the same time, the second thread read another vote and incremented the coun-
ter to 12, before the first thread could record its vote. Now the first thread records its vote
at vote-array[12], and vote-array[11] is skipped. After that, the second thread writes its
vote on the same memory location vote-array[12], destructively updating the location.
As a result, one vote is lost completely and cannot be recovered. This problem could have
been avoided using a lock associated with the array and the counter, because the locks
would force the second thread to wait until the locks for the shared objects are released.
The update of the counter and vote-array should be done as an atomic operation in a
critical section that cannot be suspended by another thread before the locks are released.

8.1.3.1 Synchronization
The process of waiting for other subtasks or threads before executing the next instruction
is called synchronization. This can happen if one of the subtasks is using a shared resource,
and others are waiting. This kind of waiting is very common in the execution of the

Concurrent Programming Paradigm    ◾    281  

programs when (1) one subtask is writing on a shared memory location, and others are
waiting; (2) when a subtask is reading a shared variable, and an other subtask is waiting
to write; and (3) when a task is waiting for one or more subtasks to complete, because its
resumption is dependent upon their completion. The waiting subtasks are awoken only
after the executing subtask has released the shared resource. Synchronization is needed to
avoid race conditions and introduces inherent sequentiality for the results to be consistent.

Waiting by the processes and mutual exclusion is achieved by associating a lock with
a shared resource. When multiple processes are competing for a resource, one of the
 processes acquires the associated lock in a single operation, uses the resource in a critical
section as one atomic operation, and releases the resource after the use. After releasing the
resource, it releases the lock. Other processes compete to acquire the lock as soon as the
lock is released. The process of synchronization between processes using a lock is illus-
trated in Figure 8.2.

8.1.4 Sequential Consistency

We have seen in Chapter 2 that store is altered when a command is executed. A group of
commands C1; C2, …, CN (N > 1) when executed with respect to a store S gives a new store S’.
If all the permutations of the group of statements give the same final store S’, then changing
the order of execution of the statements does not alter the final store, and the group of state-
ments can be executed concurrently. Abstractly, if permute(C1; C2, …, CN) (S) ≡ (C1; C2; …;
CN) (S) → S’, then the sequence of statements can be executed concurrently. This restric-
tions is satisfied under two conditions: (1) evaluation of expressions under commutative
operations such as addition, multiplication, logical-OR, and logical-AND and (2) the store
can be modeled as N mutually exclusive partitions that do not share memory locations,
and each command CI (1 < I ≤ M, M ≤ N) can alter at most one of the different mutually
exclusive partitions at the same time using an atomic operation.

The reading action does not introduce sequentiality, as the store remains unaltered.
Thus evaluation of an expression cannot cause sequentiality. It is only when a variable
value is updated and later used in other statements or updated by multiple statements,
then sequentiality has to be introduced in a concurrent version of a program to avoid race
condition. One of the conditions of automatic parallelization is that the sequential consis-
tency should be maintained during the automated exploitation of concurrency. In order to
ensure this sequential consistency restriction, program-dependency analysis is done, and
sequential flow is weakened only if the final state remains the same as that obtained from
the sequential execution. We will see program-dependency analysis in the next section.

Check lock
Wait

Use shared
resource

Acquire lock

Acquire lock

Release lock

Release lock

FIGURE 8.2 Lock and synchronization.

282    ◾    Introduction to Programming Language

8.2 PROGRAM DEPENDENCY AND AUTOMATIC PARALLELIZATION
This section focuses on the dependency among the program statements that regulates the
exploitation of concurrency between the statements. If the statement order is relaxed too
much without honoring the dependency imposed by the control and data abstractions,
then the execution may become unsafe and inconsistent with the sequential consistency
constraint.

We denote dependency by the binary symbol “≻.” If the statement Sj is dependent upon
a statement Si, then we represent as Si ≻ Sj (i ≠ j). Dependency relationship is transitive,
antisymmetric, and antireflexive. Transitive means that if a statement S2 is dependent upon
S1 and the statement S3 is dependent upon the statement S2, then the statement S3 is depen-
dent upon S1. Antisymmetry means that if a statement S2 is dependent upon a statement
S1, then S1 can never be dependent upon S2. Otherwise, the program will be deadlocked—
statement S1 and S2 will never be executed waiting for each other. Antireflexive means that
a statement cannot be dependent upon itself.

In order to exploit concurrency between the statements, the program is modeled as a
graph, such that each statement is a node, and the dependency between the statements
is modeled as an edge between the corresponding nodes. The edge could be because of
control dependency or data dependency. Control dependency is the caused by the control
abstractions, and data dependency is caused because of the information flow between the
program statements. Control and data dependency are discussed in detail in Sections 8.2.1
and 8.2.2.

Dependency graph is a “directed acyclic graph,” which means there does not exist a
sequence of statement S1, S2, … SN (N ≥ 2) such that S1 ≻ S2 ≻ … ≻ SN ≻ S1. Otherwise,
every statement in the cycle can be dependent upon other statement including itself caus-
ing deadlock. Owing to the transitivity property of connectivity, if there is a directed edge
between S1 and S2, and there is a directed edge between S2 and S3 then there is no need
to show an edge between S1 and S3; the dependency between S1 and S3 is implicit. The
dependency graph is analyzed, independent statements are identified, and synchroniza-
tion points are set up to honor the sequentiality among the dependent statements. There
are many types of control and data dependencies.

Control dependency and data dependency together are known as program dependency.
Some of the control dependencies are artificially imposed because of the control abstractions
and can be removed by appropriate techniques. The process of automatic parallelization is
as follows:

 1. Transform the program using various techniques so that artificially imposed control
dependence is transformed to a program with minimal control dependence. Some of
these techniques are loop unfolding and loop lifting, as described in Section 8.2.

 2. Use data-dependence analysis to build a data-dependence graph for the program.

 3. Superimpose control dependency graph and data dependency graph to make a pro-
gram dependency graph, and execute those parts of the graph concurrently that are
not connected to each other through dependency edges.

Concurrent Programming Paradigm    ◾    283  

Partitioning of dependent statements on multiple processors causes time-overhead due
to information exchange between statements involved in dependencies. The overhead can
be significant, nullifying the advantage gained by the exploitation of concurrency. How
this problem effects the overall execution, and how to reduce the overhead of information
exchange between statements involved in dependencies is explained in Sections 8.2.5
and 8.2.6.

8.2.1 Control Dependency

Control dependency is caused by the control abstractions and has nothing to do with the
flow of data between the statements. Control dependency imposes sequentiality because
of the dependence of other statements on conditional expressions in control abstractions
and because of the single-entry point restriction in the subprograms. Control dependency
is imposed on a program instruction S2 by an instruction S1 if one of the following condi-
tions are satisfied:

 1. The execution of S1 dominates the execution of S2, which means the statement S2
cannot be allowed without the execution of S1. A statement S2 is dominated by a state-
ment S1 if all the execution paths from start point of the control abstraction to S2
include S1.

 2. S1 is postdominated by S2, which means all paths from S1 to the end of the control
 structure go through the statement S2.

 3. Any statement between S1 and S2 on any path is postdominated by S2.

In if-then-else statements, then-part or else-part can be executed only after executing the
conditional expression. Thus, there is a control dependency between the conditional expres-
sion and the then-part; and conditional expression and the else-part. If there is more than
one statement in then-block or else-block, then each of the statements is dependent upon
the conditional expression. Similarly, in while-loop, there is control dependency between
the conditional expression and every statement inside the while-loop (see Figure 8.3). That
means no statement in while-loop can be executed without successfully executing the con-
ditional expression. Similarly, there is control dependency between the entry point of a
subprogram and all other statements in the subprogram.

S1 S2 S3 S4

S5

If (<cond1>){
 If (<cond2>){
 S1; S2; S3;}
 else S4;
else {S5; S6; S7;}

<cond2>

<cond1>

S6 S7

FIGURE 8.3 An illustration of control-dependency graph.

284    ◾    Introduction to Programming Language

Control dependency is different from control flow diagrams, because control depen-
dency is due to sequentiality control abstractions only. A control flow diagram also includes
programmer-imposed order of statement in addition to sequentiality caused by control
abstractions. Thus, control dependency has a more relaxed condition of sequentiality.
Control dependency can be derived by the control flow diagram of a program using the
three conditions for control dependency stated earlier.

A graph representing control dependencies is called CDG. Control flow diagram
describes programmer-imposed execution behavior of a control structure or a subprogram,
whereas CDG describes the graph with essential sequentiality imposed by conditional expres-
sions in the if-then-else loop or while-loops or single-entry point restriction in subprograms.
In a CDG, each statement or conditional expression of the control abstraction is shown as a
node, and there is a directed edge between the nodes if there is a control dependency. There
is an edge between the entry point and other statements in a control abstraction.

Example 8.4

Let us take the nested if-then-else statement given in Figure 8.3. The nested then-block
has three statements S1, S2, and S3; the nested else-part has a single statement S4, and
the outer else-block has three statements S5, S6, and S7. The CDG for the nested if-then-
else statement shows two levels: the top level for the outer if-then-else statement, and
the second level for the inner if-then-else block. The statements within the outer block
are dependent on the condition “Cond1,” and there is a dependency edge between the
node “Cond1” and S5, S6, and S7, respectively. Similarly, there is an edge between the
predicate node “Cond2” and the statements S1, S2, S3, and S4. Dependency is transitive
that means the statements S1, S2, S3, and S4 are also dependent on the condition Cond1.

Example 8.5

Let us understand CDG involving while-loop and subprogram call using the example
given in Figure 8.4. For better comprehension, we take the program of Chapter 5 that
calls the subprogram find_max to find out the maximum value in a sequence. The
statement numbers on the left side have been used in the CDG nodes to show the cor-
respondence between the statements and the CDG nodes. Declarations have been left
out, as they are not part of the execution.

The main program has six nodes related to the control dependence, and the sub-
program find_max has seven statements. The beginning of the program and end
of the subprograms are important, as they represent the start and end point of the
corresponding subgraph. The for-loop in the main program has three statements
built into one: (a) “i = 0”; (b) the condition “i =< 3”; and (c) “i++.” We will label
these high-level instructions as statement #2a, statement #2b and statement #2c.
The if-then-else statement in the subprogram find_max is nested inside the while-loop
and is dominated by the conditional expression of the while-loop. The nodes have
been labeled according to their statement number. The start-node of the subprogram

Concurrent Programming Paradigm    ◾    285  

contains the scope of the subprograms: “node #1, #6” corresponds to the main pro-
gram, and “node #7, #14” corresponds to the subprogram find_max.

There are control-dependency edges between the entry point of the main program
(Node #1, #6) and the nodes #2a, #2b, #4, and #5, because none of the statements
can be executed unless the main program is started. There are control-dependency
edges between nodes #2b, #3, and #2c, because without the evaluation of conditional
expression in statement #2b, statements #2c and #3 cannot be executed.

In the subprogram find_max, the statements #8, #9, and #10 are dependent upon
the statement #7, because these statements cannot be executed before entering the
subprogram. Statement #10 has an embedded if-then-else statement on which the
statements #11 and #13 are dependent. Statement #11 is another conditional state-
ment on which statement #12 is dependent.

8.2.2 Data Dependency

Data dependency is the sequential execution restriction imposed between the program
statements because of the destructive update of the shared memory locations between two
statements and the restriction imposed by sequential consistency. If the statements are
simply reading the values of the variables, then there is no restriction, as the values of the
variables are not being modified. However, if the memory locations are updated with a new
value, then the following statements must use the updated value, and statements previous
to the statement updating a memory location are restricted to consume the old value stored
in the memory location.

There are inherently three types of data dependencies: (1) Producer–consumer
 relationship—the statement reading the value from a memory location cannot be read
unless it has been written into; (2) Antidependence—all the consumers of the previous
value of the variable being updated must be executed before executing a statement that
rewrites on the corresponding memory location; and (3) Output dependence—maintaining

#1, 6

#2a #2b #5 #4

#2c#3

#7, 14

#8 #9 #10

#11 #13

#12

 integer m[4], max;
 program main () % start
1) { integer i, j;
2) for (i = 0; i =< 3; i++)
3) read(m[i]);
4) call find_max
5) write(max);
6) } % stop

 procedure find_max () % start
7) {integer i;
8) max = m[0];
9) i = 0;
10) while (i =< 3)
11) if (m[i] > max)
12) max = m[i];
13) i++;
14) } % stop

FIGURE 8.4 A comprehensive example of control-dependency graph.

286    ◾    Introduction to Programming Language

the relative sequential execution order of statements involved in destructively updating
aliased variables to ascertain that consumers use actual values and not updated values.
Except producer– consumer relationship, other two types of dependencies are caused by
destructive update of the memory locations. Producer–consumer relationship is also pres-
ent in declarative languages with assign-once property and can be used to exploit concur-
rency in declarative languages.

The dependency graph made with statements as nodes and data dependencies as
edges is called a data-dependency graph. A data-dependency graph is used to exploit
 concurrency by concurrently executing two statements unreachable from each other in
the data-dependency graph. That means that two statements are independent if there is no
path between the corresponding nodes in the data-dependency graph.

Example 8.6

Figure 8.5 illustrates data dependencies and the corresponding data- dependency
graph using a sequence of statements. We abbreviate producer–consumer
 relationship as “PC,” antidependence as “AD” and output dependency because of
aliasing as “OD.”

Let us consider the sequence of statements in Figure 8.5. We assume that variables
x and z are aliases. The first two statements—x = 4 and y = 5—are independent,
because both x and y map on different memory locations and can write concurrently
in the corresponding memory locations under the assumption that computer hard-
ware supports concurrent update in separate memory locations.

Statement #3 is dependent upon statement #1 through OD, because x and z are
aliases. Statement #4 is consuming the values of x and y. Hence, statement #4 is depen-
dent upon statement #3 and statement #2 using PC. Statement #5 destructively updates
the value of the variable z. The variable z can be updated only after all the consumers
of the old value have completed. The variable x is an alias of the variable z. Hence,
statement #4 must be executed before statement #5. The dependence is because of
combination of aliasing and antidependency.

Example 8.7

Let us take the same example of finding out maximum value of a sequence of num-
bers as given in Example 8.3 and find out data dependencies in the program. The type
of data-dependency edges are given in Table 8.1. Figure 8.6 shows the corresponding

1. x = 4; % producer
2. y = 5; % producer
3. z = 8; % OD
4. w = x + y; % PC
5. z = 9 % AD

#1 #3

#2 #4 #5
ADPC

OD

PC

FIGURE 8.5 An illustration of data-dependency graph.

Concurrent Programming Paradigm    ◾    287  

data-dependency graph. The slim dashed edges show the regular data dependency
between the statements. The thick double-edged dashed edges show data dependency
between statements in the block of the for-loop to the conditional statement. They
are special because they seem to show cycle because of iterative nature of for-loop,
whereas actually there is no cycle as explained in the following paragraphs.

Producer–consumer (PC) relationship between the statement pairs (#2a, #2b),
(#2a, #3), (#8, #11), (#9, #10), (#9, #11), and (#9, 12) are straightforward. The producer–
consumer data dependency edges between statement pairs (#3, #8), (#3, #11), and
(#12, #5) are because of the writing data into the global variables. The antidependency
between the statement pairs (#2b, #2c), (#3, #2c), (#10, #13), (#11, #12), and (#12, #13) is
straightforward. There is no aliasing of variables, and there is no OD.

#1, 6

#7, 14

#10

#13 #11

#12

Dependency in the forward direction
Dependency to a statement in next iteration cycle

#9#8

#2a #2b #5 #4

#3 #2c

 integer m[4], max;
 program main () % start
1) { integer i, j;
2) for (i = 0; i =< 3; i++)
3) read(m[i]);
4) call find_max
5) write(max);
6) } % stop

 procedure find_max () % start
7) {integer i;
8) max = m[0];
9) i = 1;
10) while (i =< 3)
11) if (m[i] > max)
12) max = m[i];
13) i++;
14) } % stop

FIGURE 8.6 A comprehensive illustration of a data-dependency graph.

TABLE 8.1 Types of Edges in Dataflow Graph of Figure 8.5

Edge Type Edge Type
(#2a, #2b) PC (#9, #11) PC
(#2a, #3) PC (#9, #12) PC
(#2b, #2c) AD (#10, #13) AD
(#2c, #2b) PC (#11, #12) AD
(#2c, #3) PC (#12, #5) PC
(#3, #2c) AD (#12, #13) AD
(#3, #8) PC (#13, #10) PC
(#3, #11) PC (#13, #11) PC
(#8, #11) PC (#13, #12) PC
(#9, #10) PC

288    ◾    Introduction to Programming Language

Although we understand that there should be no cycles in dependency graph, five pairs
of edges are problematic and seem to form cycles: (1) (#2c, #2b) seems to be causing the
cycle {(#2b, #2c), (#2c, #2b)}; (2) (#2c, #3) seems to be causing cycle {(#2c, #3), (#3, #2c)}; (3)
(#13, #10) seems to causing the cycle {(#13, #10), (#10, #13)}; (4) the pair (#13, #11) seems
to be causing the cycle {(#13, #11), (#11, #13)}; and (5) (#13, #12) seems to be causing the
cycle {(#13, #12), (#12, #13)}. In reality, there are no cycles if we unroll the iterative loops.
In the representation of iteration graph, multiple statements from different iterative cycles
performing same actions are superimposed on the same node and need to be unrolled to
remove the apparent cycle. There is also a redundant edge (#3, #11) that can be inferred
from the transitive relationship (#3, #8) and (#8, #11). However, it has been retained,
because different data elements in the array m are responsible for these dependency edges.

The unfolded version in Figure 8.7 shows the edges between (#2c, #2b), and (#2c, #3)
are edges across different statements in next iteration cycle, and there is no cycle in
the data-dependency graph.

8.2.3 Program-Dependency Graph

Program dependency is the actual dependency between the statements. A program-dependency
graph (PDG) is obtained by superimposing the control-dependency graph and data-
dependency graph of a program. PDG shows the sequentiality imposed by the statements.
However, to exploit maximum concurrency, PDG has to be transformed to minimize the
control dependency caused by iterative loop and index variables. One such technique is
“loop-unrolling” as explained in Section 8.2.4.

We superimpose the control-dependency graph in Figure 8.4 and data-dependency
graph in Figure 8.6 to derive PDG, shown in Figure 8.8. Some of the dependency edges can
be removed using the transitivity property. However, it has been left as an exercise.

8.2.4 Parallelization Techniques

The parallelization techniques take a PDG and find out multiple independent paths
between the beginning and end of the program. Multiple threads handling independent
paths can be mapped on different processors. However, there are three problem areas that

#3
#3

#2c #2c

#2b #2b

#3 #2c#3 #2c

Iteration #1 Iteration #2

Iteration #3 Iteration #4

#2a #2b
#2b

FIGURE 8.7 Data-dependency graph of unrolled for-loop.

Concurrent Programming Paradigm    ◾    289  

need to be sorted out: (1) allocation for nodes sharing data-dependency edges, (2) removing
 redundant dependency caused by control abstractions, and (3) keeping the data transfer
overhead between processors minimal. The simplest form of automated parallelization is
to map the PDG on multiple processors at the statement level. The mapping of transformed
PGD is done in such a way to minimize the data transfer overhead between processors and
to avoid unnecessary idling processor.

Example 8.8

Figure 8.9 illustrates processor allocation to exploit concurrency under the assumption
that execution of each statement takes one unit time and data transfer across processor
is instantaneous (a big unrealistic and simplified assumption). Under this assumption,
the concurrent execution will take minimum of four unit time and a maximum of two
processors. Putting extra number of processors will not improve the execution time,
because of dependencies. Note that 4 units of time is not a linear speedup. There is
expensive interprocessor data transfer overhead between statement #2 that is mapped
on processor #2 (abbreviated as proc. 2 in Figure 8.9) and statement #4 that is mapped
on processor #1.

Data transfer overhead across processors are significant because of (1) repopulation
of cache memory of other processors, (2) data transfer between random access

 integer m[4], max;
 program main () % start
1) { integer i, j;
2) for (i = 0; i =< 3; i++)
3) read(m[i]);
4) call find_max
5) write(max);
6) } % stop

 procedure find_max () % start
7) {integer i;
8) max = m[0];
9) i = 0;
10) while (i =< 3)
11) if (m[i] > max)
12) max = m[i];
13) i++;
14) } % stop

#1, 6

#2a

#3

#8 #9

#13 #11

#12

#10

#2c

#7, 14

#2b #5 #4

FIGURE 8.8 An illustration of program-dependence graph (PDG).

1. x= 4; % producer
2. y= 5; % producer
3. z= 8; % OD
4. w= x+ y; % PC
5. z= 9 % OD and AD

#1 #3

#2 #4 #5
OD and AD

PC
Proc. 2

Proc. 1

Proc. 1 Proc. 1

Proc. 1
AD

PC

FIGURE 8.9 Processor allocations for data-dependency graph.

290    ◾    Introduction to Programming Language

memories of the associated processors, (3) slowness of I/O bus in case of distributed
processors, and (4) packing and unpacking cost of information or object being trans-
ferred across distributed processors. Packing and unpacking cost are serious in the
case of distributed processors.

8.2.4.1 Loop-Unrolling
One of the problems in writing single-thread program is the use of the control abstractions
for iterations. Although indefinite iterations are difficult to unroll, definite iterations can
be unrolled to reduce sequentiality caused by the use of index-variables. The advantage of
loop-unrolling is that redundant dependency introduced by index-variables is reduced or
removed, and unrolled blocks can be executed concurrently on a multiprocessor machine.
Let us take the example of for-loop

for (i = 0; i =< 3; i++) read(m[i]);

which is equivalent to read(m[0]); read(m[1]); read(m[2]); read(m[3]). All four statements
are independent of each other without any data dependency, and hence can be executed
concurrently. If there were four processors, then each one of them may be working concur-
rently, with no overhead of sequentiality induced by index-variables.

Let us consider another for-loop:

for (i = 0; i =< n, i++) a[i] = b[i] + 4

Such dependence is caused only by the index-variables in the iterative loop and can be
removed by unrolling the iterative loop. Many parallel programming languages replace
these for-loop by a data-parallel construct: a[1: n] = b[1:n] + 4.

Let us assume that we are executing a block of statement 1000 times as follows:

for (i = 0; i =< 1000; i++)
{a[i] = 10; b[i] = a[i] + 4; c[i] = 2 * b[i];}

The for-loop can be unrolled four times. The new transformed block would be

for (i = 0; i =< 250; i++)
{ a[i] = 10; b[i] = a[i] + 4; c[i] = 2 * b[i]; % block 1
 a[i + 1] = 10; b[i + 1] = a[i + 1] + 4; c[i + 1] = 2 *b[i + 1];

% block 2
 a[i + 2] = 10; b[i + 2] = a[i + 2] + 4; c[i + 2] = 2 * b[i + 2];

% block 3
 a[i + 3] = 10; b[i + 3] = a[i + 3] + 4; c[i + 3] = 2 * b[i + 3];

% block 4
}

Concurrent Programming Paradigm    ◾    291  

There are four blocks of statements each contain three statements. There is no depen-
dency between these blocks, and they can be executed concurrently on a four processor
machine. In addition, data can also be partitioned in the corresponding address spaces
at compile time for efficient execution. Concurrent execution of independent statements
without any data transfer overhead achieves near linear speedup as follows:

n = 10000;
for (i = 0; i = < 1000, i++){
 a[i, 1:n] = 10;
 b[i, 1:n] = a[i, 1:n] + 4;
 c[i, 1:n] = 2 * b[i, 1:n];
}

While-loops can also be unrolled like for-loop. However, because of indefinite size in
the while-loop, there has to be a provision to exit out of the loop if the condition is not
satisfied after the execution of an unrolled block. Let us consider the following while-loop:

while (<cond>) <block>;

After unrolling four times, it would look like

while(<cond>)
{ <block>; if (<cond>) exit;
 <block>; if (<cond>) exit;
 <block>; if (<cond>) exit;
 <block>;
}

Loop-unrolling causes the compiled code to become quite large. In a vector computer,
many other techniques are used to remove data-dependencies present due to nested itera-
tions. Some of these techniques are node-splitting to remove the data-dependency cycle,
and sorting the dependency graphs to rearrange the vector operations.

8.2.5 Granularity and Execution Efficiency

Exploitation of concurrency does not necessarily mean the improvement of execution effi-
ciency, because of program dependence. Program dependence causes sublinear speedup,
and the mapping of fine grain statements on distributed memory space on distributed
processors causes data transfer overhead for transferring the values of the variables that are
produced on one processor and consumed on other processors.

In multiprocessor machines there are also many architectural limitations. The
 memory structure in a multiprocessor could be either shared among a group of
 processors, or it could be distributed to individual processors. In either scheme, there is
significant overhead of data communication, partly because of much slower data trans-
fer in IO bus compared to memory bus. Besides, the shared memory has limited num-
ber of memory banks, and each memory bank has limited number of address ports. Just

292    ◾    Introduction to Programming Language

increasing the number of processors does not scale up the execution efficiency; increas-
ing the number of processor has to be matched with the increase in memory banks and
address ports, which is either technologically not feasible or is cost-prohibitive. This
problem is enhanced by multiple folds if the data-dependency graph at the statement
level is mapped across distributed computers that may not share the same addressing
mechanism and communicate using local area network or wide area network, and the
data has to linearized and packed with extra information at one end and unpacked
at the other end before it can be used. The data transfer between two computers may
introduce an overhead that is 100 times slower than sequential computation on the
same processor, when executing a PC like x = 4; y = 5; z = x + 7 that will take three
units of time on the same processor. However, it would take 102 units of time on a dis-
tributed processor assuming that the overhead of data transfer between two processor
takes 100 units of time.

By granularity we mean the number of statements that are grouped together and
executed sequentially on the same processor to avoid overhead of data transfer. A naive
PDG is at the statement level. This kind of concurrency is called fine-grain concurrency
and has significant overhead of data communication and packing-unpacking among
processors. In order to achieve efficiency, statements have to be grouped together and
mapped on multiple processors in such a way that there is minimal overhead of data
communication, while concurrently executing the groups of statements. However,
statements within each group are executed sequentially within the same processor.
This kind of concurrency is called coarse-grain concurrency. The advantage of coarse-
grain parallelism is to improve the efficiency of the program execution by reducing
the data-communication overhead between the processors by (1) grouping excessive
dependency edges across processors and (2) mapping the corresponding nodes on a
single processor.

The question is, What kind of program will have coarse granularity where the over-
head of information transfer is significantly less than the efficiency gained by concurrent
execution? If multiple coarse grains blocks of programs can be identified, such that they
have minimal communication between them, then each block can be mapped separately on
the multiprocessor architecture to exploit maximal concurrency without communication
overhead.

Example 8.9

Let us consider the same sequence of statements as given in Figure 8.9.
The data-dependency graph in Figure 8.9 shows that there is an interprocessor
communication between statement #2 and statement #4. Assuming that there is an
 overhead of m unit time to transfer the data across processors, the total time taken to
execute the concurrent version of the code is 4 + m, compared to 5 units of time for
sequential execution. In the equation 4 + m < 5, the data-transfer overhead should be
less than one unit for concurrent version to be useful. The overhead of data transfer is

Concurrent Programming Paradigm    ◾    293  

generally a lot more, depending on the architecture and the overhead of data-object
migration from one processor to another.

Example 8.10
Let us assume that we want to map the program in Figure 8.10 for maximum con-
currency without loss of efficiency. Let us also assume that we have a 100 proces-
sor distributed machine, and the overhead of transferring a packet of data is around
m unit time (m >> 1). Looking at the program, we clearly see that each inner loop
can be split into 100 different partitions such that ith processor works b[10*(i−1)] to
b[10*i − 1] data elements. Since the operation c[i, j] = a[i] * b[j] is independent of ele-
ments computed on other processors, these partitions can be concurrently executed
on the distributed processors getting near linear speedup.

Exploitation of statement level concurrency based upon statement level PDG causes
fine-grain parallelism and causes data dependencies that cause data-communication
overhead after processor allocation. To improve the execution efficiency, fine-grain
parallelism has to be transformed to coarse-grain parallelism. In the following sec-
tion, we will study how programs can be split into multiple concurrently executing
coarse-blocks that map on multiple processors, such that there is minimal communi-
cation overhead between the processors.

8.2.6 Program Slicing

Program slicing is a general purpose program analysis technique that analyzes PDG to
optimize program properties. It has been used in matching programs, identifying dupli-
cated code in programs, debugging the programs, software maintenance, and automated
parallelization. In this section, we will discuss the application of program slicing for auto-
mated coarse-grain parallelism.

Front-end partition

Sequential program

Front-end
processor

Processor #100

Processor #1

Data
broadcast

for (i = 0; i < 100000; i++)
 read(a[i]);
for (i = 1; i < 1000; i++)
 read(b[j]);

for (i = 0; i < 100000; i++)
 read(a[i]);
for (i = 1; i < 1000; i++)
 read(b[j]);
for (i = 0; i < 100000; i++)
for (j = 0; j < 100000; j++)
 c[i, j] = a[i] * b[j];

for (i = 0; i < 100000; i++)
for (j = 10*(k-1); j < 10*k-1; j++)
 c[i, j] = a[i] * b[j];

Processor k partition

FIGURE 8.10 Partitioning a program for concurrent execution of independent data sets.

294    ◾    Introduction to Programming Language

Program slicing is a compile-time technique that splits a program into multiple slices
such that the overall outcome of executing the multiple slices is same as the program, and
it maintains the sequential consistency. This is possible if the PDG can be split into a set
of smaller PDGs, such that there is minimal number of dependency edges across the sets.
Figure 8.11 illustrates the concept of program slice for coarse-grain parallelism. The node
#1 is connected to nodes #2, #3, and #4 through control-dependency edge. Node #2 is the
start node of another big PDG “PDG1,” and Node #4 is the start node of another big PDG
“PDG2.” Node #3 is a single node with a data-dependency edge to a node inside PDG1. If we
want to map the PDG on left-side to exploit maximum concurrency.

To improve the execution efficiency, we can take three actions: (1) merge node #3 in
PDG1 to give a new enhanced PDG1’; (2) duplicate node #1; and (3) map (node #1, node #2,
PDG1’) on processor 1 and (node #1 copy, node #4, PDG2) on processor 2 and execute them
sequentially. Because PDG1’ and PDG2 have no communication overhead, the program
will run efficiently while exploiting concurrency.

If we look at the PDG, there are two cases of dependency edges that are suitable for pro-
gram slicing: (1) nodes with multiple outgoing edges and (2) data-dependency edges that
connect two different processors. Nodes with multiple outgoing edges are replicated to split
PDG into two separate PDGs that can be mapped on separate processors without commu-
nication overhead. The second case requires joining the two subgraphs by allocating them
in the same set and thus on the same processor to remove interprocessor communication.
The start nodes of the subgraph for the control abstractions and the nodes corresponding
to producers are potential nodes with multiple outgoing edges. Let us understand program
slicing for coarse-grain parallelism using the following toy example.

Example 8.11

Figure 8.12 illustrates the improvement of execution efficiency by transforming
fine-grain concurrency to coarse-grain concurrency by reducing the processor-to-
processor data transfer. Let us consider the following code: {x = 4; y = 5; w = 8; m =
x + y; n = x + w;}.

The data-dependency graph and a naive processor allocation of the code is given
in Figure 8.12a on the left side of the Figure 8.12, and the sliced program is given on
the right side of the figure.

#2

PDG1 PDG2

PDG1’
processor #1

PDG2’
processor #2

#1

#3
#4 #1

#2

#1

#4

FIGURE 8.11 Program slicing for coarse-grain concurrency.

Concurrent Programming Paradigm    ◾    295  

There are interprocessor data-transfer edges between the statement #2 (node #2) and
statement #4, (node #4) and statement #1 (node #1) and statement #5 (node #5). If we
assume that the data transfer overhead is 10 unit time, then fine-grain concurrency will
take at least 12 unit time, which is much worse than sequential execution, which is 5 unit
time. To improve the situation, we can use program slicing. The edge (#1, #5) is a producer–
consumer dependency, and the producer node #2 has two outgoing edges. The node #1 can
be replicated to avoid the interprocessor communication. Similarly, the node #2 can be
grouped with nodes #1 and #4 to remove interprocessor communication.

The resulting program slice codes are given below

Processor 1: {x = 4; y = 5; m = x + y;}
Processor 2: {x = 4; w = 8; n = x + w;}

The overall execution, if the program is using concurrently executing program slices, is
3 units of time, which is better than 5 units of time in sequential execution and 12 units of
time, in fine-grain concurrency that includes 10 units of data transfer overhead.

The problems with program slicing at compile time are (1) it is not easy to get even
near-optimum program slices with minimal overhead and (2) all parts of programs do not
execute equally. Those parts that execute more frequently need to be analyzed and profiled
for better performance. Only frequently executed part of the programs are speculatively
 transformed to exploit program slicing.

8.3 TASK AND DATA PARALLELISM
Task parallelism is concerned about executing different commands concurrently using
multiple threads spawned on multiprocessor machines. Data parallelism executes the same
commands on multiple data items on multiple processors. The major difference between
task parallelism and data parallelism is the ability of task parallelism to execute different
commands concurrently on multiple processors. Many problems that involve executing the
same set of instructions on a large sequence of data elements can exploit data parallelism,

Proc. 1

Proc. 1 Proc. 2 Proc. 3

Proc. 3

Data-dependency Sequential control f low

Interprocessor
data transfer

Processor 1 Processor 2#4 #5

#1 #2
#1 #2

#4

#1 #3

#5

#3

x = 4; y = 5; w = 8;
m = x + y; n = x + w;

processor 1: {x = 4; y = 5; m = x + y;}
processor 2: {x = 4; w = 8; n = x + w;}

FIGURE 8.12 Program slicing to remove data-dependency overhead.

296    ◾    Introduction to Programming Language

as there are massive parallel single instruction multiple data (SIMD) computers with large
numbers of simple processors. In this section, we will discuss task parallelism constructs,
data parallelism constructs, and integration of task and data parallelism constructs.

8.3.1 Task Parallelism

Task parallelism is based upon spawning and managing multiple processes or threads to
perform different subtasks, possibly on different processors, and joining the results with
the parent processes. Task parallelism has been implemented in most of the traditionally
single-thread languages such as C and C++, using an external thread library such as Posix,
and Windows’ thread library. However, Ada and Java have explicit constructs to exploit
task parallelism. Java uses synchronized methods to access shared resources, and Ada uses
task construct to start another subtasks.

There are four important concepts in handling multiple concurrent threads: (1) syn-
chronization and handling shared resources, (2) communication between the threads and
the parent processes and communication among threads, (3) resource allocations to avoid
starvation and deadlocks, and (4) resource deallocation when the process or threads are
terminated or aborted. All these concepts are interlinked. For example, if a thread has some
shared resource and is suspended or aborted prematurely without appropriately releasing
the shared resource, then other processes and threads may get starved—indefinitely sus-
pended, waiting for the resources to be released so that they resume execution.

The processes or concurrently executing threads behave in two ways: (1) without
mutual communication that does not use any shared resources (including memory
 locations) and (2) the use of shared resources. Shared resources can be accessed only
sequentially. To enforce this sequentiality locks (traditionally called semaphores) are
introduced. These locks protect the associated shared resource by enforcing mutual
exclusion among the processes that try to access the shared resource. Java uses synchro-
nized methods to access the shared resources. Synchronized methods can be invoked by
only one process at a time, which thus forces mutual exclusion. Shared resources can also
be handled using a program abstraction called monitor. Monitors are high level program
declarations that include all the mutually exclusive routines. Every corresponding pro-
cess that wants to access the shared resource has to go through the monitor that enforces
mutual exclusion. The constructs to use shared resources have been discussed in detail
in Section 8.7.

The manipulation of shared resource puts on additional restrictions. Although the
shared resource is being updated, it is in transient state, and cannot be disturbed to avoid
data corruption. A high-level instruction or action is equivalent to many low-level instruc-
tions. Unless restricted, a process scheduler in operating system or a hardware interrupt
can suspend a thread (or a process). If another process accesses the same shared resource
during transient state then the shared resource such as memory location would be cor-
rupted, resulting in incorrect program behavior. For program to behave correctly, high-
level instruction using shared resources must be executed as an atomic operation. This part
of the code inside a thread that is protected by a lock is called critical section. The general
mechanism for enforcing the critical section is explained in Table 8.2.

Concurrent Programming Paradigm    ◾    297  

The operation wait_and_acquire(lock) waits for the lock to be in a released state. If the
thread is in suspended mode, then it is notified by a system routine to be awoken. The
next thread scheduled on the processor that was waiting for the lock grabs the locks, puts
the lock in the occupied state, and enters the critical section. After executing the critical
section, it releases the lock, and then a system routine simultaneously notifies all the sus-
pended threads to wake up and be brought into CPU by the scheduler.

The major problems in enforcing atomicity are as follows:

Problem 1: If the operating system has to abort or suspend the currently executing
thread, then the critical section part has to be restarted from the beginning. To
ensure that it starts from the same state, all the actions in critical sections have to be
recorded in a log, and the computational state, has to be recovered before restarting
the critical section again. This action has considerable execution time overhead.

Problem 2: If too many instruction are included within the critical section, then mutual
exclusion delays the resumption of execution of other processes, making the execu-
tion slow. During a longer critical section, other threads have to wait for the release
signal even after a shared resource is not needed any more.

Problem 3: If the locked object is a large collection of data items, then accesses to those
member elements that are not being updated during the critical section are also being
blocked causing unnecessary sequentiality.

Problem 4: Multiple processes may be performing read operations on a shared object.
Multiple concurrent reads are allowed on the shared objects. The only condition is
not to allow writing when the information is being read.

Problem 5: There is an execution time overhead of checking and notifying the threads
about the status of the locks.

Problem 6: Programmers cannot comprehend complex concurrent programming situ-
ations, resulting into incorrect placement of the locks, which may result in incorrect
program behavior such as deadlocks.

Multiple solutions have been proposed to solve the problem of efficiency overhead in
imposing sequentiality caused by atomic operations. Problem #4 can be solved using
two different types of locks: shared-read locks and exclusive locks. Shared-read locks allow
simultaneous reading of the shared data entities. However, it blocks those threads and
 processes that try to update the shared data entities. Exclusive locks disallow an access

TABLE 8.2 Lock and Critical Sections in Multithreads
Thread1:
…
wait_and_acquire(my_lock)
<critical section block1>
release(my_lock)
…

Thread2:
…
wait_and_acquire(my_lock)
<critical section block2>
release(my_lock)
…

298    ◾    Introduction to Programming Language

to any other thread or process. A process that is updating a shared data entity will set an
exclusive lock, whereas a process that is reading a shared data entity will set a shared-read
lock.

Recently, there have been efforts to address Problems #2 and #3 using the concept of
transactional memory both at the hardware level using cache memories and at the software
level using shadow copies of the data entities being updated. The concept of transactional
memory comes from database transactions. A transaction is a sequence of instructions
that may read and write a set of data entities and may either commit to changes at the
end of transaction or undo the changes completely in the case of transaction abort. In
transactional memory schemes, there are four relevant operations: (1) start transaction,
(2) end transaction, (3) read data entity, and (4) update data entity. During a transaction,
process creates a copy of the updated data entities that is copied into actual data entities
at the end of transaction, when the transaction is committed. During a transaction, the
actual data elements in the collection of data elements that are not being updated during
the transaction can be read. The data elements that are updated during the transaction
are blocked automatically from further write by other threads, unless the transaction is
successfully committed. Updated data entities can be read by other threads even before
the transaction-commitment, provided there is no read–write conflict in transactions, and
threads updating data items do not abort and are definitely going to commit. However,
finding out conflicts with other threads/processes that would be affected because of mem-
ory update after a transaction started and before the transaction ended is a complex issue.
Each transaction keeps its own “read set” and “write set” for conflict resolution. Read set is
the set of references to the data entities that are read during a specific transaction, and write
set is the set of references of data entities that are updated during that transaction. These
read sets and write sets are visible to other transactions for conflict resolution. Conflict
resolution can be done eagerly at the “transaction start” or done lazily at the “transaction
commitment” time. Conflict resolution is done by checking the operations in the read sets
and write sets. Eager conflict resolution is generally pessimistic, finds more conflicts, and
introduces more sequentiality. Lazy conflict resolution is generally optimistic, finds less
number of conflicts, and permits more concurrency. However, it may cause late detection
of conflicts, rolling back the whole transaction and causing excessive overhead. There is
also problem with exception-handling that causes transactions to roll back. There is also
significant overhead of matching read sets and write sets.

Problem #6 of programmers’ lack of comprehension of handling locks in complex situ-
ations has been partially solved using the concept of monitors as discussed in Section 8.7.1.

One purpose of the shared variables is to exchange information between two threads.
Information can also be exchanged asynchronously between two threads or two processes.
In an asynchronous information exchange, the producer thread writes the information
into a predesignated memory buffer, and the consumer thread picks up the information
from the buffer whenever the information is available. This requires help from the oper-
ating system and uses message passing and mailbox—a buffer space for the correspond-
ing process. Mailbox is generally stored in the operating system area and has a copying
overhead.

Concurrent Programming Paradigm    ◾    299  

Task parallelism can be realized on multi-processor architectures generically called
 multiple instruction multiple data (MIMD), which means the processors can concurrently
execute different instructions on different data elements. MIMD architectures are fur-
ther categorized as (1) shared-memory multiprocessors and (2) distributed-memory
 multiprocessors. Shared-memory multiprocessors share the memory among multiple pro-
cessors. They have an advantage of faster memory access and keeping only one copy of the
data. However, they have the bottleneck of accessing the shared resources and face traffic
congestion in the data bus. Distributed-memory multiprocessors have the advantage of
local memory. However, the data transfer across physically separated memory without a
 common high-speed bus is slow. The constructs used to implement task-level parallelism
include fork-and-join, cobegin-coend or parbegin-parend, use of locks, use of monitors, and
spawning of multiple threads.

The problems in distributed computing are somewhat different because of object migra-
tion. Object migration involves overhead of linearization-delinearization (also called
packing-unpacking) of data structures. Distributed processors and distributed memory
supercomputers use message passing to communicate between the processes and use a
client-server model of execution that uses remote procedure calls (RPCs), as discussed in
Section 8.5.

8.3.2 Data Parallelism

Data parallelism is exploited by applying the same instruction on multiple-data elements.
Instruction is broadcasted to different processing elements. The main restriction is that the
data-parallel operations on the processing elements should not show dependency on one
an other. Data parallelism works well on flat data structures such as sequences, arrays, and
sets. Let us understand this concept using the following example.

Example 8.12

Let us take the following two for-loops. The first for-loop when unrolled is equivalent
to 1000 independent statements that perform the same operation: add 4 to the pre-
vious value. Hence, they are data parallel. However, the second for-loop is not data
parallel, because each element is dependent upon the element occurring before it.

1. for (i = 0;i =< 1000;i++) a[i] = a[i] + 4 % data_parallel
2. for(i = 1;i =< 999;i++) a[i] = a[i – 1] + a[i + 1]

Data parallelism is exploited if the region where the same instruction can be executed
is identified. As shown in the first for-loop, data parallelism performs the same operation
on a large sequence of elements. Some of these elements can be masked to work on a sub-
sequence of elements. Let us consider the following example:

for (I = 0; i =< 1000, i++)
 if (a[i] < 0) a[i] = −1 * a[i];

300    ◾    Introduction to Programming Language

This is also a data-parallel operation, as all the elements can be compared simultane-
ously with 0 to create a mask that will filter only those numbers that are < 0 and then
 multiply them with −1 in a data-parallel manner.

Another property of data parallelism is to reduce a sequence of values to a smaller set of
values using a user written function. Map-reduce model of exploiting data parallelism, as
the name suggests, is based upon two techniques: (1) map and (2) reduce. In the first stage,
the user written map function takes a collection of (key, value) pairs, repartitions them,
and sorts them, such that identical keys can be passed to reduce function. The user-written
reduce function groups the key-value pairs into multiple groups, such that each group is
a subset that can be uniquely processed using a user-defined function. The output is the
union of the values derived by applying the function.

8.3.3 Integrating Task and Data Parallelism

As discussed, task parallelism and data parallelism are quite different from each other.
Task parallelism is bothered about spawning multiple processes on different data sets
involved in a computation and managing shared resources, whereas data parallelism is
bothered about performing the same computation on a large data set. Technically, task
parallelism is synonymous to MIMD, and data parallelism is involved with single pro-
gram multiple data (SPMD). There are many problems that require the integration of data
parallelism and task parallelism. In recent years, efforts have been made to integrate task
and data parallelism. Some of the languages that integrate both types of parallelism are
“Fx”, “Opus”, “Orca”, “Braid”, and “Fortran-M.”

Different languages have taken different approaches to perform the integration. Fx
allows for spawning multiple tasks, such that each subtask is capable of performing non-
interfering data-parallel computation. One class of supported data-parallel operations is
map-reduce operation, where map applies the same function on every element of the data
set and reduces the data elements to a smaller class of subsets. Fx is good for multiple-data
parallel computations that are performed concurrently.

Opus is another integrated programming language that uses a “shared abstract data
type” called SDA. SDA is controlled by a coordinator process that can spawns multiple
subtasks, such that each subtask concurrently writes on the SDA in a data-parallel manner.
The advantage of Opus is in spawning multiple-data parallel tasks concurrently. A simple
example of SDA is a common buffer being shared between a producer and a consumer
process.

Orca is a programming language that uses a “distributed shared-data structure.”
Multiple subtasks are spawned concurrently that work in a data-parallel manner on dif-
ferent subsets of processors. A data-parallel operation operates the same operation, so that
each processor writes on its partition of the shared-data structure. A task can access parti-
tions in other processors. Objects that are not shared are stored in one processor and can
be replicated into multiple processors. An instruction can be broadcast on all the proces-
sors for data-parallel computation.

Concurrent Programming Paradigm    ◾    301  

8.4 DISTRIBUTED COMPUTING
With the advent of computer connectivity, it has become quite common to map a com-
putation on multiple distributed processors. These processors can (1) execute procedures
concurrently in a distributed fashion, (2) transfer data on separate processors that can per-
form computation and transmit the result back, or (3) transfer the code to another remote
processor that computes locally on a remote processor. Depending upon the application,
all three approaches or their combinations are used. The major issue is to minimize the
overhead of information exchange between the calling subprogram and the called sub-
program on a remote processor. Data migration is useful if the amount of information
exchange is not too large, and the load has to be distributed. Code migration is preferred
if the overhead of code transfer is smaller than the overhead of data transfer. Code migra-
tion is also preferred if the server is overloaded, and the load has to be shed by placing the
subtasks on remote processors.

The communication between processes on distributed processors passes through
 multiple layers of network protocols that cause significant overhead. A complex data
structure is linearized, padded with parity information to protect against corruption of
data during communication, made into packets, and then transmitted. On the receiving
end, the reverse process is done. The information transfer can be both synchronous and
asynchronous. In synchronous communication, the sender is blocked, unless the receiver
receives the message and sends an acknowledgment. In asynchronous communication, the
sender deposits the message in a mailbox handled by the middleware and keeps executing.
Similarly, a communication can be “persistent” or “transient.” In persistent communication,
the message is stored until transmitted, whereas in transient communication, the message
is stored as long as the sending and receiving application is executing.

There are many issues in invoking a distributed computation: (1) the remotely executed
procedure should have access to resources, such as files and IO devices; (2) the address of
the resources should be uniform; and (3) the communication port between calling subpro-
gram and called subprogram should be uniformly accessed by the processes.

Generally, distributed programming provides another layer of transparency than sim-
ply sending the information and receiving the information. The transparency is provided
using the parameter passing mechanism present in programming languages. The mecha-
nism is called RPC and is discussed in Section 8.4.1.

8.4.1 Executing Remote Procedures

RPC means executing the called subprogram on a remote processor. The issues executing
an RPC are as follows: (1) there is more than one address spaces that has to be accessed;
(2) information has to be physically transferred across machines using the communication
network layer; which means setting up the channel between the calling and the called sub-
program, (3) the result may be passed back across the processors.

There can be two ways to access the data objects in the calling subprograms: (1) by
passing the reference and (2) by passing the value. If the reference is passed, then there are

302    ◾    Introduction to Programming Language

issues about how to access the address space of another processor using the communication
channel that may incur significant overhead. If the value is passed, then the calling subpro-
gram stores the information about the channel, number of bytes, and buffer address where
transmitted data is stored/received, along with the return address. Similarly the remotely
called procedure also has to store (1) the channel and mailbox ID, where transmitted data
is stored to retrieve the data and (2) channel and buffer of the outgoing message.

Owing to the difference in address spaces, the calling program packs the information
in stub and sends it to the operating system that sets up the channel with the operating
system on another processor. The operating system on the other side receives the param-
eter information and invokes the called subprogram. The called subprogram generates the
result, packs the result, and asks the remote-operating system to send the data a cross to
the calling subprogram. When the result is received at the processor executing the calling
subprogram, a system routine unpacks (also called unmarshalling or delinearizing) the
result and sends the signal to the calling subprogram to resume and read the information
from the system area.

Packing the parameter values is called marshaling (or linearizing or packing). The
process of marshaling (1) puts the unique name of the procedure making the call and
(2) linearizes the data to be transferred. The mechanism works fine if the operating system
and data representation mechanism is homogenous, which means both the processors are
executing compatible operating systems that use the same internal representation format
for different data types. However, for a large cluster of distributed computers, machine
architectures are different, and operating systems are different. So moving from one pro-
cessor to another heterogenous processor also involves conversion of the format repre-
sentation and having a common format representation in Unicode during transmission.
Unicode is a universal 16-bit representation. In addition, the calling subprogram and the
called subprogram should use the same format presentation for arranging the data during
linearizing of the complex data structure.

8.4.2 Parameter Passing in Remote Procedure Calls

There are three types of parameter passing mechanisms in RPCs, as discussed partly in
Chapter 4. These mechanisms are similar to already discussed mechanisms: (1) call-by-
value, (2) call-by-reference, and (3) call-by-value-result. However, the major difference is
that multiple address spaces, communication protocols, communication channels, and
buffers are involved in data communication, which causes overhead of communication,
specially for accessing small amounts of data multiple times across the address spaces.
Passing the reference of the object means that remote call has to access the address space
of the objects stored in the address space of the calling subprogram. Copying an object
means the called subprogram works only on the local copy of the object. Sometimes this is
also called call-by-move or call-by-copy. If the copied object is modified and the modified
object is needed by the calling program, then the resulting object has to be moved back to
the calling subprogram. This is called call-by-copyrestore and is similar to call-by-value-
result in uniprocessor languages.

Concurrent Programming Paradigm    ◾    303  

Parameter passing using a reference parameter is difficult because of distributed address
space. The problem with call-by-reference is the communication overhead to access the
data from distributed address space. The address space of the other processor is not directly
accessible to the remote process. Instead, it has to go through the operating system of the
processor where the calling subprogram is located. In order to facilitate call-by-reference,
the object is copied into the buffer space of the operating system, and only needed data
elements are transmitted as value to the remote procedure. After receipt of the modified
data element, the corresponding data element in the complex data structure is updated. If
the call-by-reference is read only, then the object is moved to the processor of the remote
procedure to avoid the overhead of communication network.

Call-by-copy and call-by-copy-restore have to go through marshaling (packing) and
unmarshalling (unpacking) of the object. The overhead of marshaling and unmarshalling
can be few milliseconds, and hence the granularity of the RPC should be sufficiently large
to justify the RPC.

There are problems both for call-by-reference and call-by-copy. If a communication is
lost in call-by-reference during the execution of the RPC, then the effect of the changes
made to the object have to be undone, which requires keeping a log of changes, and the loss
of communication will cause the failure of computation. In call-by-copy-restore, the origi-
nal data structure and the copy of the data structure may become inconsistent, until the
original data structure is restored with the changes made in the remote copy. Call-by-copy-
restore also forces the suspension of the calling subprogram to maintain the consistency
of the data structure. Consistency can also be maintained using automatic coherence, pro-
vided the replicated remote data structure does not become unavailable because of com-
munication failure.

An alternative scheme that finds out a middle ground between call-by-reference and
call-by-copy has also been implemented. This scheme performs the following operations:

 1. It copies the immutable simple objects such as integers, Boolean, and floating point
numbers.

 2. It avoids call-by-reference if the communication failure is probable.

 3. It sends only the object_id before copying. If the object is already in the remote store,
then it avoids copying the object.

Emerald is a distributed programming language that supports all three forms of param-
eter passing. Java supports distributed computing using remote method invocation (RMI),
which is slightly different than RPC because of dynamic invocation of objects. Distributed
objects and RMI will be discussed in detail in Chapter 11.

8.5 COMMUNICATING SEQUENTIAL PROCESSES
Communicating sequential processes (CSP) is a theoretical model of concurrent program-
ming languages that is based upon guarded commands. It was first proposed by C.A.R.
Hoare, and has formed the theoretical basis of a major class of concurrent programming

304    ◾    Introduction to Programming Language

languages. Although the model was described using guarded commands, the concepts and
the algebra for concurrent processes have been utilized in the development of other con-
current programming languages.

The language uses guards as input sources and commands as the output source. Input
source is a process, and output source is the corresponding process. If the information is
available in the input process, then the corresponding command of the output process
is executed. Two concurrent processes P and Q are modeled as P ∥ Q. The concurrent
processes are disjoint, do not share any variable, and do not communicate using global
variables. Hence, they can execute concurrently without any synchronization. All the con-
current processes start simultaneously, and parallel command P ∥ Q terminates when both
P and Q are finished. The set of events seen by a process P are called alphabets of process,
and are denoted by αP. If the sets of events of two processes are the same, then they get
engaged together. However, if one of the events belongs only to a specific process P, then
only P gets engaged.

Example 8.13

Let us take two processes: P with alphabet {move_left, move_right, move_back,
move_forward} and process Q with alphabet {move_back, move_up, move_forward};
then P and Q will be engaged together if the next action is move_forward. However,
only P can do move_left. Similarly, only Q can take an action move_up.

8.5.1 CSP Algebra

The parallel processes are controlled by simple algebraic rules. Given three processes P, Q
and R, their alphabets would be denoted by αP, αQ, and αR, respectively. Let us assume
that αP = αQ = αR, and {c, d} ⊆ αP, which means if each process has the same set of
actions, then the processes are controlled by the following rules:

Rule 1: commutativity: P ∥ Q ≡ Q ∥ P

Rule 2: associativity: P ∥ (Q ∥ R) ≡ (P ∥ Q) ∥ R

Rule 3a: deadlock: P ∥ StopαP ≡ StopαP

Rule 3b: running: P ∥ RunαP ≡ P

Rule 4a agreement: (c → P) ∥ (c → Q) ≡ (c → (P ∥ Q))

Rule 4b disagreement: (c → P) ∥ (d → Q) ≡ Stop

The commutativity and associativity rules tell that the order in which the concurrent
processes are executed does not matter. Rule 3 states if one of the parallel processes is
deadlocked, then it can deadlock the whole system. However, if a process is running, then
it does not alter the outcome of other process P. Rule 4 states two parallel processes are

Concurrent Programming Paradigm    ◾    305  

simultaneously engaged if the first action of the two processes is the same. Two processes
with the same alphabet get deadlocked if their first actions differ.

These rules have been generalized for the processes if their alphabets are different. Given
two processes P and Q their alphabets αP and αQ are not equal, and α (P ∥ Q) = αP ∪ αQ.
Let us assume that a ∈ (αP − αQ), b ∈ (αQ − αP), and {c, d} ⊆ (αP ∩ αQ). Then the rules
(1)–(4) would be the same, because the rule for simultaneous engagement is the same as the
initial events for two processes are the same. However, two additional rules will be added
to take care of events in the alphabets that are not shared. These rules state that if the events
are not common to the alphabets of the process, then there is no need for simultaneous
engagement. The symbol “|” in Rule 6 denotes logical-OR.

Rule 5a: (a → P) ∥ (c → Q) ≡ (a → (P ∥ (c → Q))

Rule 5b: (c → P) ∥ (b → Q) ≡ (b → (Q ∥ (c → P))

Rule 6: (a → P) ∥ (b → Q) ≡ (a → (P ∥ (b → Q)) | (b → (Q ∥ (a → P))

8.5.1.1 Sequential Composition Rules
The rules can also be extended for sequential composition of processes. Rule 7 shows the
property of associativity in sequential composition. Rule 8 states that if the first process
does not perform any computation, then the sequential execution is equivalent to run-
ning the other process alone. Rule 9 states if the first process is “abort” then the following
process is not executed. The Rule 10 states that if the process is executed after the event “a”
followed by the process Q, then it is equivalent to say that processes P and Q are executed
only after the event “a” has occurred.

Rule 7: is_associative (P; Q); R ≡ P; (P; R)

Rule 8: with_unit skip; P ≡ P

Rule 9: with_zero Abort; P ≡ Abort

Rule 10: distributes (a → P); Q ≡ a → (P; Q)

8.5.1.2 Guarded Command Rules
There are three guarded command rules. Rule 11 says that guarded commands are asso-
ciative, which means they can be grouped in any fashion and tried. Rule 12 shows that
changing the order of guarded commands does not alter the outcome. Rule 13 states that
sequential process coming after guarded commands can be distributed to execute sequen-
tially after every guarded command.

Rule 11: is_associative (P ▯ Q) ▯ R ≡ P ▯ (Q ▯ R)

Rule 12: commutative P ▯ Q ≡ Q ▯ P

Rule 13: distributes (P ▯ Q); R ≡ (P; R) ▯ (Q; R)

306    ◾    Introduction to Programming Language

There are some other rules that can be derived using these basic rules; rules about recur-
sion and input and output commands have been omitted here.

8.5.2 Communicating Sequential Process Language

CSP uses these rules of concurrency, sequential composition, and the guarded commands.
The statements of CSP are input statement → output commands, where input statement is
analogous to guard, and output command is analogous to command part of a guarded
command. The input statement can be a declaration, a Boolean condition, or a process with
input data. The output command can be skip, assignment, alternative command, parallel
command, iterative command, or a process that outputs data. The syntax for the input
process supplying the data to the output command is of the form <process>?<input-data>,
where the symbol “?” denotes that input data follows. Similarly, the syntax for the output
process is of the form <process>!<output-data>. The output process stops when all the
input processes terminate or no guard condition is true. Termination of an input process
in the guard part is treated as failure of the guard part.

The language supports single-data entities, arrays, structured data, array of processes,
assignment, alternative commands, iterative commands, parallel commands, recursive
processes, and subroutines. The semantics of iterative loop is that all the input processes
must terminate for the output processes to terminate. The iterative loop will continue till
the time there is a single-input process that is supplying data to the output command. The
abstract syntax for the guarded commands is the same as the guarded commands dis-
cussed in Chapter 4, with some syntactic differences. The process-array syntax has been
omitted for simplicity. A simplified abstract syntax (in extended Backus-Naur form) for
the parallel commands is given below

<parallel-command> ::= ‘[‘(<process> {∥ <process>}* ‘]’
<process> ::= <identifier> {(<command> | <declaration>}+
<command> ::= skip | <assignment> | <input-statement> |
 <output-command> |<alternative-command> |
 <iterative-command> | <parallel-command>
<assignment> ::= <variable> = <expression>
<input-statement> ::= <process-name>?<variable>
<output-command> ::= <process-name>!<variable>
<iterative-command> ::= ‘*’<alternative-command>
<alternative-command> ::= ‘[‘<guarded-command>
{‘▯’ <guarded-command>}* ’]’

Example 8.14

The following example shows a producer–consumer process on a buffer using CSP syn-
tax. After a “producer” process gets an input character, the character is inserted in the
buffer location pointed out by the front-pointer, and the pointer value is incremented by
one using modulo arithmetic to handle the circular queue; the count is incremented by

Concurrent Programming Paradigm    ◾    307  

one; and the buffer is marked “not empty.” The delimiter ‘;’ shows sequentiality, and the
symbol ‘|’ separates the guarded commands. The symbol ‘*’ in the beginning denotes
that the command is an iterative construct and will terminate only when all the guards
fail and the input processes terminate. The symbol “̂ ” denotes logical-AND. Because all
the conditions are covered in the guards and at least one condition is always true, the
iteration will continue forever.

iobuffer::
 m = 80; buffer(0..m - 1) character; c character;
 rear, front: integer; rear = 0; front = 0; count = 0;
 full, empty: Boolean; full = false; empty = true;
 * [count == m - 1 → full = true ▯
 count == 0 → empty = true ▯
 not(full); producer?c →
 % read the value of c from the producer
 buffer[front] = c;
 front = (front + 1) mod m;
 count = count + 1;
 empty = false ▯
 not(empty) → consumer ! buffer(rear);
 % consumer removes the element
 rear = (rear + 1) mod m;
 count = count - 1;
 full = false
]

8.6 MEMORY MODELS FOR CONCURRENCY
Before we develop concurrency constructs in programming languages, the memory mod-
els about how the memory behaves under different concurrent programming abstractions
should be clearly specified for the following reasons:

 1. The concurrency behavior of a program must be explained with respect to a sound
memory model that explains how the shared resources are managed abstractly in the
language.

 2. Compiler optimizer reorders the statements, as they would do in a single-thread
program, for optimization, which may violate the sequential consistency in multi-
threaded programs.

 3. The memory model should provide a data-race-free execution that supports
 sequential consistency. The model should not be too strong, which causes unneces-
sary sequentiality while supporting causality and safety.

 4. In the absence of safe models, Internet languages such as Java and .NET languages
such as C# may introduce loopholes that may be exploited by the attackers.

308    ◾    Introduction to Programming Language

The earlier memory models were flawed, and most of the languages, such as C++, do
not have appropriate memory model, and use external thread libraries. In recent years,
memory model is being refined as more and more concurrent programs are being writ-
ten to exploit the available multicore processing. Memory model should be simple and
robust; otherwise, program development becomes error prone, and software maintenance
becomes difficult. There are some synchronization properties that should be followed to
maintain sequential consistency. A program should (1) be data-race free; (2) follow a syn-
chronization order that is consistent with the program order; (3) a lock (or release) action
should be followed by the release (or lock) action on the shared resource; (4) once a lock has
been placed on a shared resource, no process should be able to violate it, unless the resource
is released; (5) a read operation reads the last written value; and (6) a write operation can-
not be performed unless all the read operations on the previous write in the program order
have been executed. Rule 5 is the producer–consumer relationship. Rule 6 is the antide-
pendency property. Rule 4 is a difficult one to maintain, because most of the languages
except Ada use synchronized and unsynchronized methods: synchronized methods follow
the restrictions, but unsynchronized methods may write on the shared resources, causing
errors in program behavior.

Multithreaded models of programming languages have to treat other variables differ-
ently than the locks and shared resources, because these variables follow the synchroni-
zation order consistent with program order and cannot be rearranged by the optimizing
compilers, which may result in the violation of one of the above memory model rules,
resulting into the violation of the fundamental restriction of sequential consistency. The
latest memory model (after Java 5) uses the declaration volatile variable. Volatile variables
can not be touched or reordered by the compilers to maintain the program order.

One of the problems in multithreaded programs is the use of shared variables that are
updated in one thread and consumed in another. Although a data-dependency analysis
within a single thread may not show a sequential dependency, if both the threads are ana-
lyzed together, the dependency becomes clear (see Figure 8.1). Many times the use of the
shared variables in two threads gives rise to cyclic reasoning and breaks up the sequential
consistency. In such cases, a global analysis of the threads has to be done to break up the
cycles. Such an analysis should preserve causality of actions even if it may seem to violate the
property of sequential consistency. The reason is that sequential consistency is used to enforce
causality and it is the causality of actions that is the most important property to be preserved.

A thread may be blocked to perform input, output, interaction with an external event, or
because of an operating system action. Owing to synchronization order, all other threads
that are waiting for locked resource or volatile variables will also be blocked indefinitely,
unless the resources are released.

One of the limitations of the Java memory model is that Java threads have no limit on
how long they are going to hold a CPU, unless they are forced by the process scheduler
of the operating system. Another problem with concurrent execution is the cyclic reason-
ing in multiple threads that may be difficult to reason simply by global dependency analy-
sis, and compiler transformation may yield incorrect behavior inconsistent with causality
restriction.

Concurrent Programming Paradigm    ◾    309  

8.6.1 Memory Model of C++
Current executions of C++ use a single-thread memory model for C++ interleaved with
multithread memory model of the libraries such as “Pthread” and “Microsoft word thread
library.” Single-thread execution without any formal interface definitions with multithread
libraries does not prevent compilers from performing code reorganization such as register
optimization or code reordering, that may violate the fundamental sequential consistency
property in concurrent programs. Multiple-thread libraries use lock primitives to restrict
access to normal variables. Currently, there are efforts to develop a similar cohesive mem-
ory model for C++, based on the lines of Java memory model. The basic approach is to
define what are atomic operations and how to prevent data race by compiler actions. The
model is still evolving.

8.7 CONCURRENT PROGRAMMING CONSTRUCTS
Concurrent programming constructs can be generally divided into the following catego-
ries: (1) constructs for data parallel programming, (2) constructs for parallel spawning of
subtasks, (3) constructs for spawning multiple threads, (4) synchronization constructs to
handle shared resources, and (5) constructs for invoking remote procedures. This section
describes generic constructs present in various concurrent programming languages.

8.7.1 Coroutines

Coroutines are used to execute two processes alternately, such that control switches
between two processes. Each process saves its state before passing the control to another
process. When signaled by the other process to resume, it resumes from the last suspended
state. The control keeps switching between two or more processes, such that each process
resumes execution where it left off in the past. Coroutines are much faster than process and
thread, because there is no operating system involvement. Coroutines have been imple-
mented in Simula, Modula-2, Ruby, Lua, and Go. They can be used to implement threads
and iterators. Coroutines can also be used to model discrete event simulation, where mul-
tiple events are being generated by separate threads such that they interact with each other.

The coroutines in Ruby are implemented using fibers. Fibers are code blocks that can be
paused and resumed later. Fibers are not preempted, and unlike threads, the scheduling
has to be provided by the programmer inside a program. Syntax for coroutines in Ruby
using fibers is given below:

fact = Fiber.new
 m, n = 1, 1
 loop do
 Fiber.yield n
 m = m + 1
 n = n * m
 end
end
5.times {puts fact.resume}

310    ◾    Introduction to Programming Language

There are two coroutines: function fact that generates a factorial value, and the external
loop that prints out the value of the factorial. The external loop starts the coroutines fact,
which returns the next value through the call Fiber.yield and suspends itself. The control is
passed back to the external loop, which resumes the fact coroutines again using the method
fact.resume. The coroutine fact increments the value of the variable m, generates a new value
of n = n * m, and returns the new value of the variable n again using the method Fiber.yield n.
The process continues until the external loop is executed five times. The generated values are
1, 2, 6, 24, and 120.

8.7.2 Cobegin–Coend

The construct Cobegin-Coend is used in the programming languages Concurrent Pascal,
Algol-68, and C. It is also used in the Internet language SMIL. SMIL can display multiple
media streams concurrently using parallel spawning of subtasks. These subtasks do not
share any variable. After all the subtasks are over, the main control flow resumes. A generic
Concurrent Pascal syntax is as follows:

Cobegin

 <statement-block1>;

 <statement-block2>;

 …,

 <statement-blockN>

Coend

The following code illustrates a simple example of cobegin–coend.

x : = 0; z : = 4;
cobegin
 begin x := 1; x := x+1 end; % concurrent activity 1
 begin z := 2; z := z - 1 end; % concurrent activity 2
Coend;
print(x, z)

The syntax for parallel spawning of subtasks in SMIL is given below:

<par>
 <te xt src = "my_resume.html" region = "text_area" dur =

"60s"/>
 <video src = "my_presentation.mpg" region = "Video_area" />
</par>

The above code starts two streams: a text stream that is displayed for 60 seconds, and a
video presentation that starts concurrently along with the text.

8.7.3 Fork-and-Join

Fork-and-join operations spawn multiple subtasks that execute concurrently and
independently. The parent process is suspended until all the spawned threads have

Concurrent Programming Paradigm    ◾    311  

terminated successfully. After all the threads terminate, the parent process is signaled,
and it resumes its execution again. Languages such as Ada, Java, JRuby (a variation
of the language Ruby), C++, C#, Modula-3, and Scala support multiple-thread-based
programming. Although Ada uses the notion of a task described in Section 8.8.1, other
languages use “spawning of threads.” A thread can be created, linked to a runable pro-
cedure, started, run concurrently with other threads, while providing mutual exclu-
sion on shared variables and joining with other threads. It can be suspended using the
wait command, or sleep for specified time. A suspended thread can be awoken using a
“notify signal.” After a signal is broadcast, then all the threads waiting for that signal
become eligible for the resumption of activities. Some of the thread-based operations
that various languages support are thread.new() (or new Thread), thread.start() (or new
ThreadStart(<method-name>)), and <Thread>.join(). Mutual exclusion is provided
using locks.

8.7.3.1 Synchronization Constructs for Shared Resources
There are two major constructs to handle shared resources: locks and monitors. Object-
oriented languages like Java use synchronized methods to access the shared resources.
Locks (or semaphores) are low-level constructs that are attached to shared objects. Both
locks and monitors are declared, along with other declarations. Locks are associated
with shared-data objects, whereas monitors are also associated with a group of mutually
exclusive procedures. Both locks and monitors allow one process at a time to access the
shared resource. There should be total synchronization order that is imposed on lock-
release operation: lock(v) must be followed by release(v) to avoid indefinite blocking of
threads or processes; sequences like lock(v), … lock(v) or release(v), … release(v) are not
allowed. However, it is very difficult for programmers to follow the low-level restrictions
on locks.

8.7.4 Monitors

Monitors are high-level passive declarations in languages, which support mutual exclusion
of procedures described within the monitor. The embedded entities in a monitor are shared
resources and mutually exclusive procedures that work on shared resources in a mutually
exclusive manner. A monitor also has an initial body that is executed when a monitor is
called. A monitor can access its own variables. However, other processes can read only the
public variables of the monitor. Any process that needs to access the shared resource has to
use a monitor and the corresponding procedures to access the shared resource; there is no
direct access to the shared resource. The general abstract syntax for a monitor is as follows:

type <identifier> =
monitor (<parameter-list>)
<shared variable declarations>
procedure <identifier> <procedure-body>
procedure <identifier> <procedure-body>
…

312    ◾    Introduction to Programming Language

procedure <identifier> <procedure-body>
<initial-body of the monitor>

System routines ensure that only one process corresponding to one of the monitor pro-
cedure can access a shared resource at a particular instance of time. If a process is using
a shared variable, then all other processes requesting to access the same shared resources
have to wait until the currently executing mutually exclusive procedure within the monitor
releases the shared resources. The waiting can be done in two ways: spinlock or by suspen-
sion of the process. In spinlock a process keeps looping in a “busy-wait loop” and checking
for the availability of the shared resource. In the suspension mode, the process requesting
to use the shared resource gets blocked until the shared resource is released by the cur-
rently executing procedure. Upon release of the shared resource, all the blocked processes
are notified and made ready to be rescheduled by the CPU scheduler.

Example 8.15

An example of the use of a monitor is the buffer management problem, where one pro-
cess writes in a buffer and other processes read from the buffer. An intuitive code has
been given in Figure 8.13. The shared buffer buffer[0..m-1], the rear pointer rear, and
the front pointer front are shared resources. There are two procedures in the monitor:

monitor iobuffer;
m = 80;
character buffer[0..m - 1];
integer rear, front, count;
condition nonempty, nonfull;
procedure insert(character element)
{ if (count == m - 1) then await(nonfull);
 buffer[rear] = element;
 rear = (rear + 1) modulo m;
 count = count + 1;
 signal(nonempty)
}
procedure remove (char element)
{ if (count == 0) then await(nonempty)
 result = buffer[front];
 front = (front + 1) modulo n;
 count = count – 1;
 signal(nonfull)
}
% initial body of the monitor
{ rear = 0; front = 0; count = 0;
nonempty = false; nonfull = true }
…
iobuffer console;
…
{
…
console.insert(‘a’);
…
}

FIGURE 8.13 An example of a monitor.

Concurrent Programming Paradigm    ◾    313  

write-buffer and read-buffer. Operations on shared resources are atomic, and the shared
resources are not released until the operations are complete. The procedures insert and
remove are mutually exclusive.

Any process can access the buffer only through the use of the user-defined type
iobuffer. Different periphery buffers can be declared of the type iobuffer. There is also
notion of condition-variables, which are Boolean variables and can be set to true by
signal operation. A signal can be read by the corresponding suspended processes and
is reset after it has been read by the await operation. The await operation waits for
the condition to become true, and turns the condition false again before entering in
the critical section. The false condition prohibits other processes to enter the critical
region at the same time.

The process of buffer update is the same as described in Section 8.2.5 except now we
have a notion of transparently delaying the insert and removing operations instead of
simply terminating, as was the case in the single-thread description in Section 8.2.5.

8.8 CASE STUDY
In this section, we discuss various constructs used in three representative programming
languages Ada, Java, and Emerald. Both Ada and Java have built-in support for concurrency.

8.8.1 Concurrent Programming in Ada

Ada supports concurrent programming using tasks. Tasks are equivalent to Java threads.
Tasks are embedded inside a master program. When a master program is invoked, then
the embedded tasks are also invoked. The master program does not terminate until all the
tasks terminate. Task is like a module that exports the declared entry points to commu-
nicate with other tasks. For every entry point, there is a corresponding Accept statement
inside the statement block of the corresponding task body that pulls the information into
the task body. Entry points-accept pair is used for parameter passing from other tasks.
Parameters are of the form <formal-parameter-name>: <formal-parameter-type>. All the
local variables and statements are inside the task body. The general syntax for tasks is
given below

Procedure <proc_identifier>
task <task-name1> is <entry-points1> end <task-name1>
task body <task-name1> is <block1> end <task_name1>
…
task <task-nameN> > is <entry-pointN> end <task-nameN>
task body <task-nameN> is <blockN> end <task_nameN>
begin null end <proc_identifier>

Example 8.16

The program given below gives an example of the use of the tasks and the use of entry
point and accept feature. The main body of the procedure has a loop that spawns
the task assignment with a different index value. Tasks are spawned like objects with

314    ◾    Introduction to Programming Language

the Problem_index being passed as parameter. The task SolveProblem puts a delay of
240 time unit and terminates. The main body terminates when all the tasks terminate.

 WITH Ada.Text_IO;
 USE Ada.Text_IO;
 PROCEDURE Assignment IS
 TASK SolveProblem IS ENTRY start_thinking (Problem_index:
 INTEGER); END SolveProblem;
 TASK BODY SolveProblem IS

 BEGIN
 ACCEPT start_thinking (Problem_index: INTEGER) DO
 delay 240.0; −− Put delay to simulate time taken to solve a
 problem
 Put_Line("write answer");
 END start_thinking;
 END SolveProblem;

 BEGIN
 FOR Index IN 1..5 LOOP
 SolveProblem.start_thinking(Index)
 Put_Line("Solving the next problem");
 END loop;
 Put_Line("Assignment done");
 END Assignment

Tasks can also be declared as type declaration, and later multiple-task objects having the
same template can be created.

task type my_type is … end my_type;
task body my_type is … end my_type;
…
Task_1, Task_2 : my_type;

8.8.2 Concurrent Programming in Java

Java uses a combination of thread primitives and synchronized methods to handle concur-
rency. A thread can be created using the construct new Thread(<thread-name>). There
are many primitive thread operations such as <thread-name>.start (), <thread-name>.
yield (), Thread.sleep(<duration>), and <thread-name>.setPriority (<priorityValue>).
The names are intuitive. In addition, threads can raise an interrupt to wake up the blocked
threads and exit after waiting for a predefined sleep time.

Example 8.17

The following code gives a simple class definition in Java to start two threads that exe-
cute the method run. The main thread creates two new threads—Thread1 and Thread2.
Thread1 and Thread2 start executing using the commands Thread1.start () and Thread2.

Concurrent Programming Paradigm    ◾    315  

start, and the main thread waits for 1000 milliseconds. By that time, two threads have
terminated, and the program terminates. The main thread can communicate to other
threads using static variables, and set the conditions for threads to stop if needed. The
threads can also be made to yield to higher priority threads by setting up the priority
using the primitive command Thread1.setPriority () or Thread2.setPriority () and using
the primitive operations Thread1.yield or Thread2.yield primitive.

 class myThread extends java.lang.Thread {
 public static void main(String args[]) throws
 InterruptedException {
 myThread thread1 = new myThread(); //Create Thread 1
 myThread thread2 = new myThread(); //Create Thread 2
 thread1.start(); //start Thread 1
 thread2.start(); //start Thread 2
 Thread.sleep(1000); //sleep for one second
 }
 //Created threads execute this method
 public void run() {System.out.println("Created thread");}

All the methods that use a shared variable have to be declared as synchronized methods
to provide mutual-exclusion among the threads that may access the shared object through
the use of any of the methods. The shared objects are accessed by only one of the syn-
chronized methods providing mutual exclusion. Synchronized methods are used only for
shared objects that are visible to other threads. However, if an instance of a class is confined,
then there is no need to synchronize.

Example 8.18

The following code gives an example and syntax for the use of a Java synchronized
method that handles the shared class variable value. Only one synchronized method
can access the shared variable. Since the variable value cannot be read while it is being
updated and vice-versa, the two methods getValue and setValue have to be synchronized.

 class Cell {
 protected int value;
 public Cell (int v) { value = v; }
 public synchronized int getValue() { return value; }
 public synchronized void setValue(int v) { value = v;}

There are some problems with the mutual exclusion realized using synchronized meth-
ods as follows:

 1. Locks cannot be set in one method and released in another.

 2. Locks are not at the variable level but at the method level.

316    ◾    Introduction to Programming Language

 3. An unsynchronized method can also update the shared variables. Thus, synchro-
nized method declaration should be done carefully.

 4. Synchronized method causes sequentiality and thus slows down the execution.

8.8.3 Distributed Computing in Emerald

Emerald is a distributed object-based language. Emerald supports object mobility that
includes both “methods” as well as “data.” Emerald does not support class hierarchy.
An Emerald object has four components: (1) unique network id that can be generated
by concatenating host-name, process-name, and local identifier; (2) data representation
local to the object; (3) methods working on the local data; and (4) an optional process
that may invoke other objects. Emerald has three types of objects: (1) global objects that
can be moved directly to any node; (2) local objects that are embedded within another
object and cannot be moved directly; and (3) direct objects, such as basic types that
are used to build other objects. Arrays, records, and single entities all are objects in
Emerald.

Emerald supports fine grained mobility. There are many advantages of process migra-
tion in Emerald: (1) it enhances load balancing, (2) active objects can be moved to remote
processors for better performance, (3) objects’ mobility facilitates robustness against pro-
cessor failure, and (4) it facilitates the utilization of special software available at different
processors. Emerald supports abstract data type that can be implemented differently on
different processors. Emerald uses five operations for object mobility. The operations are
(1) locate an object; (2) move an object; (3) fix an object at a particular node; (4) unfix an
object to make it mobile again; and (5) refix an object that is a combination of unfix, move,
and fix at a node.

Emerald supports call-by-object-reference, call-by visit, and call-by move. The advantage
of object reference is that a remote objects reference can be passed to distributed nodes
easily. Arguments are moved if they can be copied easily without much overhead. As we
discussed earlier, within the same address space, an object can be addressed directly with-
out intervention of the operating system. However, remote objects can be accessed only by
going through the operating system.

8.9 SUMMARY
Concurrent programming is concerned about dividing a task into multiple subtasks that
execute concurrently. Concurrency can be exploited using task parallelism, data parallel-
ism, or an integration of task and data parallelism. Data parallelism is concerned about
executing the same operation on a large data set. Task parallelism is concerned about
spawning multiple processes and threads that work on different data sets. There have been
approaches to integrate data and task parallelism to support the most general form of par-
allelism, so that complex problems that need both data and task parallelism can exploit
maximum parallelism. The integration has taken following approaches: (1) spawning mul-
tiple-data parallel tasks concurrently, (2) distributing data structures across processors to

Concurrent Programming Paradigm    ◾    317  

exploit data-parallel computation on distributed data structures, and (3) remote access to
data structures on other processors.

Two subtasks can be executed concurrently if they are independent of each other. There
are many ways to exploit concurrent execution of subtasks (1) using multiple threads that
share information using a channel or a shared variable synchronously or asynchronously.
The presence of shared variables and the use of shared resources cause the subtasks to be
dependent upon each other. This dependency causes sequentiality. Concurrent execution
of the subtasks has to follow the sequential consistency criteria: a program should produce
consistently the same outcome as the sequential execution. In order to maintain sequen-
tial consistency during transforming a sequential program to its concurrent counterpart,
three rules have to be followed: (1) producer–consumer relationship, (2) antidependency,
and (3) output dependency among statements sharing aliased variables. Producer–
consumer relationship states that a value cannot be consumed unless it has been produced.
Antidependency rule states that the statements consuming of the old values of a shared
variable have to be executed before the statement producing a new value of the shared vari-
able can be executed. The third rule states that an order should be maintained to update
the aliased variables, because they update the same memory location. Not following these
rules will cause “race condition,” which means the program may generate inconsistent
values each time it is executed.

Concurrency can be exploited in programs either by performing program analysis to
automatically parallelize a sequential program or by explicitly writing multiple thread-
based programs and managing the shared variables, so that only one process or thread can
write into the shared resource at a time. Both the approaches have been used.

For the automatic parallelization of programs, dependency between the program
 statements has to be identified. Theses dependencies can be handled in two ways: (1) trans-
forming programs to reduce the dependencies and (2) incorporating sequentiality to main-
tain the sequential consistency. A program has two major types of dependencies: data
dependency and control dependency. Data dependency is present because of the data flow
due to shared variables between the statements, and control dependency is present because
of the evaluation of predicates in control abstractions such as if-then-else statement, case-
statements, while-loops, and do-while loops. By analyzing data and control dependencies,
a “program dependency graph” can be derived that is a combination of a data-dependency
graph and control-dependency graph. Data-dependency graph of iterative loops can be trans-
formed by loop-unrolling to reduce the dependencies introduced by control abstractions.

A naive way is to exploit fine-grain concurrency by mapping the program at state-
ment level on different processors. The exploitation of fine-grain concurrency introduces
excessive communication and data serialization-deserialization overheads between the
 processors or between distributed memories attached to various processors. This commu-
nication overhead is significant in a distributed environment. In order to circumvent the
inefficiency introduced because of this overhead in distributed computing or bandwidth
congestion overhead on multiprocessor machine, a large number of dependent statements
are executed sequentially on the same processor. This form of concurrency is called coarse-
grain concurrency. In order to reduce the data-transfer overhead between the processors or

318    ◾    Introduction to Programming Language

between the memories associated with different processors, program slicing is used. Program
slicing reduces the data-transfer overhead by (1) replicating the producers on multiple pro-
cessors and (2) grouping the block of statements if it reduces the data transfer overhead.

Although exploiting task-level parallelism, shared resources can be allocated to only one
process at a time. This enforces mutual exclusion between the processes. Mutual exclusion
can be forced either using a lock or a monitor. A lock can be a Boolean or counting sema-
phore that has two states: occupied and released. In the occupied state, the shared resource
is unavailable to other processes. The portion of the code where a process is in the pos-
session of the lock is called critical section. The critical section introduces execution time
overhead because of sequential execution and should be as small as possible.

A process changes the state from released to occupied before entering the critical section
to manage the shared resource. However, testing and setting the lock is an atomic operation.
Unless the lock is released the shared resource is under exclusive control of the process that
set the lock-state as occupied. All the operations within critical sections are treated as an
atomic operation. If the operations are not atomic, and multiple processes are allowed to
write into shared memory locations in an undermined manner, then the result will be
unpredictable and inconsistent, and will not follow sequential consistency. If the opera-
tions are broken because of high priority interrupt, then the changes have to be undone,
and the atomic operation has to be redone.

Owing to low-level lock and signal operations, any mistake may cause deadlock of
processes, causing the shared resources to be blocked indefinitely. Monitor is a high-
level abstraction to ensure mutual exclusion of processes. Processes can access the shared
resource only through the monitor. Monitors are declared, like any other declaration, and
contain the shared resource and the associated processes. Processes can either wait for the
shared resource by blocking themselves while waiting, or they can signal the release of the
shared resource by waking up other blocked processes.

Concurrent programming can also be classified as multiprocessing, where processors
are placed on the same core or share memory or the processors could be distributed with
distributed memory. Explicit concurrent programming is achieved by providing language
constructs or interfacing with operating systems library to spawn multiple threads that
do various subtasks concurrently while sharing the address space with the parent process
for information sharing. The parent process suspends while threads are executing concur-
rently and resumes when last of the spawned thread has successfully terminated.

Distributed computing involves remote procedure calls (RPC) and remote method
invocations (RMI) where the called subprogram or the method is executed on a remote
 processor with different address space. In distributed computing code, data, or the whole
object can be migrated to remote processors to exploit concurrent execution. The major
problems in distributed computing are the multiplicity of the address space, failure caused
by communication breakdown, overhead due to the use of system utilities for commu-
nication and the overhead of packing and unpacking of data. Information exchange
between the calling program and remote called procedure involves operating system, set-
ting up the channel between the two processors, and packing and unpacking of the data
between the client and the server. This causes significant overhead. There are three major

Concurrent Programming Paradigm    ◾    319  

parameter passing mechanisms in remote procedure calls: call-by-reference, call-by-copy,
and call-by-copy-restore. They are analogous to call-by-reference, call-by-value, and
 call-by-value-result in uniprocessor languages. Call-by-copy copies the object to the remote
processor that makes future access in the same address space. Call-by-copy-restore copies
back the result to the address space of the calling procedure after the remote procedure call
is over. The advantage of call-by-reference is that it can be easily passed to other processors
to access the remote objects. However, the major disadvantage of call-by-reference is loss of
the object in case of communication failure and delay caused by communication to access
the object as it is not in the same address space as the remote procedure call.

Communicating sequential processes is a theoretical model that forms the basis of con-
current programming languages. It has algebra for concurrent programming. The algebra
states the rules for “associativity,” “commutativity,” “deadlock,” “abortion and agreement,”
and “disagreement” of guards. CSP languages are based upon stating the input statements
and output commands. Input statements are analogous to guards, and output commands are
analogous to the command part of guarded commands. A parallel command is a conjunction
of statements of the form input statement → output command. Input command can include
declaration of the data types, input processes that provide the data, and Boolean expressions.

Programming languages that support multithreaded programming should have a sound
memory model to ascertain sequential consistency. Sequential consistency is based upon
the causality of action that should be preserved. In order to preserve causality, a program
should be (1) data-race free, (2) should follow synchronization order that is consistent with
the program order, (3) a lock action on a shared resource should be followed by the release
action on the same shared resource, (4) a read operation reads the last written value, and
(5) a write operation cannot be performed unless all the read operations on the previous
write in the program order have been executed. In recent years, a robust memory model
has been developed for Java, and a similar model is being developed for C++.

Programming languages support many abstractions (both data abstraction and con-
trol abstractions) for concurrent programming such as coroutines, parallel iterative loops,
semaphores, monitors, thread based constructs, synchronized methods, subtasks, and
remote procedure calls. Coroutines spawn two or more routines that keep passing the con-
trol to each other, and suspend the control and computational state of other routines when
one of them is executing. Programming languages provide low-level lock mechanism, or
higher-level monitor mechanism to provide mutual exclusion of the processing working
on a shared resource. Object-oriented programming such as Java provides mutual exclu-
sion using synchronized methods that update the shared object. Any process has to use the
synchronized method for accessing the shared object.

There are multiple popular programming languages that support extensive integra-
tion with concurrency. Notable languages are Ada, C, C++, Emerald, parallel variants of
Fortran, Java, Concurrent Pascal, parallel versions of Haskell, Ruby, Lua, Emerald, Scala,
web programming language SMIL, multiple logic programming languages, and languages
for massive parallel computing such as HPF, Chapel, and X10. Concurrency in functional
programming languages, such as Lisp, Haskell, Ruby, and Scala, is discussed in Chapter 9.
The discussion on concurrency in logic programming languages is given in Chapter 10.

320    ◾    Introduction to Programming Language

High-productivity massive parallel languages such as X10 and Chapel are discussed in
detail in Chapter 13.

Ada uses a high-level structure task to spawn concurrent tasks. Multiple tasks can be
embedded in the body of a main program. A task uses entry-point and accept combination
for information exchange. The main program with embedded tasks terminates only after
all the tasks terminate.

Java uses multiple threads and synchronized methods to achieve concurrency and
mutual exclusion of the shared objects. All the methods that access the shared objects have
to be declared as synchronized methods to provide mutual exclusion among the methods.
There are some limitations of providing mutual exclusion at the method level: (1) locks are
associated not with a variable but a method, (2) a variable can still be updated by an unsyn-
chronized method, (3) lock cannot be set in one method and released in another method,
and (4) use of synchronized method slows down the execution by introducing sequential-
ity in the execution of synchronized methods.

8.10 ASSESSMENT
8.10.1 Concepts and Definitions

Alphabet of process, antidependence; atomicity; atomic operation; cal-by-copying; call-
by-copy restore; causality; coarse-grain concurrency; code migration; CSP; CSP algebra;
 cobegin-coend; control dependence; control-dependency graph; coroutines, critical section;
data dependence; data-dependency graph; data migration; data-parallel for-loop; data paral-
lelism; data-transfer overhead; deadlock; delinearization; distributed computing; domination;
fiber; fine-grain concurrency; fork-and-join; granularity; input source; interdependencies; lin-
earization; lock; loop lifting; loop-unrolling; marshaling; mailbox; memory model; message
passing; monitor; multithreading; mutual exclusion; object migration; output dependency;
 output source; packing; pipelining; postdomination; process; PDG; producer–consumer
relationship; program slicing; race condition; remote procedure cal; sequential composition;
sequential consistency; sequentiality; semaphore; shared resource; starvation; subtask; syn-
chronization; synchronized method; task; task parallelism; threads; transaction-abort; trans-
action commitment; transactional memory; unmarshalling; unpacking; volatile variable.

8.10.2 Problem Solving

 1. Draw a data-dependency graph for the following program, and perform statement
level processor allocation under the assumption that there is no overhead of transfer-
ring data between two processors. Also calculate the unit time taken to execute the
code assuming that the execution of each statement takes one unit time. Also assume
that variables X and W are aliases.

 X = 4; Y = 5; Z = X + 5; W = Y + 9; A = Y + W; B = X + Y;
 C = 2 * Z; Y = B + C;

 2. Make a data-dependency graph for the following program. Show minimum time taken
to execute the program, assuming a time delay of 5 microseconds (5 milliseconds)

Concurrent Programming Paradigm    ◾    321  

data transfer and packing/unpacking cost when the data is transferred from one pro-
cessor to the second processor. Also assume that the time of execution of an instruc-
tion in the same processor is 100 nanoseconds. Note: 1000 nanoseconds are equal to
one microsecond.

 X = 4; Y = 9; Z = X + Y; M = Y + 5; N = X + 7; W = Z + M;
 Y = 2 * W;

 3. Solve the data-dependency graph with maximum fine-grain concurrency. Show the
processor allocation and the minimum time taken to execute. Assume that the data
transfer cost (including packing and unpacking cost) between two processors is 50
nanoseconds, and the cost of executing a statement is 2 nanoseconds. Also assume
that variables X and M are aliases.

 X = 4; Y = 5; M = X + 4; W = 2 * Y; N = M + Y; U = 2 * M +
 4; X = U;

 4. Perform program slicing by replicating the producers and grouping statements to
reduce the data transfer overhead and improve the execution efficiency of the fine-
grain parallelism for problem 2 above.

 5. Write a Java program for producer–consumer operation using synchronized method
on a buffer that reads from a buffer of 80 characters.

 6. Write a CSP program that filters the negative integers from a list of integers.

 7. Write a merge-sort program using CSP, a thread-based model in Java, and Ada’s
 tasking, and compare.

8.10.3 Extended Response

 8. What do you understand by program slicing? How can program slicing be used to
improve the execution time? Explain using an example.

 9. Explain the difference between task parallelism and data parallelism using an
example.

 10. What are semaphores (locks), and how are they used in concurrent programming
with shared resources? What are the issues with semaphores?

 11. What are monitors, and how are they different from semaphores (locks)? How are
they used to solve the problems with shared resources? Explain.

 12. What are remote procedure calls? Explain. How is information exchanged between
the calling subprogram and the called remote procedure? Compare various param-
eter passing mechanisms for remote procedure calls.

 13. Discuss the design of an integrated language that supports both data and task
parallelism.

322    ◾    Introduction to Programming Language

 14. Discuss the algebra for communicating sequential processes.

 15. Discuss the various programming constructs in CSP language.

 16. What do you understand by sequential consistency? Explain. What role does sequen-
tial consistency play in the multithread-based execution? Explain.

 17. What is race condition, and how is it related to sequential consistency? Explain using
a simple example.

 18. Read about Java memory model for concurrency using articles suggested in Further
Readings, and discuss it in detail.

 19. Read about the actor-based message passing model; channel-based CSP model, and
thread-based model using Internet and articles suggested in the bibliography below,
and compare.

 20. Read more about Java threads and Ada’s tasking using Internet-based literature, and
compare Ada’s tasking and Java’s thread-based concurrency.

FURTHER READING
Agrawal, Hiralal. “On slicing program with jump statements.” In Proceedings of the ACM SIGPLAN

’94 Conference on Programming Language Design and Implementation. 1994. 302–312.
Andrews, Greg. Foundations of Multithreaded, Parallel, and Distributed Programming. Reading, MA:

Addison-Wesley. 2000.
Ben-Ari, Mordechai. Principle of Concurrent and Distributed Programming, 2nd edition. Addison

Wesley. 2006.
Benton, Nick, Cardelli, Luca, and Fournet, Cedric. “Modern concurrency abstractions for C#.” ACM

Transactions of Programming Languages and Systems, 26(5). 2004. 269–804.
Birrell, Andrew D. An Introduction to Programming with C# Threads, Revised 2005. Available at

http://research.microsoft.com/pubs/70177/tr-2005-68.pdf
Birrell, Andrew D. and Nelson, Bruce J. “Implementing remote procedure calls.” ACM Transaction of

Computer Systems. 2(1). 1984. 39–59.
Boehm, Hans-J and Adve, Sarita V. “Foundations of the C++ concurrency memory model.” In

Proceedings of 2008 ACM Conference on Programming Language Design and Implementation.
2008. 1–12.

Burns, Alan and Wellings, Andy. Concurrent and Real Time Programming in Ada. Cambridge, UK:
Cambridge University Press. 2007.

Cytron, Ron, Ferrante, Jeanne, and Sarkar, Vivek. “Compact representations for control depen-
dence.” In Proceedings of the ACM SIGPLAN’90 Conference on Programming Language Design
and Implementation. 1990. 337–351.

Hansen, Per B. “Monitors and concurrent pascal—A personal history.” In Proceeding HOPL-II: The
Second ACM SIGPLAN Conference on History of Programming Languages. 1993. 1–35.

Harris, Tim, Cristal, Adrian, Unsal, Osman S., Ayguade, Eduard, Gagliardi, Fabrizio, Smith, Burton,
and Valero, Marteo. “Transactional memory: An overview.” IEEE Micro. 27(3). 2007. 8–29.

Hoare, Charles. A. R. “Communicating sequential processes.” Communications of the ACM, 21(8).
1978. 666–677.

Concurrent Programming Paradigm    ◾    323  

Israd, Michael, Budiu, Mihai, Yu, Yuan, Birrell, Andrew, and Fetterly, Dennis. “Dryad: Distributed
data-parallel programs from sequential building blocks.” In Proceedings of Eurosys Conference.
2007. 59–72.

Lea, Doug. Concurrent Programming in Java—Design Principles and Patterns, 2nd edition. Addison-
Wesley, MA: Prentice Hall. 1999.

Lee, Edward A. “Problem with threads.” Computer, 39(5). 2006. 33–42.
Lewis, Bill and Berg, Daniel J. Threads Primer—A Guide to Multithreaded Programming. Addison-

Wesley, MA: Prentice Hall. 1996.
Manson, Jeremy, Pugh, William, and Adve, Sarita V. “The Java memory model.” In Proceedings of the

Principles of Programming Languages. 2005. 378–391.
Sottile, Matthew J., Mattson, Timothy G., and Rasmussen, Craig E. Introduction to Concurrency in

Programming Languages. Boca Raton, FL: Chapman and Hall/CRC Press. 2009.
Tanenbaum, Andrew and Steen, Marten van. Distributed Systems—Principles and Paradigms, 2nd

edition. Boston, MA: Prentice Hall. 2007.
Tip, Frank. “A survey of program slicing techniques.” Journal of Programming Languages, 3(3). 1995.

121–189.
Wiser, Mark. “Program slicing.” IEEE Transactions on Software Engineering, 10(4). 1984. 352–357.
Wolfe, Michael. Optimizing Supercompilers for Supercomputers. Research Monograph in Parallel and

Distributed Computing. The MIT Press. 1990.

325

C h a p t e r 9

Functional Programming
Paradigm

BACKGROUND CONCEPTS
Abstract computation and information exchange (Chapter 4); Abstract concepts in com-
putation (Section 2.4); Abstract implementation (Chapter 5); Concurrent programming
(Chapter 8); Data structure concepts (Section 2.3), Discrete structure concepts (Section 2.2),
von Neumann machine (Section 2.1).

Declarative programming hides the control from the programmer. The resulting program
is reflective of the underlying logic and is easier to maintain than imperative programs
except for the unfamiliar syntax of some declarative languages. There are two major
declarative programming paradigms: functional programming and logic programming.
Mathematical functions are the basis of functional programming, and predicate calculus
is the basis of the logic programming. Both mathematical models have been studied for
decades and are sound. In this chapter, we will study functional programming.

Functional programming is important from many aspects: (1) declarative style hides the
control from a programmer; program is only logic + abstraction; (2) functional programs
are more concise than imperative programs; (3) functional programming is becoming a
key paradigm that is being integrated in recent popular languages including many script-
ing languages such as Clojure, Ruby, Scala, and Python; and (4) functions are an important
part of almost all programming languages.

The work on functional programming started as early as 1960s with the development
of the language Lisp. Although many scientists disagree with the purity of functional pro-
gramming in Lisp, its contribution to functional programming is undeniable. Lisp con-
tributed many abstractions such as high-level representation of lists, meta-programming,
higher-order functions, and recursive style of programming.

Variables in a pure functional program are immutable assign-once value holders.
 Assign-once property of variables has caused many programming challenges, as simple
forms of index-variable based iterations are disallowed. This limitation gave rise to a new

326    ◾    Introduction to Programming Language

style of recursion-rich programming in Lisp, and the iterative versions of programs were
 modeled as tail-recursive programs. Lisp developers were quick to realize the advantages of
memory reuse and storing the results of previous computations for execution efficiency, and
 allowing the notion of global variables to support memorization of the previously computed
partial results that can be used at later computational steps. New data abstractions such as
iterators were also developed for the application of functions on a sequence of data items.

The mathematical theory of functional programming is deep-rooted in λ-calculus
that has been well-studied. Later Backus developed and refined a set of kernel functions
and a bunch of functional-forms that take functions as arguments to form complex func-
tions. Kernel functions are basic functions like arithmetic operations, Boolean operations,
data access and update functions, and comparison operations. Declarative programming
encourages top-down programming. A complex problem is progressively decomposed to
a combination of smaller problems. These smaller problems are progressively reduced to a
combination of kernel functions using functional forms.

A λ-expression is an unnamed function with three components: variable, body and
 parameter. An example of λ-expression is λx. (x + 4) 3. In this expression, the left-side
 occurrence of the symbol x is the variable declaration, and the expression within
the parenthesis is the body of the λ-expression. The value 3 is the parameter, which is
 substituted with the variable x, reducing the body of the λ-expression to (3 + 4), which can
be further simplified to derive the value 7. If we associate a name with the λ-expression,
then it becomes a callable function.

The implementation of functional programs is through an abstract machine that maps
the λ-expression to low-level abstract instructions. There are many abstract machines used
for different programming languages. The three popular abstract machines are SECD
machine, G machine, and ABC machine. The machines differ based on evaluation strategy
adopted for the expressions. SECD machine is suitable for both eager evaluation as well as
lazy evaluation of expressions. Eager evaluation means that all the parameter-expressions
are evaluated before substituting the variables by the parameter values. The parameter-
passing mechanism used in eager evaluation uses call-by-value. Another strategy is to
defer the evaluation of expression until expression simplification is needed. This strategy
to defer the evaluation until needed is called lazy evaluation, which has been described in
Section 9.3. Lazy evaluation is used the functional programming language Haskell. Lazy
evaluation uses either call-by-name or call-by-need.

Functional programming has been combined with different programming paradigms such
as imperative programming in the form of incorporating mutable objects, object-oriented
programming paradigm, logic programming paradigm, and concurrent programming
paradigm. Multiple multiparadigm languages such as Ruby and Scala have been developed.

The primary data abstraction used in functional programming is sequence that
is used for strings and collection of data-entities. Sequence was initially implemented
using linked list. However, list is a high-level representation at a programmer’s level, and
 programmers do not have to explicitly manage the chain of pointers. That is a big change
from imperative languages, where programmer has to explicitly write statements to use
chain of pointers.

Functional Programming Paradigm    ◾    327  

Functional programming languages support higher-order functions, as it gives them
 capabilities to (1) treat other functions as data, (2) build a function as data and transform into
function, and (3) build complex programs by joining multiple functions in variety of ways.

A higher-order function can treat another function as its argument, and derive new
complex function. Higher-order functions can be easily built using apply function that
converts data into function. For example (apply ‘square ‘(2)) will evaluate to give the func-
tion (square ‘2) that will evaluate to 4. Another example of a higher-level function is given
in function ‘foo’ written in Lisp. Lisp has been introduced here to give a flavor of the non-
imperative programming style employed by functional programming languages that looks
quite alien to a student trained in imperative and object-oriented programming style.

(defun foo (powerFunction Arg)
 (+ (apply powerFunction Arg) 4)
)

The first line shows the function name as the first argument and the data to the func-
tion as the second argument. The second line is the body of the function. The body of a
higher-level function performs two operations: making the argument 1 as a function with
the second argument as argument of the function, and then adds 4 to the outcome. The
function itself is written in prefix form like (function-name Arg1, …, ArgN). A function call
(foo ‘sqrt x) will compute √x + 4. Inner level is executed first, followed by the outer level.
The use of the single quote before a symbol shows that it is literal and not a function or
variable. A list is represented in Lisp as ‘(element1, element2,….elementN).

The popular programming languages that support functional programming paradigm
are Lisp, Scheme (Lisp family), ML, Miranda, Haskell, Ruby, Clojure, Lua, Erlang, Python,
and Scala. This chapter discusses some programming styles of the Lisp family, Haskell,
Hope, Ruby, and Scala. Chapter 11 again describes Ruby and Scala because of their object-
oriented features. Chapter 15 deals with the scripting features of Ruby, and Scala.

9.1 EXPRESSIONS
Many languages such as Haskell and Scheme directly allow user defined λ-expressions in
a functional program. A variable declaration in a λ-expression is preceded by the Greek
symbol λ to indicate the declaration of the variables and not the consumer occurrence
of the variable. Variable has no initial value, as it is assign-once and gets the value only
when a parameter is passed. The scope of the variable is in the following expression. If
a variable is not declared but occurs in the body of the λ-expression, then it is called a
 free-occurrence; the occurrence of a declared variable is called the binding occurrence. Let
us take the λ-expression λx.(x + y + 2). Here the variable x is the binding occurrence, and
y is the free occurrence. λ-expressions are normally written in prefix-form, as it is easier
to evaluate a prefix-form in a stack-based machine. However for better comprehension, we
will initially use infix-notation to represent a λ-expression. λ-expressions can be nested.
The scope of a variable is limited to the nesting level where it has been declared. The same
identifier name may represent two different variables depending upon where it has been

328    ◾    Introduction to Programming Language

declared. A variable declared at a level is visible within that level. λ-expressions can be
passed as parameters to another λ-expression.

Example 9.1

(λx.λy.(λz. z + 2) x + y) 3 4

The above λ-expression has two levels: the outer level has two variables, x and y, and
the inner level has z. The outer level expression x + y acts as parameter for the inner
level, and the parameter for outer levels 3 and 4 is supplied. The binding of variables
to parameters is done in left-to-right order. In this case, the variable x is bound to the
value 3, and the variable y is bound to 4. If the outer level expression is evaluated first,
then the expression after parameter substitution and simplification of the outer level
will reduce to λz. (z + 2) 7. In this case again the variable z is bound to the parameter
value 7, and the expression becomes 7 + 2, which can be simplified to give the value 9.

Example 9.2

λx. (x + x) (λz. z + 4) 3

In the above example, the λ-expression λz. z + 4 is a parameter for the left-hand side
λ-expression λx. (x + x), and the value 3 is a parameter for the λ-expression λz. z + 4.
One way to evaluate this expression will be to bind x to the λ-expression λz. z + 4,
and the expression would become (λz. z + 4) 3 + (λz. z + 4) 3, which would give 7
+ 7 = 14. Another way to evaluate this expression would be to bind 3 to the variable z,
which would reduce the expression to (λx. x + x) 7 that would reduce to 7 + 7 = 14.

9.2 EVALUATION OF λ-EXPRESSIONS
The evaluation of a λ-expression requires binding of the variable to a parameter value
and simplifying the resulting expression. The binding of the parameter value to a variable
 simply by textual substitution is called β-reduction, and the simplification of the expression
that has just constant values is called δ-reduction. Let us understand these two reductions
using the following example:

Example 9.3

λx. λy. (x + y) 3 4

In this λ-expression, the leftmost variable x at the same level will be bound to the
leftmost parameter-expression 3, and the next variable y is bound to the expression 4.
After the first β-reduction, the expression looks like λy. (3 + y) 4, and after the second
β-reduction, the expression would reduce to 3 + 4. Now a δ-reduction would simplify
the expression to 7.

Functional Programming Paradigm    ◾    329  

In the case of name-conflicts, where a variable has been declared at two places in a nested
λ-expression, the inner-level variable has to be renamed to avoid the naming conflict. This
renaming of the conflicting variable name is called α-substitution or α- conversion. So we
have three steps in evaluating a λ-expression: (1) α-substitution to remove the binding con-
flicts of the separate variables at two different levels by renaming the variable at inner level,
(2) β-reduction to substitute the parameters in leftmost-to-right direction one by one, and
(3) δ-reduction to simplify the final expression with constant values.

Example 9.4

(λx. λy. (λx. x + 4) x + y) 3 4

There are two occurrences of declaration of variable x. The scope of the vari-
ables is limited to their respective levels. The inner level has to be renamed using
α-substitution to resolve ambiguity in execution. Let us assume α-substitution
renames the inner variable x to z. The new λ-expression after the substitution is (λx.
λy. (λz. z + 4) x + y) 3 4. Now the variables are unique and can be reduced using a
series of β- and δ-reductions as described before.

9.2.1 Applicative-Order versus Normal-Order Reductions

The nested λ-expressions can be evaluated in two ways: (1) applicative-order reduction—
first try the innermost rightmost level and progressively move toward the leftmost out-
ermost or (2) normal-order reduction (NOR)—evaluate the leftmost outermost level, and
then progressively move toward the innermost level. The λ-expressions at the same level
are evaluated before moving to the next level. Let us understand applicative-order reduc-
tion using a simple example.

Example 9.5

In this example, we will use natural prefix order used in λ-expressions to represent
an expression.

λx. (+ x x) (λy. + y 4) 3

The above λ-expression is a combination of two λ-expressions: leftmost λ-expression
λx. (+ x x) has parameter (λy. + y 4), which has parameter 3. Applicative order reduc-
tion (AOR) would follow the below-mentioned reductions to get the final result:

 λx. (+ x x) (λy. + y 4) 3
→β λx. (+ x x) (+ 3 4)
→δ λx. (+ x x) 7
→β (+ 7 7)
→δ 14

330    ◾    Introduction to Programming Language

NOR tries from outermost and leftmost and moves toward innermost rightmost.
If we try NOR reduction on the same λ-expression, the reduction steps will be as
follows:

 λx. (+ x x) (λy. + y 4) 3
→β (+ ((λy. + y 4) 3) ((λy. + y 4) 3))
→β (+ (3 + 4) ((λy. + y 4) 3))
→δ (+ 7 ((λy. + y 4) 3))
→β (+ 7 (+ 3 4))
→δ (+ 7 7)
→β 14

The observations on both reduction techniques are as follows:

 1. AOR technique eagerly evaluates the expression of the parameters and then substi-
tutes the evaluated value to the left-hand side λ-expression. The number of the overall
reduction steps in AOR is less than in NOR.

 2. NOR technique defers the evaluation of parameter-expressions until after the sub-
stitution in the body of the left-hand side λ-expression. Deferring the evaluation of
expression is called lazy evaluation. The number of overall reduction steps in NOR is
more than AOR because of the multiple occurrence of bound variables in the expres-
sions. We also observed in the above example that λ-expression becomes bigger after
β-reduction because of the lack of eager evaluation of the parameter-expressions.
This explosion causes additional reduction steps. This explosion can be optimized
if we evaluate the replicated expression once and cache the values for future lookup
instead of evaluating replicated expressions. This is the basis of call-by-need and can
save significant amounts of computational overhead. In Example 9.5, after the opti-
mization, the expression λy. (y + 4) will be evaluated once, and the value 7 will be
saved. Next time when the expression is encountered, it is replaced by the value 7.
Expression matching is done using graph-based representation. This will decrease
the number of reduction steps from six to four, which is comparable to the number of
reduction steps used in AOR.

Church Rosser’s lemma states that if an expression is reduced either using AOR or
NOR technique, then the final normalized form would be the same irrespective of the
 reduction technique. This lemma allows implementation of programming languages
using either technique. Programming languages implementations use both the tech-
niques: Lisp family uses AOR technique, whereas Haskell uses NOR technique with
optimizations.

AOR has been implemented using SECD machine with eager evaluation. NOR uses
graph-based reduction and has been implemented using G-machines and ABC machines.
The implementation technique for lazy evaluation is discussed in Section 9.9.

Functional Programming Paradigm    ◾    331  

9.3 FPS—FUNCTIONAL PROGRAMMING SYSTEMS
Pure functional programming, proposed by John Backus, has two parts: kernel functions
and functional-forms that form a complex function out of simpler functions. Kernel func-
tions are the low-level basic functions that cannot be decomposed further. Functional
forms join two or more functions or provide additional control abstractions to form
complex functions. The function-forming abstractions have interesting algebraic proper-
ties and model effective control abstractions such as conditionals (if-then-else), iteration
(while-loop equivalent) and recursion. The basis of FPS was to identify the minimal set of
functions and abstractions that can be used to write functional programs. In this section,
we will discuss the various classes of kernel functions and functional forms proposed in
FPS by Backus.

FPS separates functions from parameters. A functional program in FPS does not use
variables. Rather, it uses an identity function to pull the value of the parameters within a
function and uses a constant function to introduce a constant value within a function. The
avoidance of a variable frees this programming style from memory locations and hence
from the von Neumann implementation model.

The parameters in FPS are stored in a sequence. For example, the addition of two num-
bers 3 + 4 is written as +: <3, 4>. The major data abstraction in FPS is a sequence of data
 elements. In addition, a data item could be an atom—a single entity that cannot be further
split, or a bottom symbol ⊥ to take care of error conditions. An empty sequence is denoted
by ϕ or <>. A sequence can contain atoms or a sequence. An atom could be a literal, an
integer, or a real number.

9.3.1 Kernel Functions

Kernel functions are divided into the following classes: arithmetic expressions; logi-
cal expressions, comparison functions, selector functions, insertion functions, transpose
 function, meta-logical predicates, miscellaneous function such as length, reverse, distribute
function, rotation function, identity function, and constant function. All functional pro-
gramming languages support most of these basic capabilities as built-in-functions or as
the library functions.

Comparison operations such as ‘<’, ‘>’, ‘=<’, ‘>=’, and ‘==’ check that the first operand
 satisfies a property compared to the second operand. For example, comparison operation
‘operand1 < operand2’ is written as < :<operand1, operand2>.

The selector functions are left-selector, right-selector, tl, and tlr to access an element from
a nonempty sequence of elements. Left selector selects the elements from the left-hand
side and is written as ‘1l’ for first element from the left, ‘2l’ for the second element from
the left, and so on. For example, 1l:<a, b, c, d> will return a; 2l: <a, b, c, d> will return
b; 1l: <> will map to bottom symbol ⊥, because an empty sequence does not have any
 data-entity, and 1l: x will map to the bottom symbol ⊥ because x is an atom. The right
selector selects the elements of a nonempty sequence starting from the right, and is written
as ‘1r’ for the last element of a sequence, 2r for the second last element of a sequence, and
so on. The function tl will yield the rest of elements of a sequence except the first element.

332    ◾    Introduction to Programming Language

For example, tl: <a, b, c, d> would yield <b, c, d>; tl :<> would yield a bottom symbol ⊥
because an empty sequence does not have a data element; and tl :x would derive a bottom
symbol ⊥ because the argument is not a sequence but an atom. The function tlr returns a
sequence containing all the elements of an input sequence in the same order except the last
element. For example, tlr : <a, b, c, d> will return <a, b, c>; tlr : <a> will return an empty
sequence <>; tlr : <> will map to bottom symbol ⊥ because an empty sequence has no
 element; and tlr: x will map to a bottom element ⊥.

The construction functions insert an element in the sequence or join two sequences.
The main construction functions are apndl, apndr, insert, and append. The function apndl
takes a data entity as the first argument and a sequence with n elements as the second argu-
ment, and returns a sequence with (n + 1) elements, such that the first argument is the first
element in the output sequence. For example, apndl:<1, <a, b, c>> will derive the sequence
<1, a, b, c>; apndl:<1, <>> will derive <1>; apndl : <<>, <>> will derive <<>> because
the first element is an empty sequence; and apndl : (1, 2) will derive the bottom symbol ⊥
because the second argument is not a sequence. Similarly, the function apndr takes a data
entity as the first argument and a sequence with n elements as the second argument and
returns a sequence with (n + 1) elements, such that the first argument is the last element
in the output sequence. For example, apndr:<1, <a, b, c>> will derive the sequence <a, b,
c, 1>; apndr: <1, <>> will derive the sequence <1>; apndr: <<>, <>> will derive <<>>
because the first element is an empty sequence; and apndr: (1, 2) will derive the bottom
symbol ⊥ because the second argument is not a sequence. The insert function takes three
arguments: index, sequence, and element; and insert the element at the position given by
the index to derive a new sequence. For example insert:<3, <a, b, c, d>, x> would derive
<a, b, x, c, d>. The append function takes two sequences and joins them, such that the new
sequence contains elements of the two sequences in the same order. For example, append:
<<1, 2, 3>, <a, b, c>> will return <1, 2, 3, a, b, c>, and append: <<>, <a, b, c>> returns
<a, b, c>.

The transpose function takes a two-dimensional matrix represented as a sequence of
rows such that jth element of the ith row represents the element a[i, j] of the matrix. The
transpose function derives a new transpose matrix atrans such that a[i, j] will become aTrans
[j, i]. Transposing a sequence of empty sequences derives an empty sequence. If input is not
a sequence of sequences, then the output is bottom symbol ⊥. For example, transpose: <<1,
2, 3>, <4, 5, 6>, <7, 8, 9>> would give <<1, 4, 7>, <2, 5, 8>, <3, 6, 9>>.

The metalogical predicates check the type of the objects. For example, is_ float, is_null,
is_nonnull, is_atom, is_sequence are metalogical predicates that check the type or the struc-
ture of the data elements. For example, is_integer:3 returns true, and is_integer:a will return
false. The function is_atom:a will return true. However, is_atom:<1, 2, 3> will return false.
The function is_sequence: <> will return true. However, is_sequence:a will return false.

The miscellaneous function length:<a, b, c> will return 3. There are two distribute
functions: distl and distr. The function distl takes an element as the first argument and
a sequence as the second argument and generates a sequence of sequences such that the
resulting ith element is a sequence of two elements: the first argument and the ith element
of the second argument. For example, distl : <1, <a, b, c>> will return a sequence <<1,

Functional Programming Paradigm    ◾    333  

a>, <1, b>, <1, c>>. If the second argument is an empty sequence, then the outcome is an
empty sequence. The function distr takes an element as the first argument and a sequence
as the second argument and generates a sequence of sequences such that the ith element of
resulting is a sequence of two elements: the ith element of the second argument followed by
the first argument. For example, distr : <1, <a, b, c>> will return a sequence <<a, 1>, <b,
1>, <c, 1>>. If the second argument is an empty sequence, then the outcome is an empty
sequence. The rotation functions rotate the elements of a sequence by a specified amount.
The function rotl rotates the elements to the left in a circular way by a specified amount. For
example, rotl : <2, <a, b, c, d, e>> would return a new sequence <c, d, e, a, b>. Similarly,
the function rotr rotates the element right in a circular way by the specified amount. For
example, the function rotr : <2, <a, b, c, d, e>> will derive the sequence <d, e, a, b, c>. The
reverse function takes a sequence as input and returns a reversed sequence: the elements of
the output sequence are in reverse order. For example, reverse: <1, 2, 3> will return <3, 2,
1>. The functions rotl and rotr rotate by one position if the amount of rotation that is not
specified. For example, rotl : <1, 2, 3, 4> will return <2, 3, 4, 1>, and rotr :<1, 2, 3, 4> will
return the sequence <4, 1, 2, 3>.

The constant function takes a constant value function such as 4 and maps every input
element to 4, irrespective of the data element, except for the bottom element ⊥. If the input
symbol is the bottom element ⊥ then the output will also be the bottom element ⊥. For
example, 4 : a will return 4. Similarly, 4: <a, b, c> will return 4. However, 4: ⊥ will return ⊥.
Because FPP does not use the notion of variable or literals within a function, constant
functions are used to introduce constant values inside a function.

The identity function, denoted by id, returns the input value itself. Because FPP does not
support variables, the function id has the effect of introducing the input parameter inside
the function. For example id: <1, 2, 3> returns <1, 2, 3> within the body of the function.

9.3.2 Functional-Forms for Constructing Complex Functions

There are seven functional-forms that are used to construct complex functions. They are
composition, construction, insert, apply_all, condition, iteration, and recursion.

The composition functional form is equivalent to sequence of commands in imperative
languages. A composition of two functions denoted as f ∙ g(x) is equivalent f : g :x, which
means first apply the function g on the parameter x, and then apply the function f on the
output g(x). The symbol ‘∙’ denotes composition. For example, square ∙ 1l : <4, 5, 6> will first
apply 1l : <4, 5, 6> to derive the value 4, and then square : 4 will derive 16.

The construction functional form takes a sequence of function enclosed within square
brackets and applies each function to the input parameter to derive an element of the out-
put sequence. For example, [square ∙ 1l, length, 1r] : <4, 5, 6> would give a sequence <16,
3, 6>. The value 16 is derived by the application square∙1l: <4, 5, 6>; the value 3 is derived by
the application length : <4, 5, 6>; and the value 6 is derived by the application 1r: <4, 5, 6>.
If any of the function maps to bottom symbol ⊥, then the overall evaluation is ⊥ because
< …, ⊥, …> is equivalent to ⊥.

The insert functional-form, denoted as /f, inserts a dyadic operator f between every ele-
ment of the given sequence. For example /+: <1, 2, 3> is equivalent to 1 + 2 + 3 = 6.

334    ◾    Introduction to Programming Language

Similarly, /*: <1, 2, 3, 4> = 1 * 2 * 3 * 4 = 24. The formal definition of insert functional
form is recursive as follows: if the parameter is a single-element sequence, then the insert
functional form returns the element inside the sequence that is /f: <x1> ≡ x1. Otherwise,
it applied the function recursively as /f: <x1, …, xn> ≡ f: <x1, /f : <x2, …, xn-1>>, which
means insert functional form is applied recursively on the rest of the sequence, and then
function f operates on two arguments: first element of the sequence and the result derived
from the recursive evaluation of the rest of the sequence. Another example of the use of
insert functional form is /<, which finds out the minimum of a sequence. Similarly, the
application of the functional form /> finds out the maximum of a sequence. A functional
program for finding out the average of a sequence is divide∙ [/+, length]. The application of
‘/+’ derives the sum of the sequence, and the application of the function length derives the
number of elements in the sequence. The construction functional form puts these values
in a sequence. The division of the total sum by the number of sequence gives the average
of the sequence.

The apply-all functional form, denoted by αf, applies a function f to all the elements of a
sequence <x1, …, xn> and returns a sequence of data elements of the form <f:x1, …, f:xn>.
For example, α square : <1, 2, 3> will return the sequence <1, 4, 9>. The functional form
apply-all is equivalent to iterators in programming languages and mapcar in Lisp pro-
gramming language.

The condition functional form is equivalent to the if-then-else statement except the body
of then-part and else-part are functions. The syntax of condition functional form is (if
<predicate> <then-function> <else-function>). For example, the magnitude of a number
can be derived by the conditional function (if >∙[id, 0] Id, * ∙ [-1, Id]). The predicate > ∙ [Id,
0] will return true if the given number is > 0. If the predicate returns true, then the then-
part function will be executed and will return the number itself. Otherwise, the else-part
function * ∙ [-1, Id] will be executed, which will multiply –1 with the number deriving the
positive magnitude.

The iterative functional-form is equivalent to while-loop except the body part is
a function. The semantics of the functional form (while <predicate> <function>) is as
 follows. The predicate is applied on the input argument. If the predicate returns true, then
the function is applied once, and the output of the function becomes the input parameter
for the next iteration cycle. The process continues until the predicate returns false. After
the predicate returns false, the last parameter value in that iterative cycle is returned as the
result. Let us assume that number of iteration cycles are n before the predicate returns false;
then output value is <function> ∙ <function> … n times <input parameter value>.

Example 9.6

For example, 2l ∙ (while > ∙ [1l, 0] [− ∙ [1l, 1], * ∙ [1l, 2l]]) ∙ [Id, 1] will find out the
factorial(n) starting from value n and progressively reducing the value of n and
multiplying the current value of n with the previously accumulated value until n
becomes < 1 and returning the final value of the accumulator. The accumulator holds

Functional Programming Paradigm    ◾    335  

the cumulative value of n * (n – 1) …, id at any point of time. The use of accumulators
is quite common in the iterative style of programming.

Let us assume that we are trying to find out factorial(4); then the input parameter
would be 4. The application of the function [Id, 1] will return <4, 1>. The first argument
is the input value, and the second argument is the initial accumulator value 1, which
is equivalent to the base case factorial(0). This sequence <4, 1> becomes the input for
the while-loop. The function > ∙ [1l, 0] : <4, 1> checks if 4 > 0. Because the predicate
returns true, the function [− ∙ [1l, 1], * ∙ [Id, 2l]] : <4, 1> is executed. The application of
the function − ∙ [1l, 1]: <4, 1> returns 3, because the application of the function 1l:<4,
1> return the value 4, the application of the constant function 1: <4, 1> derives 1,
and − : <4, 1> returns 3. The application of the function * ∙ [1l, 2l] is equivalent to 4 *
1, because 1l: <4, 1> returns 4, 2l: <4, 1> returns 1, and *: <4, 1> is equivalent to 4
* 1 = 4. The input parameters for the while-loop iterations progressively become <3,
4> → <2, 12> → <1, 24> → <0, 24>. After this predicate becomes false, the control
comes out of the while-loop with final value <0, 24>. The application of the function
2l: <0, 24> returns 24.

Example 9.7

Let us take the recursive version of writing a factorial program. The recursion func-
tional form is well-known. The definition of a function includes itself such that the
next calls progressively move toward the base case.

factorial ≅ (if >= ∙[Id, 1]*∙[Id, factorial∙ − ∙[Id, 1]] 1)

The function states that if the input parameter ≥ 1, then call factorial (input
parameter – 1) and multiply the returned value with the value of the input parameter.
Otherwise, return 1.

9.3.3 Programming in FPS

Once we have understood the different components of FPS let us write simple programs
using FPS to understand the subtle differences between functional programming para-
digm that does not allow destructive update. We will understand the use of functions and
functional forms used in FPS. We will also see how iterative programming style differs
from recursive programming style. Programming concepts have been illustrated using (1)
simple sort programs based on finding out maximum value and (2) adding two matrices.

Example 9.8

We find the functional equivalent of sorting. The programming style is different from
imperative programming because of the lack of destructive updates and the lack of
global variables. The major difference is that, because of the absence of destructive
update, operations like in-place swap are missing, and index-based updates are not

336    ◾    Introduction to Programming Language

possible. We use linked list-based representation for sequences instead of indexible
sequences. There are many ways to write a program to sort. However, the purpose in
this example is to illustrate various functional forms.

In this example, we repeatedly take the maximum, concatenate to the accumula-
tor, delete the maximum value from the sequence, and repeat the process for the
remaining subsequence, until the input list becomes empty(null). The examples illus-
trate the use of composition, insert functional form, construction functional form,
condition functional form, iteration, and recursion. It also shows the use of logical
expression and arithmetic expression.

minimum ≅ /<
delete ≅ (if ==∙[2l, 1l∙1r] tl∙1r 1r)
 ∙ (wh ile and∙[>∙[1l, 0], not∙==∙[2l,

1l∙1r]] [−∙[1l, 1],2l,rotl∙1r])
 ∙[length∙2l, 1l, 2l]
so rt ≅ (if null < > apndl∙[minimum, sort∙delete∙[minimum, Id]])

The program has three functions: minimum, delete, and sort. The function min-
imum finds the minimum of a sequence, and the function delete deletes a given
element from the sequence. The main function sort uses the functions minimum
and delete to sort the sequence. The program says that in order to sort a sequence
in the ascending order, there can be two cases: (1) sequence is null or (2) sequence
is nonnull. In case the input sequence is null, then return an empty sequence by
applying the constant function <>. Otherwise, minimum of the sequence is found
using the function minimum, and it is deleted from the sequence. The remain-
ing sequence is recursively sorted, and the minimum value is concatenated to the
sorted sequence.

The function minimum uses insert functional form to find out the minimum
element, as described earlier. The function delete illustrates the use of while
functional form to go through the sequence, the use of conditional functional
form to extract the value of an accumulator and the use of accumulator to store
the temporary minimum. The function delete has three parts, which are as
follows:

 1. Construction functional form takes as input <minimum value, sequence> and
converts into a triple <length of the sequence, minimum value, sequence) using
the function [length∙2l, 1l, 2l] that concatenates the length of the sequence to the
input parameter. The first element is used as an index value that is decremented
by 1 after every iteration cycle.

 2. The while-loop keeps repeating until the value of the first element becomes 0.
The function inside the while-loop rotates the sequence left in every iteration
cycle.

Functional Programming Paradigm    ◾    337  

 3. The if-then-else statement returns the rest of the sequence except the first element
if the first element of the sequence matches the minimum value. Otherwise, it
returns the complete sequence.

Let us go through step-by-step about how the functions will be invoked for a
sequence <13, 7, 44, 3>. First [minimum, Id] : <13, 7, 44, 3> derives the pair <3, <13,
7, 44, 3>>. The function delete is started on this new sequence. The application of
construction functional form [length∙ 2l, 1l, 2l] : <3, <13, 7, 44, 3>> returns the
sequence <4, 3, <13, 7, 44, 3>>. This value becomes the input parameter for the
while-loop. Because 4 > 0 and 13 ≠ 3, while-loop rotates <13, 7, 44, 3> left by one
position and decrements the counter value to 3; the parameter for next iteration
becomes <3, 3, <7, 44, 3, 13>>. In the next iteration, again 3 > 0 and 3 ≠ 7, the
operations are repeated again, and the parameter becomes <2, 3, <44, 3, 13, 7>>.
In the next iteration, 2 > 0 and 3 ≠ 44, the function is applied once more, and the
parameter for the next iteration becomes <1, 3, <3, 13, 7, 44>>. This time the mini-
mum value 3 is equal to the first element of the sequence, and the control comes out
of while-loop with the value <1, 3, <3, 13, 7, 44>>. The if-then-else again checks if
the second element is equal to the first of the rightmost element. Because 3 = 3, it
returns the tail of the sequence, that is <13, 7, 44> in the next cycle. After the recur-
sive call of sort <13, 7, 44> returns <7, 13, 44>. The minimum value 3 is inserted as
the first element using apndl to return the final sorted sequence <3, 7, 13, 44>.

The lack of the use of global variable to store previously computed results forces
application of the function minimum two times: first to compute minimum value in
sort function and second in the delete function. If we had global variables, the mini-
mum value could be memorized after the first computation and retrieved later using
lookup. However, it is shown that nontrivial programs can be written using pure
functional programming.

Example 9.9

The next example illustrates the power of apply_all to process all the elements of
a sequence using matrix addition. The two-dimensional matrix is represented as a
sequence of rows, and each row is a sequence of scalar values. Adding two matrices is
equivalent to adding a sequence of rows, and adding two rows is equivalent to adding
all corresponding elements. The program is given below:

gr oup ≅ (if null∙1l <> apndl∙[[1l∙1l, 1l∙1r],
group∙[tl∙1l, tl∙1r]])

add-row ≅ α+∙group
ad d-matrix ≅ (if and∙[==∙[length∙1l, length∙1r],
=∙[length∙1l∙1l, length∙1l∙1r] αadd-row∙group)

The above program adds two matrices using three functions: group, add-row, and
add-matrix. The recursive function group takes two sequences and makes a sequence of

338    ◾    Introduction to Programming Language

sequences by pairing the corresponding elements of two sequences. For example, group:
<<1, 2, 3, 4>, <10, 11, 12, 13>> would return <<1, 10>, <2, 11>, <3, 12>, <4, 13>>. The
function add-row takes the output of group, and applies add-function ‘+’ on each element of
the sequence. For example, add-row: <<1, 10>, <2, 11>, <3, 12>, <4, 13>> will return <11,
13, 15, 17>. The function add-matrix groups the corresponding rows of a matrix together
and applies the function add-row on each of them using the apply-all functional form.

9.3.4 Comparing λ-Expressions and FPS

The major difference between λ-expression and FPS is (1) use of the variables in
λ-expressions, (2) use of functional form abstractions in FPS, and (3) use of naming in FPS
that allows callable functions. All of the functional forms in FPS can be programmed using
λ-expressions. However, the programs using λ-expressions look lot more complex unless
they are associated with names. Most of the high-level functional programming languages
associate name with functions and also allow variables. The purpose of lack of variables in
FPS demonstrates that programs can be written just as a combination of functions without
any need for variables. However, the use of variables in high-level programming languages
makes it convenient to access and transform the input parameters. We have seen that lack of
variables and constants forces us to use additional functions such as “identity function” and
“constant functions” that do not add to better comprehension of the program. Although
FPS is a cleaner theoretical tool and clearly marks kernel functions and functional-forms, it
needs to be augmented with a more comprehensible style of programming and abstractions.

9.4 ABSTRACTIONS AND PROGRAMMING
Modern programming languages supporting functional programming paradigm are
grouped under five major categories: (1) pure functional programming languages, (2) lan-
guages that support functional programming along with mutative objects and destructive
updates, (3) languages that integrate functional programming with object-oriented pro-
gramming, (4) function programming languages that support concurrent programming,
and (5) multiparadigm languages. Haskell is a pure functional programming language.
Lisp, Scheme, and ML mix up the imperative programming paradigm with functional pro-
gramming paradigm. Ruby, Scala, and Emerald mix up object-oriented programming with
the functional programming paradigm. Languages like Haskell, Scala, and Ruby support
concurrency. Languages like Scala and Ruby are multiparadigm languages that support
functional programming, concurrent programming, and object-oriented programming.

This section deals with various abstractions supported by different languages and how
programs can be written in the Lisp family of languages, Haskell, Hope, Scala, and Ruby.
Languages such as Ruby, Scala, and Emerald will be discussed again while discussing
object-oriented languages to see their multiparadigm programming style.

9.4.1 Abstractions in Functional Programming Languages

Abstractions in functional programming languages, are somewhat different from impera-
tive languages, because the functional programming paradigm is a declarative program-
ming paradigm and does not support destructive update in pure form. The parameters are

Functional Programming Paradigm    ◾    339  

passed to a function that evaluates an expression in the body of the function after binding
the parameter to the declared variables. Owing to the lack of destructive updates, variables
cannot be reused to assign a new value. This gave rise to the notion of immutable data
structures and creating copies of the data structures when they had to be updated. The
main data entity in functional programming is an immutable data sequence. In the early
days of functional programming, sequences were implemented using linked lists. Thus the
control abstractions were based upon list-based operations. Because list is a recursive data
structure, recursive procedures were consider a natural programming style in functional
programming. Iterative programming styles that could access and update an array using
an index variable were not considered suitable for pure functional programming, because
index variable and array locations are frequently destructively updated in traditional index
variable based iteration. Instead tail-recursive procedures on sequence-based data abstrac-
tions, and later iterators were used for processing collection of data entities. Another
approach taken by many functional programming languages is allowing a limited amount
of imperative programming with destructive update to (1) store partial computations; (2)
memory reuse for iterative constructs such as for-loop, while-loop; and do-while-loop; and
(3) allow array-based operations. For example, the Lisp-family and Ruby allow destructive
update of variables. Ruby allows mutable dynamic arrays, and Lisp-family, Ruby and Scala
allow iterative constructs such as while-loop and for-loop.

9.4.1.1 Data Abstractions
Function programming languages are based upon the use of sequence. In the early days
of Lisp, sequences were implemented using linked lists with limited operations such as
concatenating in front of the list, appending lists, checking for empty and nonempty lists,
association lists, and the use of frames. Lisp also supported the use of imperative program-
ming paradigm by supporting global variables and destructive update of linked lists. Later
functional programming languages extended the operation on sequences by treating the
sequences as indexible. In addition to sequence in the form of linked lists, the Lisp family
of languages also supports arrays, association lists, strings as sequence of characters, and
atoms. Haskell and Hope are pure functional programming languages and do not support
destructive update. CLOS—a variation of Lisp, Scala, and Ruby—supports object-oriented
programming. Every element in Ruby and Scala is treated as an object. Haskell also supports
tuples. Ruby and Scala support both mutable and immutable objects. Ruby supports dynamic
indexible sequences that can be used as arrays, stacks, queues, and can simulate linked lists.

Functional programming languages inherently support parametric polymorphism. ML
is the first language to support declarative parametric polymorphism. Hope is another
elegant functional programming language that integrated pattern matching like logic pro-
gramming languages and expression evaluation. Hope is a strongly typed polymorphic
language that supports type variables. Haskell supports an hierarchical class of type dec-
larations. Many functional programming languages such as Miranda use union of types
to handle the problem of overloaded operators. Some of the functional programming lan-
guages like Haskell also support the notion of modules and use export–import to access
the functions across modules.

340    ◾    Introduction to Programming Language

9.4.1.2 Control Abstractions
Almost all the functional programming languages support control abstractions: composi-
tion, apply-all, conditionals, iteration, and recursion. Some of the control abstractions like
insertion and construction can be simulated using other functions. Functional languages
support first-class objects, which means that functions can be built as data and can be
passed as parameters. In Lisp, the apply function converts data into function. For example,
(apply ‘square ‘(4)) will generate a function call (square 4). The Lisp family and Ruby sup-
port all three types of iterations: indefinite iteration, definite iteration, and iterators. All
functional programming languages support iterators, and many such as Ruby and Scala
support while-loop. The Lisp family supports a function mapcar that is the same as the
apply-all functional form.

The evaluation strategy of functional programming languages can be eager applica-
tive order evaluation or lazy normal order evaluation. For example, the Lisp family of
languages uses applicative-order eager evaluation, and Haskell uses lazy evaluation. Lazy
evaluation has an advantage of deferring the evaluation until needed. However, it expands
the intermediate-reduced expressions that need to be optimized for efficient evaluation.
One such technique to optimize is call-by-need, which is a variation of call–by-name.
The efficiency of call-by-need is between call-by-value and call-by-name. Common sub-
expressions are evaluated only once in call-by-need, and their value is substituted in
multiple occurrence of the same subexpressions instead of evaluating them repeatedly.
Call-by-need is slower than call-by-value because of the overhead of bookkeeping to store
the value of the evaluated expressions and to delay the evaluation of an expression. The
Lisp family and ML use call-by-value for parameter passing because of eager evaluation
implementation technique, whereas Haskell uses call-by-need because of optimized lazy
evaluation.

Functional programming languages use three techniques to perform I/O operations:
(1) stream-based IO, (2) continuation-based IO, and (3) monads. Stream-based IO sends
a request to the operation system that opens a channel between the file and the program,
where the program can perform input and output operations. Continuation-based IO refers
to each read and write operation as a transaction. If the operation succeeds, then a suc-
cess continuation is invoked; if the operation fails, then a failure continuation is invoked.
Monads are used exclusively in Haskell. Monads are abstractions for side effect-based IO
programming.

9.4.2 Abstractions and Programming in the Lisp Family

Lisp and Scheme use s-expressions (symbolic expression) of the form (function Arg1, ….,
ArgN) to call a function. For example, adding two numbers is written as (+ 2 3). Data
and functions are separated using a quote before the data. They support most of the ker-
nel functions described in FPS and have a rich library of mathematical functions. They
use cons to insert an element in front of a sequence that is similar in semantics to apndl
in FPS. However, they have no notion of inserting an element on the right-hand side
because of the way linked lists are implemented. The kernel functions like rotr, rotl, Id,
and constant functions are missing for different reasons. Id and constant functions are

Functional Programming Paradigm    ◾    341  

not needed, because most of the programming languages use variables instead of identity
function or constant functions to pull in the parameter values in the function. In terms of
functional forms, they support composition, condition, apply-all, recursion, iteration, and
conditionals. The higher-order function apply converts first class objects into functions.
The recursive definition shown in Example 9.10 written in Lisp, uses the higher-order
function apply to build construction functional form. A scheme program has similar syn-
tax and constructs as a Lisp program: the reserved word ‘defun’ would be replaced with
‘define.’ Scheme language is a member of the Lisp family. The major difference between
Lisp and Scheme is that Scheme supports a static scope, whereas Lisp supports both static
and dynamic scope.

Example 9.10

The three functions described below illustrate programming style in Lisp. First two
functions are straightforward. The function add5 adds the value 5 to the param-
eter value and returns. The function square returns value * value. The third function
simulates the effect of “construction” functional-form: the first argument is the list
of functions, and the second argument is the list of arguments. Data is given in the
form of a list because the higher-order function apply that expects the arguments in
the form of a list. For example, a call like (construction ‘(add5 square) ‘(4)) will give a
list ‘(9 16).

(defun add5(Value) (+ 5 Value))
(defun square(Value) (* Value Value))
(defun construction(FunctionList Argument)
 (if (null FunctionList) nil
 (cons (apply (first FunctionList) (list Argument))
 (construction (rest FunctionList) Argument))
)
)
)

The program returns nil (empty list) if the argument FunctionList is an empty list.
Otherwise, it converts first element of the argument FunctionList into a function,
using the higher-order function apply. The definition of the functional form construc-
tion is recursive and calls itself with rest of the FunctionList that returns the rest of
the output sequence. The function cons concatenates first returned value with the rest
of the output sequence to derive the final list.

Example 9.11

The following recursive function is written in the programming language Scheme
to simulate the functional form apply-all. The recursive function uses the higher-
order function apply to apply the function MyFunction on one argument at a time,

342    ◾    Introduction to Programming Language

and then calls apply-all recursively again to apply the function MyFunction on the
rest of the arguments. The output list is built by concatenating the result of the
 applying the function MyFunction on the first element of ArgsList and the rest of the
sequence derived by recursive invocation of the functional form apply-all.

(define apply_all(MyFunction ArgsList)
 (if (null ArgsList) nil
 (cons (apply MyFunction (list (first ArgsList)))
 (apply_all MyFunction (rest ArgsList))
)
)
)

The Lisp family supports multiple types of iterations: dowhile, dolist, and dotimes.
The functional dowhile is a typical indefinite iteration that keeps applying a function
until the predicate becomes false. The functional dolist is a typical iterator that keeps
selecting the next element out of a list and executing a function until the list becomes
empty. The functional dotimes executes the iteration a fixed number of times. The
application of the functional forms dolist and dotimes is illustrated in Figure 9.1.

In Figure 9.1 global variables are set by using the setq command. A global variable
can be bound to a single entity or a complex entity like linked list, or an expression
which is evaluated first before binding the resulting value to the global variable. The
function add5_to_all illustrates the use of the functional form mapcar to apply a
given function add_5 to all the elements of the sequence given in ArgList. The func-
tion square_and_add illustrates the nesting of function to simulate the effect of func-
tion composition. First the function square is called, which becomes the argument
for the function add_5. The function hypotenuse shows the use of passing function
as parameter and computes the length of a hypotenuse of a right angle triangle using
a built library function sqrt. Both square(x) and square(y) are argument for the addi-
tion operator. The output of addition becomes an argument for the library function
sqrt. The function factorial computes the factorial of a given number and illustrates
the use of the if-then-else construct in implementing a recursive function: then-part
is the base case, and the else-part is the recursive definition.

The recursive function sumlist adds a sequence of numbers and illustrates the use of
the cond statement in Lisp. Cond-statement is a general form of conditional-statements
that can be used for both case statement and if-then-else statement. The function add_
row illustrates the use of the functional-form mapcar to add two sequences. The recursive
function add_matrix combines the recursive invocation of the functions add_matrix and
mapcar to add two matrices. The program utilizing dolist picks up the next row from the
sequence matrix and prints out one row at a time, until all the elements of the sequence
matrix have been consumed. The program utilizing dotimes finds out the number of rows
in the sequence matrix using a local variable size in the scope of let declaration, and then

Functional Programming Paradigm    ◾    343  

loops as many times using an index variable index that steps through from 1 to size. In
every iteration cycle, the corresponding row is picked up using the function (nth index
matrix) and printed using the input–output function print.

9.4.3 Abstractions and Programming in Hope

Hope is a polymorphic language that integrates functional programming and pattern
matching. Its procedures are a set of rules, like Prolog rules, discussed in Chapter 10. It
performs pattern matching between the right-hand side functional call with the left-hand
side of a rule and passes the substitutions to right-hand side equation that is evaluated.
Hope supports control abstractions such as if-then-else and while-loop and higher order
functions that treat functions as data. However, Hope flattens out complex expressions into
flat expression like Prolog before calling another function.

(defun greet () (print “Hello World”)) ; defining a function greet
(defun add5 (x) (+ x 5)) ; defining a function
(defun square(x) (* x x))
(setq m 5) ; setting the value of a global variable m to 5
(setq p ‘(4 “Hello World”)) ; binding a global variable p to a list
(setq q (* (first p) m))

; Implementing apply-all using mapcar
(defun add5 _ to _ all (ArgList) (mapcar ‘add _ 5 ArgList))
(defun square _ and _ add(x) (add5 (square x))) ; composition
(defun hypotenuse (x y) (sqrt (+ (square x) (square y))))

; Recursive definition of factorial using if-then-else
(defun factorial(n) (if (= n 0) 1 (* n (factorial (- n 1)))))

; Recursive definition using conditional statement
(defun my _ sum(DataList)
 (cond ((null DataList) nil)
 (t (+ (first DataList) (my _ sum (rest DataList))))
)
)

; apply-all using mapcar to add two sequences
(defun add _ row (Seq1, Seq2)
 (mapcar ‘+ Seq1 Seq2) ; add corresponding elements of Seq1 and Seq2

; recursion with multiple arguments to add two matrices
(defun add _ matrix [(Matrix1, Matrix2)
 (if (null Matrix1) nil (cons (add _ row (first Matrix1) (first Matrix2))
 (add _ matrix (rest Seq1) (rest Seq2)))
)
)

; printing using dolist
(defun print-matrix (Matrix)
 (do list (V Matrix) (print V))) ; Consume all the rows

; printing using dotimes
(defun print-matrix (Matrix)
 (l et ((size (length Matrix))) ;
 (dotimes (Index size) (print (nth Index Matrix)))
)
)

FIGURE 9.1 Illustrating abstractions and syntax in Lisp.

344    ◾    Introduction to Programming Language

Example 9.12

The example shows the declaration of type variable for supporting polymorphism,
using a definition for append function. The polymorphic-type declaration reads
that the function append takes a Cartesian product of two lists of any type, denoted
by type variable alpha, and derives a list of the same type. The symbol ‘#’ denotes
Cartesian product. Left- and right-hand side of functional definitions are separated
by the symbol ‘<= ,’ and the symbol ‘::’ denotes concatenation of the first element
with the rest of the sequence. Here ‘::’ has been used to verify that the list x::xs is a
nonempty list.

typevar alpha
dec append: list(alpha) # list(alpha) → list(alpha)
append(nil, Ys) <= Ys.
append(x ::Xs, Ys) <= x ::append(Xs, Ys).

The above program reads that appending an empty list to another list gives the
same second list Ys, and appending two nonempty lists is equivalent to concatenating
the first element of the first list to the recursive building the list by appending the rest
of the first list with the second list. Note that the style of programming is equational.

Another example of supporting higher-order function in Hope is given below:

de c apply_all : list(num) # (num → num) → list(num)
apply_all(nil, function) <= nil
ap ply_all(first :: rest, function) <= function (first) :: apply _ all
(rest, function)

The polymorphic-type declaration reads that given a list of numbers and a func-
tion that maps a number to number, the functional form apply_all derives a list of
numbers. The program reads as follows:

 1. If the first argument is an empty list, then return nil;
 2. If the first argument is a nonempty list and the second argument is a function,

then the result is concatenation of applying the function of the first element and
the result derived tail recursively by calling the function apply_all on the rest of
the data elements and the function.

9.4.4 Abstractions and Programming in Haskell

Haskell is a statically typed type-safe functional programming language. Haskell sup-
ports parametric polymorphism and functional-forms such as conditionals (case state-
ments and if-then-else in Haskell), iteration, recursion, composition, insert (simulated
using foldl in Haskell), and apply-all (map in Haskell). Haskell implementation uses lazy
evaluation. Iteration in Haskell is potentially like indefinite loop. However, because of lazy
 evaluation, it does not run away. Haskell uses the symbol ‘.’ to compose two functions. For

Functional Programming Paradigm    ◾    345  

example, (square.add5) x is equivalent to ‘square ∙ add5 (x). The higher-order functional
form map in Haskell is used to apply function to all elements of a sequence. The func-
tion map takes another function and a sequence of data elements as input, and applies
the input function to every element of the sequence to generate an output sequence. For
example, the function map (add5)[1, 2, 3] will generate a sequence [6, 7, 8] by adding 5 to
every element of the input sequence. The assignment operation is assign-once, and vari-
ables are immutable.

Haskell supports sequences in the form of lists. Haskell got rid of the irritating
 parentheses in Lisp and uses an infix form of expression for better human comprehen-
sion. For example, Haskell will evaluate an expression 2 + 3 to 5. A list in Haskell is
represented by a pair of square brackets. For example, a Haskell function length[a, b, c]
would yield a value 3. A nonempty list is represented as x : xs, where x is the first element,
and xs is the rest of the list. The elements of a list can be accessed using access function fst
to pick the first element of a list, and snd to pick the second element of the list. Comments
are written within {- … -}.

Haskell programs are divided into modules, and modules can be loaded into other mod-
ules. The module name and the file names are generally the same. The functions can be
exported out of a module. Unless the functions are exported, they remain private to the
module. Exported functions need to be imported by other modules. The functions are
imported either by specifying the module or specifying the functions within parentheses
after the specification of a module.

A function definition has two sides: the left side contains the name of the function
 followed by the parameters, and the right side contains the definition of the functions. Left
and right sides are separated by ‘=’ symbol. Tuples are put inside parentheses, and strings
are put inside a pair of double quotes. Conditionals can be represented as case-statement
or if-then-else statement or multiple mutually exclusive definitions. Haskell also supports
guarded commands. Haskell program has a main module and a main function.

Figure 9.2 shows many working programs that compile in GHC (Glasgow Haskell
 compiler) illustrating many programming features. Although it does not give complete
capabilities of Haskell, it illustrates the syntax and programming style of Haskell. For the
programs in Figure 9.2, the name of the file is main.hs. Once the main function is declared,
any number of functions can be declared. In Figure 9.2, there are three different definitions
of factorial: factorial using case-statement, factorial1 using if-then-else statement, and facto-
rial2 using mutually exclusive definitions.

The function square_and_add illustrates the composition square ∙ add5 of two func-
tions: square and add. Note that if the type is not declared, then polymorphic type is
inferred automatically. The function is polymorphic and can be used for different types of
data objects that support overloaded operator ‘+.’ The function hypotenuse shows another
way to compose a function where the value returned by the first function is treated as an
input argument by the second function. In the case of hypotenuse, the expression square
x + square y acts as the input for the library function sqrt.

The recursive function my_sum shows the use of recursive programming using recursive
data structure list. The function reverse shows the use of adding an element at the right end

346    ◾    Introduction to Programming Language

of a list. The function add_row takes the corresponding elements of two sequences, and
adds them. It is equivalent to adding two rows of a matrix as the rows are represented as
sequences.

The function add_matrix takes two matrices and adds them by repeatedly calling
add_rows. The output matrix is constructed by concatenating the result of adding first
corresponding rows with the sequence of rows derived by recursively adding rest of the
matrices.

Haskell has influenced the development of many functional programming languages
specially Python, later versions of Java, C#, Visual Basic, and Scala. Python is a dynami-
cally typed scripting language that has adopted list notion. Java’s generic type has been
influenced by type classes in Haskell. C#, Visual Basic, and have adopted ideas from
monads.

module main where
main = putStrLn “Hello World” {- main function -}
add5 x = x + 5 {- Add 5 to parameter and return -}
square x = x * x {- return square of a number -}
m = 5 {- assigning a value to a variable -}
p = (4, “Hello World”) {- assigning tuple to a variable -}
q = fst p * m
hypotenuse::Float → Float → Float
hypotenuse x y = sqrt(square x + square y)

square _ and _ add x = (add5.square)x {- composition -}
add5 _ to _ all x = map (add5)x {- apply-all -}

{- finding factorial using case statement -}
factorial n = case n of
 { 1 -> 1; {- handle the base case -}
 _ -> n * factorial(n - 1) {- handle recursive definition -}
 }
factorial1 1 = 1 {- base case -}
factorial1 n = n * factorial1(n-1) {- recursive definition of factorial -}

{- finding factorial using if-then-else -}
factorial2 n = if n == 0 then 1 else n * factorial(n - 1)

{- Guards -}
my _ minimum x y | x <= y = x
 | y <= x = y

{- recursive programming and concatenation at the end -}
my _ reverse [] = [] {- base case -}
my _ reverse (x:xs) = my _ reverse xs ++ [x] {- +̒+ʼ adds at the end -}

{- Recursive programming with multiple arguments -}
add _ row [] [] = [] {- base case -}
add _ row (x:xs) (y:ys) = (x + y:add_row xs ys)

add _ matrix [] [] = [] {- base case -}
add _ matrix (r:rs) (w:ws) = (add _ row r w:add_matrix rs ws)

FIGURE 9.2 Abstractions and programming in Haskell.

Functional Programming Paradigm    ◾    347  

9.4.5 Abstractions and Functional Programming in Scala

Scala is a multiparadigm language that supports functional programming along with
object-oriented programming. Every value is treated as an object in Scala. Every operation
in Scala is a method call. Thus the output of a function is an object, and function types are
classes that can be inherited by the subclasses. In this section, we will emphasize only the
functional programming paradigm. The object-oriented programming part will be dis-
cussed in Chapter 11. Scala is also used as a scripting language.

Scala is built on top of Java and has natural interface with Java. Like Java, Scala pro-
grams are compiled to JVM byte codes and run like Java programs on any machine.
Scala supports both mutable and immutable data structures. Scala stands for “scal-
able language,” and it can grow with user demand by interfacing naturally with Java
libraries. The syntax design of Scala has been influenced by Java and C# and looks like
a typical dynamically typed scripting language. Its functional programming syntax
is influenced by ML, and its class type is influenced by Haskell. Scala supports poly-
morphism, and if the type of the variable is not given, then it is inferred by the value
assigned to a variable.

Scala supports a rich set of data abstractions: arrays, associative maps, lists, tuples, and
sets. Arrays are mutable objects, and lists are immutable objects. Lists are used for the
functional style of programming, and arrays are used for the imperative style of program-
ming with destructive updates. Sets and associative maps can be used in both mutable
and immutable way using traits. Traits are abstract interfaces that extend the class of the
data objects. For example, if we describe a floating point number as a class, then prob-
ability class extends the floating point number class by adding three extra traits: (1) prob-
ability ≥ 0, (2) probability ≤ 1, and (3) sum of probabilities ≤ 1. In a more real world
example, if we have a class vehicle, and a trait ‘four wheeler’ that extends vehicles, then
car is a class with a trait four wheeler. In the case of sets and associative maps, we can
associate a trait mutable and immutable with the class set or associative maps to make
them mutable or immutable. When we study subclass in object-oriented programming,
then we will observe that traits are more like additional methods or properties one can
associate with a subclass. The difference between traits and methods specific to subclasses
is that traits can be associated with subclasses of different classes to give them the same
behavior associated with a trait.

Arrays of integer are declared as Array[Int](4). This means that the object is an array
containing four integers. The subscripted variables are kept inside a pair of parentheses.
Because every data structure is an object, an array is created using the constructor ‘new’.
For example, we can say val studentNames = new array[String](20). This will create an
array object containing 20 strings that can be accessed by studentNames(i), where i is an
index variable of the type integer.

Lists can be declared as List(1, 2, 3) or as multiple elements concatenated using the
symbol ‘::’. For example, List(1, 2, 3) can also be written as 1::2::3:: Nil. Two lists xs and ys
are appended using the symbol ‘:::’. For example, List(1, 2) ::: List(3, 4, 5) derives List(1, 2,
3, 4, 5).

348    ◾    Introduction to Programming Language

Scala supports if-then-else, case statement, while-loop, do-while-loop, iterator foreach-
loop, definite iteration for-loop, and recursive function calls. By passing a function as a
 parameter to another function, composition can be simulated. Scala supports destructive
update in index variables making it possible to develop programs using regular iteration.
Scala also supports operator override like Java does.

Scala functions are defined using the reserved word def and use standard parameter
passing. Type is explicitly declared and verified. Scala uses Java classes, can import Java
classes, and can access methods using <class-name>.<method-name>, where method is a
function declaration. Following is a simple example of a function definition:

def factorial(n: Int): Int =
{if (n == 0) 1
else n * factorial(n – 1)
}

The function describes the factorial function using Scala syntax. It declares type of the
argument as integer and type of the function as integer and calls the function recursively.
Note that the syntax is very similar to traditional programming languages.

Scala is a block structured language, and functions can be nested inside another func-
tion. Local variables have scope within the blocks where they have been declared. Inside the
nested block, the variables that are declared in outer blocks are shadowed. Scala supports
the module concept using Java packages and can import methods using import clause.
Scala imports all the class libraries of Java and any predefined library in Scala by default
before executing a program. Scala uses both call-by-value and call-by-name for parameter
passing. The syntax for call-by-name is <identifier> : ‘=>’ <Type>, whereas the syntax for
call by value is <identifier> : <Type>. Scala utilizes Java’s exception handling capability.

Figure 9.3 shows some of the abstractions for functional programming using Scala
syntax. The syntax mixes up destructive updates of variables along with functional pro-
gramming. However, list is an immutable object and cannot be destructively updated. The
programs in Figure 9.3 show Scala’s capability and syntax to build functions recursively,
iteratively, using composition, using apply-all function-form simulated using map in Scala,
and construction functional-form that applies multiple functions on one data element to
generate a sequence. The function add5 adds 5 to an input parameter n and returns the
value. Note that the parameter type and function type has been explicitly declared. The
function body is a block and is enclosed in curly brackets.

The function square_add shows composition square ∙ add5 of two functions: square and
add5. First the function add5 is applied to generate a number that is 5 greater than the
input parameter, and then the generated value is squared. For example, square_add(5) is
equivalent to square(5 + 5) = 100.

The function power_rec illustrates the use of if-then-else and recursion in Scala. Note that
the predicate is enclosed in parentheses, and there is no mutation. In contrast, the function
power_iter uses local mutable variables a and b to compute the value of the function xn. The
value is accumulated in the accumulator b, and is finally returned after the termination of

Functional Programming Paradigm    ◾    349  

the while-loop. The functions sum_list and add_seq illustrate the use of recursion using
lists. The function sum_list adds all the integers inside a list using recursive call on the rest
of the list. The built-in method isEmpty is used to verify an empty-list, the method head is
used to access the first element of a list, and the method tail is used to access the rest of the
elements in the list. The function add_row has been described earlier while discussing Lisp
and Haskell. The only change is the use of the methods head and tail to describe the first
element and the rest of the elements in the list.

Scala uses a built-in map function that provides the capability of apply-all functional
form. However, the parameter is written first, followed by higher order function map,
 followed by the function name. In this case apply_all(int_square, List(1, 2, 3)) will generate
a list List(1, 4, 9). Another important thing to note is the way the type has been declared
for the function. Function’s type has been declared as Int => Int, which means it takes an

val x = 2 + 3 // declare a global variable
println(“Hello World”) // print “Hello World”
def add5(n: Int): Int = {n + 5} // function to add 5 to a number
def square(x: Double): Double = {x * x} // square using double _ float
def int _ square(x: Int): Int = {x * x} // integer _ square
def square _ add(x: Int): Int = int _ square(add5(x)) // composition

def power _ rec(x: Double, n:Int): Double =
 {if (n == 0) 1 else x * power _ rec(x, n-1)} // if-then-else and recursion

def power _ iter(x : Int, n: Int): Int = //iterative version of power
 {var a = n; var b = 1;
 while(a > 0) {b = x * b; a = a - 1}// destructive update of variables
 }

def sum _ list(xs:List[Int]): Int = // Example of recursion on lists
 { if (xs.isEmpty) 0
 else xs.head + sum _ list(xs.tail)
 }

def add _ rows(xs : List[Int], ys:List[Int]):List[Int] =
 { if (xs.isEmpty) Nil
 else xs.head + ys.head::add _ rows(xs.tail, ys.tail)
 }

def apply _ all(my _ func:Int => Int, xs:List[Int]): List[Int] =
 {xs map my _ func}

def construction(my _ funcs:List[Int => Int], n:Int): List[Int] = // construction
 { if (my _ funcs.isEmpty) Nil
 else my _ funcs.head(n)::construction(my _ funcs.tail, n)
 }
// Use of iterators in Scala

def test _ iterator(args: Array[String])
 { val names = {“John”, “Nancy”, “Meera”, “Tom”}
 while (names.hasnext){ println(names.next}
 }

FIGURE 9.3 Abstractions and functional programming in Scala.

350    ◾    Introduction to Programming Language

input argument of the type integer and generates an output value of the type integer. The last
function is the construction functional that takes a sequence of functions, which work on the
same argument to generate a sequence of output values. For example, construction(List(add5,
int_square), 5) will generate List(10, 25). The program for construction function returns a
null list if the list of functions is empty. Otherwise, it calls recursively with the list of the
rest of the functions and concatenates the output of applying the first function on the given
argument with the rest of the output sequence derived by applying rest of the functions on
the argument. The last example illustrates the use of associative list of maps that can be used
to map any domain value to the corresponding codomain value. The variable myindex is an
associative list of two maps “A” → 1 and “B” → 2. A new element “C” → 3 is added, and then
println(myindex(“B”)) prints the corresponding range value 2.

9.4.6 Abstractions and Functional Programming in Ruby

Ruby is another multiparadigm language that integrates imperative, object-oriented, and
functional programming paradigms. It is also used as a scripting language. However, we
will study different aspects of Ruby in different chapters. In this chapter, we will study
functional programming aspect and integration of mutable objects and immutable objects
in functional programming paradigm.

Unlike Scala, which is statically typed, Ruby is a dynamically typed polymorphic
 language. It supports different types of entities such as integers, floating point, strings,
indexible sequences, sets, hash tables, and class. Indexible sequences can be dynamic
arrays or vectors. Every element in Ruby is an object. Ruby supports local variable, global
variables, class variables, and instance variables. Array is represented within square
brackets with the elements separated by commas. Multidimensional arrays are modeled
as a sequence of sequences. Arrays support different types of data objects. For example,
one can have an array multiarr A = [[a, b, c, d], [1, 2, 3, 4], [“Hello”, “There”, “Ladies &”,
“Gentlemen”]]. It creates a new array dynamically as any other object using the constructor
Array.new. A set can be created dynamically using the constructor Set.new.

Ruby has a rich library to manipulate matrix, and the overloaded operator ‘+’ can be
used to add two matrices. A library is loaded by the statement require <library-name>.
Strings are also treated as indexible sequences. There are many operations on strings such
as (1) concatenating two strings, (2) treating strings as array of characters, (3) length of a
string, (4) reversing a string, and (5) chopping the last character of a string.

In control abstraction, it supports all imperative programming paradigm control
abstractions such as block, parallel assignment, if-then-else, unless (opposite semantics
compared to if-then-else), case statement, for-loop, while-loop, until-loop (equivalent to
repeat until), a loop-construct that needs a conditional exit, multiple syntax for iterators,
recursion, explicit λ-expressions, and function calls. Functions are declared using the
reserved word def. Ruby is a block structured language supporting nested blocks. Every
control abstraction is terminated by the reserved word end. Ruby also supports multi-
threading and exception handling. Ruby’s programming style is more like traditional
programming languages and is intuitive and simple compared to other functional pro-
gramming languages. Some of the examples of the functional programming style of Ruby

Functional Programming Paradigm    ◾    351  

are given in Figure 9.4. Figure 9.4 illustrates the syntax used in Ruby. Every control abstrac-
tion ends with a reserved word end.

The function greet illustrates (1) the syntax for defining a function; (2) interaction with
the user; and (3) the use of the overloaded operator ‘+’ which is being used here to concat-
enate two strings. The function displays ‘Name:’ on the screen, accepts the next string—for
example, “Arvind”—concatenates with the string “Hello” using overloaded operator ‘+,’
and displays the string “Hello Arvind.” The next statement shows that array elements could
be any type of data object. Statement # 3 illustrates the parallel assignment to swap the value
of variables m1 and m2. It shows that a variable can be associated with any value.

def greet # illustrating function
 puts(“Name:”); gets(Name); puts(“Hello ” + Name)
end
m = [[1, 2, 3], [ʻa,̓ ʻb,̓ ʻcʼ]] # Array has different types of objects
m = “cat”; n = 4; m1, m2 = m2, m1 # parallel assignment

def factorial(n) # illustrating recursion and if-then-else
 if (n == 0) then 1
 else n * factorial(n – 1)
 end
end
def fibonacci(n) # Illustrates the syntax of case statement
 case (n)
 when 0 then 1
 when 1 then 1
 else fibonacci(n – 1) + fibonacci(n – 2)
 end
end
def sum _ seq(xs) # illustrating iterators and destructive update
 accumulator = 0
 for n in xs do accumulator = accumulator * n end
 return acc
end
def append(xs, ys) # appends two sequences
 zs = xs + ys
end
def add _ seq(xs, ys)
 zs = Array.new # creating a dynamic array
 length1 = xs.length - 1
 for n in 0..length1 # another form of iterator
 zs[n] = xs[n] + ys[n] # expanding dynamic array
 end
 return zs
end
def add _ matrix(m1, m2) # use of while-loop
 m _ final = Array.new ; size = m1.length ; index = 0
 while (index < size) # while loop
 m _ final[index] = add _ seq(m1[index], m2[index])
 index += 1
 end
 return m _ final
end

FIGURE 9.4 Abstractions and programming in Ruby.

352    ◾    Introduction to Programming Language

The definition of the function factorial illustrates the syntax of if-then-else statement
and the recursive style of programming in Ruby. The definition of the function Fibonacci
 illustrates the syntax of case statement. The definition of the function sum_seq shows
the use of an iterator to sum up a sequence. The definition of the function sum_seq
 illustrates the use of accumulators and iterator. The function append illustrates the power
of overloaded operator ‘+’ that has been used here to append two sequences. The function
add_seq illustrates (1) creation of a dynamic array zs as an object using a constructor and
(2) another style of iterator that iterates on a subrange. The function add_matrix illustrates
(1) while-loop syntax and (2) destructive update of the index variable. The object-oriented
programming style and its integration with functional style are described in Chapter 11.
The application of Ruby as a scripting language is described in Chapter 14.

9.5 IMPLEMENTATION MODELS FOR FUNCTIONAL LANGUAGES
AOR eagerly evaluates parameter-expressions and binds the variables to the evaluated
value to augment the existing environment. NOR defers the evaluation of parameter-
expression until needed. Hence they prefer lazy evaluation. In order to avoid multiple
evaluation of the same subexpression, they use call-by-need that caches the values of
the subexpressions after the first evaluation. These values are looked up on subsequent
occurrences of the same expression. The execution efficiency of call-by-need is better than
 call-by-name and closer to call-by-value.

9.5.1 SECD Machine and Eager Evaluation

SECD machine is an abstract machine for implementing λ-expressions. It has four stacks:
S—evaluation stack for expressions; E—a stack that holds the corresponding environ-
ment: (id, value) pairs indexible by the id; C—control string; and D—stack of states of the
machine at the time of function calls. SECD machine is a state transition machine. SECD
machine has two versions: for eager evaluation and for lazy evaluation.

During β-reduction the (id ↦ value) pair is stored in the environment stack E, and the
expression is moved one subexpression at a time to evaluation stack S, which picks up the
value of the variables from the environment stack E and evaluates the expression. When
a function call is made, then the current state of three stacks—S, E, and C—are dumped
on the dump-stack D. After dumping, the evaluation stack is made empty, and the control
jumps to the called function.

To explain the concepts, we will use stacks as a sequence and represent stack value
after push(<data>, <stack>) as <data>::<stack>; and stack value after pop(<stack>) as
rest(<stack>). The state transitions that are needed in a SECD machine are as follows:

 1. The next element in C is a literal <literal>. Then it is put on the top of the stack S. The
new state becomes (<literal> ::S, E, rest(C), D).

 2. The next command is an identifier X. The value of the identifier X is looked up in the
indexible environment E, and the value is pushed on top of the stack S. The new state
becomes (value-of(X)::S, E, rest(C), D).

Functional Programming Paradigm    ◾    353  

 3. The next command is a λ-expression of the form [<bound-variables>, <body>], then
the closure [<bounded-variables>, <body>, E] is put on top of the evaluation stack S,
and the new state becomes ([<bounded-variables>, <body>, E]::S, E, C, D).

 4. The next state is a closure on top of the evaluation stack. In that case, the following
actions are taken: (1) the triple (S, E, C) is pushed on the dump-stack D; (2) the
bounded variables are associated with the parameter value, and the environment
stack is updated with these bindings; and (3) evaluation stack is made empty. The state
 transition is given by ([bounded-variables, body, E1]::<args>::rest(S), E, C, D) → (nil,
{bounded_variables → <args>} ⊎ E1, [<body>], (rest(S), E, C)::D), where the symbol ‘⊎’
denotes disjoint union.

 5. If the top of the evaluation stack is a kernel function <kernel> <args>, then the
kernel function is applied on the args, and the result is placed on top of the stack.
The transition between the states is given as (<kernel>::<args>::rest(S), E, C, D) →
(evaluate(<kernel>(<args>))::rest(S), E, C, D).

 6. If top of the command string is an apply function of the form apply (<func>, <args>),
then it is restructured as <args> <func> @, where the symbol @ is a delimiter for the
apply function, and indicates that the function should be applied on the arguments.
The state transition is (S, E, apply(<func> <args>)::rest(C), D) → (S, E, <args>::<func>::
@::rest(C), D).

 7. The command string is nil, and the dump-stack D is not empty. It means that the
called function is over, and the control has to go back to the calling function. The
dump-stack D is popped to get back the calling function’s environment, evaluation
stack, and next part of the control string of the calling function. The result from the
called function is concatenated on top of the restored evaluation stack. The overall
transition is (<result>::rest(S), E, C, (Sprev, Eprev, Cprev)::Dprev) → (result::Sprev, Eprev, Cprev,
Dprev), where <closure>::<args>::Sprev, Eprev, Cprev, Dprev) was the state before execution
of the called function, and the evaluation of the <closure>::<args> yields the result
on top of the evaluation stack S.

The functional forms if-then-else is handled by transforming the if-then-else functional
to the form <predicate> cond <func1> <func2> @, skipping <func2> if the <predicate>
evaluates to true, and ignoring <func1> if the evaluation of the predicate returns a false on
top of the evaluation stack S.

9.5.2 Graph-Reduction Strategies

Graph-based reduction uses directed graphs to model expressions such that shared
 variables are treated as a single node, and common subexpressions are subgraphs that
can be accessed using pointers. Graph-based representation supports call-by-need, as the
value of a common subexpression is evaluated once and looked up subsequently. Figure 9.5
 illustrates the graph-based modeling of λ−expressions, and the application of the operator

354    ◾    Introduction to Programming Language

to the arguments. A λ-expression λx.<body> is shown in Figure 9.5a. It is a tree representing
a vertical directed edge from the declaration to the body of the expression. The nodes in a
graph can be a bounded variable, an operator, or an apply-node, denoted by the symbol ‘@’
that applies the argument to the body of the λ-expression using β- and δ-reduction. The
left subtree of an apply-node represents the function, and the right subtree represents the
argument. The body of λ-expression can contain another nested λ-expression.

The expression λx. λy. (+ x y) is given in Figure 9.5b. The simplified form of the graph rep-
resentation could be to represent as (n + 1) tuple, where n is the number of arguments and
the first argument is the function-name. The simplified version of the graph in Figure 9.5b
has been shown in Figure 9.5c.

A λ-expression with parameters is represented as a tree as shown in Figure 9.6.
The graph-reduction technique for NOR traverses the expression-graph of the form
 <subgraph> <exp1>, … <expN> to the left nodes until the node is not an apply-node
denoted by the label @. The four valid possibilities for the graph G are (1) G is a single-
node atomic data object, (2) G is another λ-expression, (3) G is a composite tuple with n
≥ 1, or (4) G is a primitive function of arity k. These four conditions of the graph have to
be transformed using β- and δ-reductions. β- and δ-reductions are needed in two cases:
(1) G is a primitive function, or (2) G is a user defined λ-expression. The β-reduction is
done by short circuiting the edges to the body of λ-expressions and altering the edges in
the subgraph representing the body of the λ-expression such that nodes corresponding to
the substituted variables have an edge to the argument-subgraph. Multiple occurrences
of the variables in the body are handled by setting multiple edges to the correspond-
ing argument-subgraph. The edges are realized using pointers. During δ-reduction,
the argument-subgraph is reduced. Because the variable nodes point to the subgraph
using pointers, the evaluated value is accessible to all the occurrences without additional

λx λx

λy

@
@

y
x

(a) (b) (c)

x y
+

+

λx

λy<body>

FIGURE 9.5 A direct graph representation of λ expressions. (a) Generic tree for an expression (b)
tree for the expression “+ x y” (c) tree after simplification.

λx <parameter-subgraph>

<body>

@

FIGURE 9.6 Representing graph for λ-expression with parameters.

Functional Programming Paradigm    ◾    355  

evaluation. The δ-reduction of the parameter-expression behaves like call-by-need,
because the arguments are evaluated once, and multiple occurrences of variables get
the evaluated value using pointers. This sharing of the reduced value of the argument-
subgraph is the basis of the improved efficiency. However, the shared expression has to
be partially duplicated if the shared expression is a function that is applied to different
arguments.

Example 9.13

Figure 9.7 illustrates the representation and reduction of the λ-expression λx. (+ x x) 4
* 5 + 6 using a graph. The expression has two occurrence of variable x. In NOR, both
the occurrences of the variable x will be substituted with the expression 4 * 5 + 6 with-
out using δ-reduction first. Thus, β-reduction would derive the reduced expression as
(+ 4 * 5 + 6 4 * 5 + 6). According to call-by-need optimization, only one occur-
rence of 4 * 5 + 6 should be evaluated, and the computed result should be stored for
future lookup. Figure 9.7a shows the original graph. The parameter-expression has
been converted into tuple form (+ (* 4 5) 6) and has been represented as an argu-
ment-subgraph, such that the operator has been put as the root node of the tuple
representation, as discussed before. The graph-based representation allows this single
evaluation of expression, because the expression 4 * 5 + 6 is represented by a single
argument-subgraph.

Both occurrences of variable x point to the root of the argument-subgraph as
shown in Figure 9.7b. Figure 9.7b shows the transformed graph after β-reduction: the
edge to the node with λ x symbol has been bypassed, and two edges that were pointing
from the apply-node to variable x now point to the argument-subgraph. Figure 9.7c
shows the transformed graph after the δ-reduction of the argument-subgraph. Note
that the argument-subgraph is evaluated only once, and the use of pointers allows
access to the computed value.

9.5.3 Implementing Lazy Evaluation

There are two popular abstract machines and their variations that have been developed
to compile directed graphs using graph-based reduction. The abstract machines are
G-machine and ABC machine. Graphs in G-machines are either apply-nodes with two
arguments or leaf nodes. Graphs in ABC machine have variable arguments. G-machine
translates the program to an intermediate level functional languages. A popular variation
of G-machine is the Spineless Tagless G-machine (STG machine) that has been used to
 implement Haskell. STG machine uses the pointers as part of the heap-objects that takes
to the corresponding code to be executed.

9.5.3.1 ABC Machine
ABC machine translates the NOR reduction of λ-expressions to a sequence of an abstract
instruction set that is somewhere in between traditional von Neumann machine for imper-
ative languages we have studied earlier and intermediate level functional language.

356    ◾    Introduction to Programming Language

ABC machine is composed of several types of memory storage. ABC machines have
(1) a graph store to store the graph to be rewritten; (2) a program store to store the cor-
responding instructions; (3) A stack to store reference to the graph nodes; (4) B-stack like
an evaluation stack in an SECD machine to handle reduction of basic values; (5) C-stack
like a traditional control stack; (6) a descriptor store that translates the coded value to an
actual symbol or type information; and (7) an I/O channel to display the results.

The state of an ABC machine is an 8-tuple consisting of the snapshots of various stacks
and program store. ABC machine is a state-transition machine, and a microinstruction
alters the current state. Microinstructions are classified as (1) get an instruction into a pro-
gram store; (2) increment and update the program counter; (3) get a node, create a new node,
delete a node, and update a node value; (4) extract information stored in a node; (5) redirect
an edge to another node; and (6) get the description of a symbol from the descriptor-store.
Based upon the micro-instructions, graph in the graph store is reduced. The basic values are
evaluated in the B-stack. C-stack is used to perform nested reductions. C-stack also con-
tains return addresses, and program counters can be stored and recovered from this stack.

(a)
x

x

λx

@

@

@

4
5 Tuple-based representation of

argument-subgraph

6
*

+

+

(c)

@

@

+

26

(b)

@

@

+ 4
5

6*

+

FIGURE 9.7 Graph reduction and argument-subgraph sharing. (a) Graph with expression “+ x x”
and parameter “+ * 4 5 6”; (b) graph after parameter substitution; (c) graph after simplification.

Functional Programming Paradigm    ◾    357  

9.5.3.2 Strictness Analysis
As discussed earlier in Section 9.2.1 NOR technique performs β-reduction from the outermost
layer toward the innermost layer with demand-driven evaluation; the expression evaluation is
deferred to improve the execution efficiency. The deferring of evaluation is called nonstrictness,
and the strategy to implement nonstrictness is called lazy evaluation. Lazy evaluation is use-
ful for infinite data structures, as the data structure is extended as needed. Lazy evaluation
employs call-by-need to improve the execution efficiency as call-by-need evaluates a subex-
pression only once and memorizes the subexpression and the corresponding evaluated value
to avoid re-evaluation of the subexpression in the future. An abstract technique is to represent
the λ-expressions using directed graphs, and compile the directed graph to abstract instruc-
tions of underlying variations of G-machine or ABC-machine. The major concern in lazy
evaluation is the substitution of complex parameter-expressions with multiple occurrence of
bounded variables that are not eagerly evaluated causing memory and execution overhead of
additional graph-reduction. Part of this overhead has been reduced by implementing call-by-
need using shared argument-subgraphs in graph-based abstract machines.

Lazy evaluation also benefits by strictness analysis—a program analysis technique in
an abstract domain—that finds out at the compile-time which expressions are potentially
safe to be evaluated first to derive the output value before substituting the parameter-
expression with bounded variables. An abstract domain is a domain that is used to study
the abstract properties of a program using compile-time program analysis. For example,
mode and type of values are abstract domains. Instead of deferring the evaluation of such
expressions, the function-call evaluates these expressions before passing the parameter.
In essence, strictness analysis transforms call-by-need used in lazy evaluation to a call-by-
value for the selective arguments improving the execution efficiency.

9.6 INTEGRATION WITH OTHER PROGRAMMING PARADIGMS
Functional programming paradigm has been integrated with imperative programming
 paradigm in multiple programming languages to support mutable objects that in turn sup-
port memory reuse and memorizing the partial computation to be used later. Many languages
such as Lisp, Scala, and Ruby have benefitted from this integration. Functional program-
ming paradigm has also been integrated with object-oriented programming paradigm in
many languages such as Scala and Ruby that have recently been gaining popularity as script-
ing languages. The object-oriented aspect of Scala and Ruby is discussed in Chapter 11.

9.6.1 Concurrency in Functional Languages

Functional languages have also been integrated with the concurrent programming para-
digm. Concurrency can be exploited in functional programming languages by (1) mak-
ing parallel binding of the values to the bounded variables, (2) concurrently reducing the
arguments, and (3) spawning two separate processes for then- and else-function. Function
closure can also be spawned as a separate process. In addition to exploiting concurrency
to improve the execution efficient of functional programs, different implementations of
functional programming languages also support thread-based programming, where each
thread can spawn a separate function.

358    ◾    Introduction to Programming Language

9.6.1.1 Concurrent Programming in Lisp Family
Different variations of common Lisp interface with a thread-based library such as Java’s
threads or x86 threads. Multilisp is a variant of Scheme with parallel programming con-
structs. Multilisp works in a single-shared address space. The idea of Multilisp is to com-
pute in advance and suspend whatever cannot be computed. It has a construct called
‘future’ that forces eager evaluation of an expression or assignment statement. Owing to
the presence of combination of fine- and medium-grain parallelism, Multilisp is suitable
for shared memory multiprocessing.

9.6.1.2 Concurrency in Haskell
Haskell supports both implicit parallelism and concurrency. It supports concurrency using
a construct called forkio that starts a thread that can run concurrently to other threads. It
uses a construct called MVar. MVar is a shared box that is either full or empty. A thread
trying to put more in an MVar is blocked until MVar becomes empty. A thread trying to
take from an empty MVar blocks until MVar is full. MVar can be used as (1) a lock, (2) a
shared channel between two threads for inter-thread communication, and (3) for asyn-
chronous I/O. Haskell also uses timeout, which raises an exception if a thread continues
beyond a certain time. The semantics of timeout is that an additional thread is started that
throws an exception on the first thread after the specified time.

9.6.1.3 Concurrency in Scala
Scala uses both Java’s concurrency model that is based upon synchronized methods and a
thread-based concurrency library. In addition, Scala has a message-passing library, based
upon programming language Actor that can be used to implement concurrent programs.
In message-passing paradigm, the send and receive operations are asynchronous: the
sender drops message in a system area called mailbox that is read by the receiver without
the sender waiting for the receiver to read from the mailbox.

9.6.1.4 Concurrency in Ruby
Ruby has many variations and is still evolving. Different implementations support
 different forms of concurrency. Standard Ruby interpreter supports multithreading,
 multiprocessing, mutex locks for synchronization, conditional variables waiting for
resources while in a critical section, and pipelining. JRuby—Java-based implementation of
Ruby supports libraries for actor-based models and the use of channels.

9.7 SUMMARY
Functional programming paradigm is based upon mathematical function that maps
input values to an output value. Functional programming is one of the two major declara-
tive programming paradigms. Pure functional programming does not support destructive
update, mutable objects, and global variables.

Mathematical functions are modeled using λ-expressions that have three components:
bounded variables, expression-body and input parameters. Input parameter is an expres-
sion or another λ-expression. Given an input parameter, the bounded variables are bound

Functional Programming Paradigm    ◾    359  

left to right, and the resulting expression is simplified. Variables can be bound after sim-
plifying the parameter-expression or before simplifying the parameter-expressions. If the
parameter-expressions are evaluated before binding to the corresponding variables, the
mechanism is called eager evaluation; if the evaluation of expressions is deferred and done
only when needed, then it is called lazy evaluation.

The process of binding variables to input parameters is called β-reduction, and the sim-
plification of arithmetic expression is called δ-reduction. λ-expressions can be nested, and
nested expressions can be solved using two techniques: AOR or NOR technique.

In AOR technique, the innermost rightmost expression is reduced first, and outermost
expressions are evaluated at the end; evaluation is done progressively from the inside toward
the outside, and the reduction is done eagerly. Eager reduction means that the parameter-
expressions are evaluated first using β- and δ-reduction before binding them to the variables
within the body of the λ-expression. This scheme has both advantages and disadvantages.
The advantage is that parameter-expression is evaluated once despite having multiple occur-
rences of the same bounded variables in the body of a λ-expression. This reduces the time
and space overhead. The disadvantage is that even those parts of parameter-expressions are
evaluated that may not be immediately needed causing execution time overhead.

NOR technique progressively evaluates a λ-expression from outermost leftmost layer
first to the innermost rightmost layer, and defers the evaluation of parameter-expressions
until needed. This kind of evaluation is called demand-based evaluation or lazy evalua-
tion. The problem with NOR is that parameter-expressions may be nontrivial and may
get bound to multiple occurrences of the same variable in the body of the λ-expressions.
This leads to multiple reductions and increases the number of reduction steps. To reduce
the reduction steps, expressions are represented as directed graphs such that functions
and arguments are two children of an apply-node. The bounded variables in λ-expressions
become a node in the graph, and the parameter-expressions are represented as a shared
subgraph. β-reduction removes variable-declaration node, bypasses to the expression-
body, and inserts edges from the node representing bounded variables to the correspond-
ing parameter- expressions. Because edges are implemented using pointers and subgraphs
are reduced only once, the parameter-expressions are evaluated once. Graph-based reduc-
tion of λ-expressions support call-by-need, because the parameter-expression is evaluated
only once and used multiple times.

FPS (functional programming system) proposed by John Backus, is another alternate
form of expressing functions. The major differences between λ-expressions and FPS are
(1) the separation of the parameters from the functions, (2) clear identification of higher-
order functional-forms that take functions as parameters to form more complex functions,
and (3) clear definition of the set of kernel functions. FPS uses identity function to pull the
value of a variable inside the function-definitions and uses constant function to include a
constant in the function-definitions. The seven major functional forms are (1) insertion of
a functional operator, (2) construction that applies a sequence of function on an input value
to generate a sequence of output values, (3) apply-all that applies a function to a sequence of
elements to generate a sequence of output values, (4) composition that applies a sequence
of function in a specified order on the input values, (5) conditional that applies different

360    ◾    Introduction to Programming Language

functions based upon the outcome of a predicate, (6) iteration that repeatedly applies func-
tions until a predicate is false, and (7) recursion that applies a function recursively.

FPS has become the basis of functional programming languages to define the kernel
functions, and higher-order functional-forms. However, all the functional languages use
constants and variables inside the definition of functions. Higher-order functions are
formed using map function (called apply in Lisp), which takes a function name as input
data along with its arguments and converts it into a function. Using map function, func-
tional forms like construction, apply-all, and insertion can be simulated. Composition is
allowed in functional languages, because functions can be called within a function. All
the modern functional programming languages support conditional functions, iteration,
and recursion. The recursive style of programming and iterators using linked lists is natu-
ral to functional programming languages, because sequences are traditionally modeled as
linked lists.

The major drawback of the pure functional programming is (1) the lack of storage of the
partial computation because of the lack of the support of global variables and destructive
updates and (2) excessive use of recursive programming because of the lack of iterative
style of programming. Many programming languages such as the Lisp family of languages
have supported limited amount of destructive update and global variables. Most of the
functional programming languages support while-loop functional and iterators that step
through every element of a sequence. Common Lisp has an extensive iteration handling
capability and supports definite-loops like dotimes.

Lisp is one of the earliest programming languages that mixes functional programming
paradigm with the limited imperative programming paradigm. Lisp is a well-developed
language with an extensive library, and it has multiple variations and descendants that
integrate with other programming paradigms. Lisp supports implicit parametric polymor-
phism. Although traditionally the major representation of sequence is a linked list, arrays
are also used extensively. Lisp also uses an associative property-list that supports (key,
value) pairs. Lisp uses applicative order reduction with eager evaluation.

ML and Hope are polymorphic functional programming languages. Declarative para-
metric polymorphism was first introduced in ML. Both ML and Hope make extensive use
of declarative polymorphism, Hope allows for the declaration of type variables and user-
defined polymorphic types.

Haskell is a pure functional programming language that uses NOR reduction technique
with lazy evaluation. Haskell is a polymorphic language that explicitly declares the signa-
ture of a function. Haskell uses a higher-order map function and foldl functional forms
to derive new functions using functions as argument. Haskell also supports guard-based
programming in addition to other abstractions.

Ruby and Scala are two modern multiparadigm polymorphic languages that
 integrate functional programming, mutable objects, and iterative constructs with an
object-oriented programming paradigm. Scala is a statically scoped, strongly typed poly-
morphic language, whereas Ruby is a dynamically typed polymorphic language. Ruby and
Scala are being used as scripting languages. Each value in both the languages is treated an
object. Ruby extensively makes use of iterators and arrays to process the collection of data

Functional Programming Paradigm    ◾    361  

elements, Scala is a language built on top of Java, and uses JVM for a compiled version of
the program. It interfaces well with Java and uses Java memory model for execution and
concurrency in addition to actor-based message passing model. Scala supports higher-
order functions, while-loop and conditionals like if-then-else.

Functional programming paradigm has been implemented using multiple different
types of abstract machines. There are three machines, and their variations that have
been used extensively: SECD machine, G-machine, and ABC machine. SECD machine
has been used both for eager evaluation and lazy evaluation; G-machine has been used
for graph-based reduction and uses an intermediate macro-based languages; and ABC
machine mixes up low-order stack-based instructions with intermediate macro-based
instructions for graph reduction.

SECD machine has four types of stacks: evaluation stack (S), environment stack E, com-
mand stack C, and dump-stack (D). Evaluation stack is used to evaluate expressions; envi-
ronment stack is used to store the current environment; command stack is used to store the
commands and sometimes to restructure the functions in the form that is more suitable for
evaluation stack; and dump-stacks is used to store the state of (S, E, C) stacks before a new
function is called. SECD machine has multiple reduction strategies to evaluate expression
and call embedded λ-expressions.

ABC machine has eight important data structures: graph store, program counter, pro-
gram store, A-stack for holding references to graph store, B-stack for holding basic values
and evaluation, C-stack for control, program store, symbol-description store, and I/O
channel for displaying the information. It has the capability to create, modify, and delete
graph nodes for β- and δ-reduction.

The major drawback of lazy evaluation is increased overhead of expression reduction
because of delayed evaluation of multiple occurrences of the same expression after
β-reduction. The problem is handled partly by using call-by-need, where the value is
cached after the first call-by-name evaluation to reduce the reduction overhead. This is easy
in graph-based expressions, as multiple occurrences of variables are treated as edges to the
same parameter-expression that is evaluated only once. The efficiency can be improved
further by using strictness analysis that finds out the arguments that are always needed for
the output value, and those are evaluated first. These parameter-expressions are evaluated
as call-by-value to reduce the number of expressions being deferred.

Functional programming has been integrated with various programming paradigms.
The most notable integrations with (1) imperative programming to exploit memory reuse
and storage of previous computations for efficiency purpose, (2) object-oriented para-
digm, (3) logic programming paradigm, and (4) concurrent programming paradigm.
The major advantage of integrating functional and object-oriented programming is that
methods are functions. The discussion of the functional and logic programming para-
digms is in Chapter 10, and the discussion of integration with object-oriented paradigm
is deferred to Chapter 11.

Concurrency has been exploited to incorporate (1) implicit parallelism in functional
programming languages, (2) multiple threads, and (3) the “Actor” based model of mes-
sage passing. Multilisp—a variation of Scheme—uses a construct future to evaluate the

362    ◾    Introduction to Programming Language

arguments to be reduced in advance provided the values for the variables are available.
Haskell uses (1) forkio to spawn a thread; (2) uses an abstract construct called MVar that
can be used for multiple purposes such as use of locks, and channels between two com-
municating threads; and (3) transactional memory for atomic operations. Scala uses actor-
based message passing model for asynchronous communication between threads. Ruby
supports extensive level of concurrency including multithreading, multiprocess invoca-
tions, mutual exclusion using locks and conditional variables, and pipelining.

9.8 ASSESSMENT

9.8.1 Concepts and Definitions

ABC machine; α-substitution; AOR; apply; apply-all; apply-node; β-reduction; call-by-name;
call-by-need; call-by-value; composition; concurrent functional programming; conditional
statement; construction functional form; δ-reduction; eager evaluation; forkio; FPP, func-
tional form; future; G-machine; graph reduction; guarded functions; higher-order function;
insertion functional form; iterator; kernel functions; λ-calculus; λ-expression; lazy evalu-
ation; map function; MVar; nonstrictness; NOR; recursive function; SECD machine; STG
machine; strictness analysis; traits; while-loop.

9.8.2 Problem Solving

 1. Solve the following λ-expression using both AOR and NOR technique. Show the
 β- and δ-reductions clearly for each step of reduction.

 λx.λy.λz.(λa.λb.a*a + 2*a*b + b*b) x+yy+z)1 2 3

 2. Solve the following λ-expression using both AOR and NOR technique. Show the
β- and δ-reductions clearly for each step of reduction.

 (λx.λy.(λz.λw.w + 2*z – 2 + z*w) x–y x+y)1 2

 3. Solve the following λ-expression using both AOR and NOR technique. Use
α-substitution to resolve the name conflicts of variables. Show the β- and δ-reductions
clearly for each step of reduction.

 (λx.λy.(λz.λx.(x*x + 3*x*z) 3*y 4*x)2 3

 4. Use call-by-need to reduce the δ-reduction steps in NOR technique for problems
1 and 2.

 5. Write a small function to pick up all the numbers that are smaller than a given num-
ber. For example, given a sequence < 10, <7, 12, 9, 3, 15, 2, 16>> will give a sequence
<7, 9, 3, 2> by comparing all the elements in the sequence <7, 12, 9, 3, 15, 2, 16> with
the number 10 and picking up all the elements smaller than 10.

Functional Programming Paradigm    ◾    363  

 6. Write a program to multiply two N × N matrices using at least one application in
apply-all and then in Haskell using map construct.

 7. Write a program to add two polynomials using a Lisp or Scheme program, and pres-
ent a trace for the following polynomials:

Polynomial 1: 4 x20 + 5 x4 + 6x – 10

Polynomial 2: 5x18 – 5 x4 + 7 x2 + 8x + 5

 8. Write and execute a merge-sort program for Scala, Lisp, Hope and Haskell using the
maximum amount of functional forms and compare your programs.

 9. Write a recursive version of a function and then an iterative version of the function
partitioning a sequence into two subsequences such that all the elements in the left
part are smaller than the right part. Code the two versions in Lisp. Use dolist in the
iterative version.

 10. Write an FPS program to add a list of numbers.

 11. Show a directed graph for the λ-expression λx. (+ x x) 5 + 2, and show the reduced
graph after β- and δ-reduction.

9.8.3 Conceptual Type

 12. What are different functional forms in FPS? Define each one of them with a clear
example using FPS.

 13. What are the major differences between Haskell and Lisp? Explain.

 14. Explain the different classes of kernel functions in FPS.

 15. Explain AOR and NOR techniques using a simple example.

 16. Explain the functionality of SECD machine.

 17. Explain the functionality of ABC machine.

 18. Compare the control abstractions and data abstractions in Haskell and the Lisp
 family of languages.

 19. Explain how NOR technique contributes to additional reduction steps, and how call-
by-need and strictness analysis save the additional reduction steps. Explain by using
a simple example.

 20. Compare the control and data abstractions related to functional programming in
Scala and Ruby.

364    ◾    Introduction to Programming Language

FURTHER READING
Abelson, Harold, Sussman, Gerald J., and Sussman, Julie. Structure and Interpretation of Computer

Programs, 2nd edition. Cambridge, MA: MIT Press. 1996. Also available at http://mitpress.mit.
edu/sicp/full-text/book/book.html.

Backus, John. “Can programming be liberated from the von Neumann style? A functional style and
its algebra of programs, ACM Turing Award lecture.” Communications of the ACM, 21(8). 1978.
613–618.

Burstall, Rod M., MacQueen, David B., and Sannella, Donald T. “HOPE: An experimental applica-
tive language.” In Conference Record of the 1980 LISP Conference. 1980. 136–143.

Collingbourne, Huw. The Book of Ruby. San Francisco, CA: No Starch Press. 2011.
Daum´e III, Hal. “Yet another Haskell tutorial.” 2002. Available at http://www.umiacs.umd.edu/~hal/

docs/daume02yaht.pdf
Field, Anthony J. and Harrison, Peter J. Functional Programming. Wokingham, UK: Addison Wesley.

1988.
Gilmore, Stephen. “Programming in standard ML ’97: A tutorial introduction.” Laboratory for

Foundations of Computer Science, The University of Edinburgh. Available at http://homepages
.inf.ed.ac.uk/stg/NOTES/notes.pdf. September 1997, revised March 2004.

Halstead. Jr., Robert H. “Multilisp: A language for concurrent symbolic computation.” ACM
Transactions on Programming Languages and Systems, 7(4). 1985. 501–538.

Hudak, Paul. “Conception, evolution, and application of functional programming languages.” ACM
Computing Surveys, 21(3). 1989. 359–411.

Hudak, Paul, Hughes, John, Jones, Simon P., and Wadler, Philip. “A history of Haskell.” In HOPL
III: Proceedings of the Third ACM SIGPLAN Conference on History of Programming Languages.
2007. 12-1–12-55.

Hutton, Graham. Programming in Haskell. Cambridge University Press. 2010.
Jones, Simon P. “Parallel and concurrent programming in Haskell, a tutorial.” Available at http://

community.haskell.org/~simonmar/par-tutorial.pdf
Jones, Simon P. and Singh, Satnam. “A tutorial on parallel and concurrent programming in Haskell.”

In Proceedings of the 6th International Conference on Advanced Functional Programming,
AFP’08. Springer-Verlag. 2009. 267–305.

Ng, Kam W. and Luk, Chi-Keung. “A survey of languages integrating functional, object-oriented and
logic programming.” Microprocessor and Microprogramming, 41(1). 1995. 5–36.

Odersky, Martin, Spoon, Lex, and Venners, Bill. Programming in Scala, 1st edition. Artima Press.
(2nd edition), Walnut Creek, CA, USA, 2010.

Plasmeijer, Rinus and Eekelen, Marko van. Functional Programming and Parallel Graph Rewriting.
International Computer Science Series. Boston, MA: Addison-Wesley. 1993.

Pucella, Riccardo. Notes on Programming Standard ML of New Jersey. Department of Computer
Science, Cornell University, USA. 2001. Available at http://www.cs.cornell.edu/riccardo/

 prog-smlnj/notes-011001.pdf
Touretzky, David S. COMMON LISP: A Gentle Introduction to Symbolic Computation. Redwood City,

CA: Benzamin/Cummings Publishing Company. 1990.
Ullman, Jeffrey D. Elements of ML Programming. Upper Saddle River, NJ: Prentice Hall. 1997.

365

C h a p t e r 10

Logic Programming Paradigm

BACKGROUND CONCEPTS
Abstract computation and information exchange (Chapter 4); Abstract concepts in
 computation (Section 2.4); Abstract implementation (Chapter 5); Concurrent programming
(Chapter 8); Data structure concepts (Section 2.3); Discrete structure concepts (Section 2.2);
Functional programming paradigm (Chapter 9); von Neumann machine (Section 2.1).

Like functional programming, logic programming is a declarative programming para-
digm. However, unlike functional programming, which is based upon theory of mathe-
matical functions and λ-calculus, logic programming is based upon the theory of predicate
calculus. As discussed in Section 2.2.2 predicate calculus is based upon propositional calcu-
lus and the quantification. Most of the logic programming languages are based upon first
order predicate calculus. First order predicate calculus treats data and functions separately
and does not have the capability to treat relations as logical terms, whereas higher-order
logic programming can also treat relations as logical terms. First order predicate calculus
is based upon the integration of existential and universal quantification with propositional
calculus. Propositional calculus is based on declaring the axioms that we believe to be true
and the use of logical operators, such as logical-AND, logical-OR, implication, and nega-
tion. The process of writing the program is to represent rules that can (1) derive new axi-
oms using the given the rules and axioms or (2) solve a query given the rules and axioms.

The logic programming paradigm is quite comprehensible to humans, because it is based
upon simple mathematical logic. Logic programming currently has many extensions such
as constraint logic programming, temporal logic programming, higher-order logic program-
ming, and inductive logic programming. Constraint logic programming includes constraints
along with other predicates connected through logical operators. In a constraint logic pro-
gram, both the predicates and constraints have to be satisfied. Constraint logic program-
ming is used for optimization problems and it will be discussed in Section 10.5. Temporal
logic programming also incorporates the notion of time interval and the ordering of events
in the logic programming, and it will be discussed in Section 10.5. Logic can be deductive
or inductive. Deductive logic derives new facts by deducing information from the existing

366    ◾    Introduction to Programming Language

facts. Inductive logic uses the rules and background information to derive general rules
that govern all the given examples. Logic programming also supports meta-programming
capability that treats a program as data, and it can be used to derive the properties of the
program using program analysis in an abstract domain.

Logic programming has found applications in many areas, such as artificial intelligence,
expert systems, genome comparison, optimization problem, game playing, drug discovery,
and complex expert systems. Logic programs have the capability of generating multiple
solutions because of nondeterministic nature, mostly because of the commutative nature
of logical operators—logical-AND and logical-OR—in expressing a logic program. This
capability of connecting several rules through logical-OR gives logic programs the capa-
bility to generate multiple solutions for a problem, because each fact can potentially gener-
ate a solution.

At the implementation level, logic programs use exhaustive search techniques, mostly
depth first search, to derive a solution. Popular logic programming languages such as
Prolog use a depth first search tree to implement the logic. Because a depth first search
on a specific branch may not yield a solution, a mechanism to try other branches has to be
designed. Prolog uses backtracking to explore alternate branches. More about backtrack-
ing will be discussed in Section 10.2.2.

10.1 LOGIC PROGRAMMING FUNDAMENTALS
A logic program is a set of procedures. Each procedure has a name and a finite number
of arguments. Pattern matching and binding variables are used for parameter passing. In
classical logic programming, parameter passing does not allow any evaluation of the actual
parameters. Rather, it uses a technique called unification to exchange the information back
and forth to (and from) the called subprogram and the calling subprogram. More about
unification is discussed in Section 10.1.4.

10.1.1 Facts and Rules

Logic program contains two types of information: facts and rules. Facts are beliefs that the
axiom is true, and rules are used to break up a complex query to simpler queries that can
be progressively decomposed to yet simpler subqueries until a subquery can be pattern-
matched with the given facts. Given an input from outside world, rules can also be used to
derive new facts. There can be multiple rules connected through logical-OR to give mul-
tiple definitions to solve a complex problem. Every rule has a left-hand side (sometime also
called Clausehead) and a right-hand side (sometimes called tail). The left-hand side is sepa-
rated from the right-hand side using an implication symbol ‘←’ (or ‘:-’ in Prolog), which
means that the left-hand side is implied by the right-hand side. Alternately, we can say that
the left-hand side can be derived by the right-hand side. Left-hand side is a single logical
term with probably multiple arguments (possibly 0), and right-hand side is a conjunction
(logical-AND) of logical terms. The rules are connected to each other through logical-OR.
However, two rules do not share their environment. The right-hand side of facts is trivially
true, and no further reduction is needed.

Logic Programming Paradigm    ◾    367  

Example 10.1

Let us study the example of rules and facts using a simple logic program expressed
using predicate-calculus symbols: the symbol ‘∧’ denotes logical-AND, the symbol ‘∨’
denotes logical-OR, the symbol ‘¬’ denotes negation, and the symbol ‘←’ denotes impli-
cation. For our convenience, we will use the Prolog convention that variables start with
a capital letter, and a constant starts with a lowercase letter. Note that this convention of
variables in Prolog is different than classical logic, where variables start with lowercase
letters. The denotation of variables is not the same as the notations used in mathemati-
cal logic and is specific to Prolog-like language. Let us take the following example:

1)((∀X ∀Y sibling(X, Y) ← ∃Z parent(X, Z) ∧ parent(Y, Z)
 ∧ ¬(X == Y)) ∨

2)(∀ X ∀Y sibling(X, Y) ← ∃Z fraternity(X, Z) ∧ fraternity(Y, Z)
 ∧ ¬(X == Y))

3)(parent(tom, mary) ∨
4) parent(neena, mary) ∨
5) parent(tom, john))

The above program shows facts and rules in a logic program. There are two rules (clause
#1 and #2), and three facts (clause #3, #4, and #5). Clause #1 states that for all X and Y, X is a
sibling of Y if there exists a variable Z, such that Z is a parent of X and Z is a parent of Y and
X is not the same as Y. Clause #2 states that for all X and for all Y, X is a sibling of Y if there
exists a variable Z such that Z is the fraternity of X and Z is the fraternity of Y and X is not the
same as Y. Both the clauses are connected through logical-OR. Each clause has a left-hand
side and a right-hand side. The right-hand side implies the left-hand side. The left-hand sides
of clause #1 and #2 have the same name and same number of arguments. Programmatically,
they form two clauses of a logical procedure. The three facts also have the same name and
same number of arguments, and are connected to each other through logical-OR.

If we look closely, the variables X and Y on the left side of the rules are universally quan-
tified, and the variable Z that occurs exclusively on the right side of a rule is existentially
quantified. The predicates on the right side are connected through logical-AND. This is the
repeat pattern in every rule. Logic programming language designers have simplified this
predicate calculus version to more human-comprehensible version by (1) dropping univer-
sal and existential quantifiers, (2) putting a comma instead of logical-AND, (3) putting a
period ‘.’ instead of logical-OR to separate the rules and facts, (4) replacing the negation
symbol ‘¬’ with ‘not,’ and (5) replacing the implication symbol ‘←’ with ‘:-’. Using these
substitutions, the program in example 10.1 will look as follows:

sibling(X, Y):- parent(X, Z), parent(Y, Z), not(X = Y).
sibling(X, Y) :- fraternity(X, Z), fraternity(Y, Z), not(X = Y).
parent(tom, mary). parent(neena, mary). parent(tom, john).

The above program is a typical program syntax used in language like Prolog. In the
future, we will use this syntax to write a Prolog program.

368    ◾    Introduction to Programming Language

10.1.2 Forward and Backward Reasoning Systems

These rules and facts in a logic program can be used to solve a problem in two different
ways: (1) forward reasoning and (2) backward reasoning. Forward reasoning system takes
the known facts and uses the rules to derive new facts that are stored in the database.
Backward chaining system takes a query and progressively resolves the query to a combi-
nation of simpler queries connected through logical operators, until the subqueries can be
solved by low-level kernel functions or by matching the facts.

In a forward chaining system, the process of applying rules to derive facts is done
eagerly, whether the derived facts are useful to solve the problem at hand or not. That
means lots of redundant computations are also done. This becomes an efficiency issue.
Despite that forward reasoning systems are good for many types of applications that try
to predict all possible outcomes if a particular condition develops. For example, if we are
monitoring a nuclear power plant, and the temperature crosses a threshold, we would like
to know if this change is causing any disaster in the system. Forward chaining systems are
good for such systems. However, as we can see that forward chaining systems are compu-
tationally expensive, as they apply the rules to large number of facts. New derived facts
become part of the fact database. Example 10.1 illustrates a simple example of forward
chaining system. The program derives a new fact sibling(tom, neena) that becomes part of
the database.

A backward reasoning system is more focused. It uses depth first search to find a solu-
tion and returns a value as soon as the query is satisfied. A backward chaining system
starts from the final state to be derived and keeps breaking up the query to smaller queries
using pattern matching and parameter passing using rules that have the same name and
matching arguments. In the end, if the smaller subqueries can be satisfied by the facts or
kernel functions, then the query is satisfied, and the answer is returned. Unlike forward
chaining systems that derive all possible outcomes, backward reasoning systems answer a
specific question in a focused way.

There are programming languages that use either a forward chaining system or a back-
ward reasoning system to implement their abstract machine. Prolog—a popular logic
programming language—uses a backward reasoning system. An example of forward rea-
soning languages is OPS5.

10.1.3 Data Representation

The primary data representations in logic programming are sequences, tuples, n-ary tree,
and facts. However, many implementations of logic programming include in their data
representations very rich set of data structures such as dynamic arrays, associative maps,
graphs, blackboards, unordered sets, and ordered sets. A list is included within the square
brackets, and elements are separated by comma. For example, [a, b, “Arvind Bansal”] is a
list. An empty list ‘[]’ does not have an element. An n-ary tree is represented as a functor
of the form <functor-name>(Arg1, … ArgN). A tuple is represented within left and right
parenthesis. For example, (4, 5, 6) is a tuple. Most of the programming either uses functors
or lists. A list is internally represented as a binary tree such that the left-hand side child
is the first element of the list, and the right subtree is the rest of the list. Concatenation

Logic Programming Paradigm    ◾    369  

between the first element and the rest of the list is denoted by a vertical bar ‘|.’ The list [1, 2,
3] can be represented in many ways: [1| [2, 3]], [1, 2 | [3]], and so on. Basically it is the same
binary tree representation, and all three representations are syntactic sugar. Figure 10.1
illustrates the internal representation of a linked-list and a functor.

A logical variable is an immutable object at the programmer level. However, the imple-
mentation engine can unbind the value, as discussed in Section 10.2.3. We will use Prolog
convention to represent variables. A variable is represented with the first letter as an upper-
case letter followed by zero or more letters, digits, or underscore symbol. A literal that starts
with a lowercase letter. The constants starting with uppercase letters have to be enclosed
between single quotes. For example, Xs is a variable, cs is a literal, ‘PL’ is a literal, and 1 is a
literal. An atom could be a literal, an integer, and a floating point number.

A logical term is defined recursively: a logical term can be an atom, a variable, a list, a
tuple, a functor, or a combinations of logical terms. Binding a variable in a logical term is
called instantiation of the logical term.

Example 10.2

For example class(‘PL,’ cs, time(10, 11)) is an instance of the functor class(Course,
Department, Time): the instantiation has been derived by binding variables Class,
Department, and Time to the values ‘PL,’ cs, and time(10, 11), respectively. A logic
term is called a ground term if it contains all constants and is called a nonground
term if it contains at least one unbound variable.

10.1.4 Unification—Bidirectional Information Flow

Unification is a means of equating two logical terms by finding out the minimal set of vari-
able bindings, which when applied to both the logical terms would make them identical.
For example, let us consider two logical terms: a(1, X) and a(Y, 2). If we take a set of vari-
able bindings {X/2, Y/1} and apply both the logical terms, then the instance of both logical
terms would become a(1, 2). In this case, we say that two logical terms are unifiable with
the unifier {X/2, Y/1}.

2

1

[1, 2, 3] class(‘PL’ , cs, time(10, 11))

class

‘PL’ cs
time

10 113

rest of the list

Internal representation of a list Internal representation of an n-ary tree
(a) (b)

@

FIGURE 10.1 Internal representation of logical terms.

370    ◾    Introduction to Programming Language

Unification is a very different notion compared to assignment used in imperative
 languages and functional programming languages. The typical assignment operation
evaluates the right-hand side expression and binds the resulting value to the memory loca-
tion of the variable on the left-hand side. Information flow in assignment operation is one
directional: from the right-hand side to the left-hand side. Unification is different from
assignment operation as follows:

 1. There is no evaluation of an expression in unification.

 2. Both the left-hand side and right-hand side have equal status.

 3. The information flow is bidirectional in unification.

 4. Unification performs both pattern matching of constants and binding of variables to
a logical subterm.

 5. When a variable is bound to a value, then all the occurrences of variables in both the
left-hand side term and right-hand side term get bound to this value.

The difference will be clear if we unify X and 3 + 4. In an assignment statement, the
memory location corresponding to the variable X will be bound to value 7. In unification,
the right-hand side is not evaluated and the variable X is bound to the term 3 + 4 as it is. If
we unify 3 + X and Y + 6, then Y will be bound to value 3, and X will be bound to value 6.
Unification of (a, X, X) and (a, 3, Y) will yield the set of bindings {X/3, Y/3}. First X gets
bound to 3. Because all occurrences of X will bind to 3, the third argument of the first
 logical term also gets bound to value 3. When third arguments of both the logical terms are
matched, then the variable Y in the second logical term also gets bound to value 3.

Example 10.3

Unification of logical terms b(X, Y, [3, a(d, e)]) and b(N, M, [M, N]) would give the bind-
ing set {X/a(d, e), Y/3, M/3, N/a(d, e)}. The whole substitution steps are given in Table 10.1.

Aliases are denoted by Var1 ∥ Var2. In this example, the variables X and N are aliases,
and the variables Y and M are aliases. Substitution of a variable by a subterm will be shown
as Var/subterm. In case of aliases, we can substitute logical terms with any of the aliased
variables. When one of the variables is instantiated in set of aliased variables, then all other

TABLE 10.1 Unification Process of Two Logical Terms

Binding Binding Set Instantiated Term 1 Instantiated Term 2
1 {} b(X, Y, [3, a(d, e)]) b(N, M, [M, N])

2 X ∥N {X∥N} b(N, Y, [3, a(d, e)]) b(N, M, [M, N])

3 Y ∥M {X ∥N, Y ∥ M} b(N, M, [3, a(d, e)]) b(N, M, [M, N])

4 M/3 {X ∥N, Y/3, M/3} b(N, 3, [3, a(d, e)]) b(N, 3, [3, N]))

5 N/a(d, e) {X/a(d, e), Y/3,
M/3, N/a(d, e)}

b(a(d, e), 3,
[3, a(d, e)])

b(a(d, e), 3,
[3, a(d, e)])

Logic Programming Paradigm    ◾    371  

variables in the set of aliased variables also get instantiated, because aliasing is an equiva-
lence relationship that means aliasing is reflexive, symmetric, and transitive.

We can define the unification process as comparing the corresponding logical subterms
position by position, and perform one of the following operations:

 1. If both the subterms are uninstantiated variables, then they are aliased to each other,
and either variable can be used for substitution in the logical terms. All the occur-
rences of variables are substituted.

 2. If one the logical subterm is an unbound variable, then it is substituted by the other
logical subterm, and all the occurrences of the variable are substituted by the corre-
sponding logical subterm. In case the variable is aliased, then all the aliased variables
in the set are bound to the same logical subterm.

 3. If both the logical subterms are ground terms, then they are matched. The unification
fails if they do not match. If the unification fails, then a substitution set is not created.

An algorithm for unification process is given in Figure 10.2.
The logical term T1 and T2 are copied into instances I1 and I2, which are progressively

instantiated further when a new substitution is derived after matching the next position.
The Boolean variable unified is initialized to true and is made false when two logical ground
subterms do not match. The program exits prematurely out of the loop if the Boolean vari-
able unified becomes false. After getting out of the loop, if the Boolean variable unified is
true, then the binding set S and the most general common instance I that is the same as I1
and I2 is returned in the form of a tuple (S, I). The mathematical operator ‘⊕’ denotes the
insertion of the new binding in the binding set. The mathematical operator ⊙ denotes the
application of a binding on a logical term to find a new instance.

Algorithm unify
Input: Two logical terms: T1 and T2
Output: Binding set S;

{ I1 = T1; I2 = T2; S = {}; unified = true;
 for each position p in I1 and I2
 { if (is _ variable(I1(p)) ∧ is _ variable(I2(p)) then
 S = S ⊕ I1(p) ∥ I2(p);
 elseif (is _ variable(I1(p)) ∧ non-ground(I2(p))) then
 S = S ⊕ I1(p)/ I2(p);
 elseif (non-ground(I1(p)) ∧ is _ variable(I2(p))) then
 S = S ⊕ I2(p) / I1(p);
 elseif (ground(I1(p)) ∧ ground(I2(p)) ∧ ¬ (matches(I1(p), I2(p))))
 {unified = false; exit}
 else {Sp = unify(I1(p), I2(p)); S = S ∪ Sp;} % unify non-ground terms
 I1 = I1 ⨀ S; I2 = I2 ⨀ S;
 }
 if unified then return S;
}

FIGURE 10.2 An algorithm for unification of two logical terms.

372    ◾    Introduction to Programming Language

Insertion of new bindings can perform two operations as follows:

 1. If the variable is part of an aliased set, then a transitive operation is applied on every
variable on the aliased set to bind every aliased variable in the set to the correspond-
ing value.

 2. If the variable is not part of an aliased set, then the binding is just included in the
binding set.

For example, {X∥N, Y∥M} ⊕ X/3 is equivalent to {X/3, N/3, Y∥M}. The operator ⊙ shows
the application of the bindings to instantiate the logical terms. For example, if the logical
term is b(X, Y) and the set of bindings is {X/4, Y/[a, b, c]}, then b(X, Y) ⊙ {X/4, Y/[a, b, c]}
will instantiate the logical term to b(4, [a, b, c]).

10.1.4.1 Assignment in Logic Programs
Logic programs also support assignment statements in addition to unification. An
assignment statement is used to evaluate arithmetic expressions and bind the resulting
value to the variable in an assign-once manner. Unlike imperative languages, assign-
ment in logic programs is not destructive, because variables are not mutable in stan-
dard logic programming. However, there are some implementations of Prolog that allow
mixing of mutable variables. The symbols for unification and assignment are quite dif-
ferent than imperative style of programming. Prolog—a popular logic programming
language uses the ‘=’ sign for unification and ‘is’ to denote the assignment. For example,
the statement M1 is M − 1 evaluates the expression M − 1 and binds the value it to the
variable M1.

10.1.5 Representing Logic Programs

Logic program consists of rules and facts. The right-hand side of rules has one or more
predicates. The right-hand side of facts is always true and is omitted while writing a pro-
gram. The rules with the same name and number of arguments are grouped together and
are called a procedure. Each rule is called a clause. Formally we can define a logic pro-
gram as a set of procedures. Each procedure is a set of clauses that are related to each other
through logical-OR. Each clause has a left-hand side that is implied by the conjunction of
the right-hand side. The left-hand side of a clause is called clausehead, and the predicates
on the right-hand side of a clause are called subgoals.

Example 10.4

In the following example, we are using standard Prolog syntax for convenience.

factorial(0, 1).
factorial(M, N) :- M > 0, M1 is M − 1, factorial(M1, N1),

N is M * N1.

Logic Programming Paradigm    ◾    373  

fibonacci(0, 1). fibonacci(1, 1).
fibonacci(M, N) :-
 M > N, M1 is M − 1, M2 is M − 2,
 fibonacci(M1, N1), fibonacci(M2, N2),
 N is N1 + N2.

The above program has two procedures: factorial/2 and fibonacci/2. The number 2 shows
the number of arguments. The procedure factorial/2 has two arguments: the first an input
argument and the second an output argument. It has two clauses: the first clause is a fact
showing the base case, and the second clause is a rule showing the recursive definition.
Similarly, the procedure fibonacci/2 has two arguments: the first is an input argument, and
the second is an output argument. It has three clauses: the top two facts are base cases, and
the last clause is a recursive clause.

The first clause of the procedure factorial/2 reads as “factorial(0) is 1.” The second clause
of the procedure factorial/2 reads as (1) factorial(M) is defined for M > 0, computes the value
of the expression M − 1 and stores it in the assign-once variable M1, recursively compute
the factorial of M1, and multiplies the value of the variable M with the value of the output
variable of the recursive call. There are four subgoals in the recursive clause of the factorial.

10.1.6 Properties of Logic Programs

Logic programs are inherently nondeterministic and support parametric polymorphism.
The nondeterministic computation is present because of commutativity in logical-OR
between the rules and commutativity in logical-AND between the subgoals. Logic
 programs also support inherent parametric polymorphism. The logic programs use four
logical operators extensively. The operators are logical-OR, logical-AND, implication, and
negation. Logical-OR is used between the clauses, logical-AND is used between the sub-
goals on the right-hand side, implication is used between the right-hand side and the left-
hand side, and negation is used with the subgoals to negate the outcome of a predicate.

Example 10.5

Let us take the following logic program to append two linked-lists. The program can
be used for any two types of lists. The polymorphic type for the program is List(α) ×
list(β) → List(α ∪ β). That means the first list could be of any type, and the second list
could be another type. The output list contains elements of both the types.

append([], Ys, Ys).
append([X | Xs], Ys, [X | Zs]) :- append(Xs, Ys, Zs).

In the above example, the predicate append/3 has three arguments: first two arguments
are input arguments and the third argument is an output argument. The first clause of the
above program reads that appending an empty list to another list gives the second list.
The second clause says, if the first list is nonempty, then the first element X of the first list
is the first element of the output list using unification and rest of the output list is built
recursively by appending the rest of the first list with the second list.

374    ◾    Introduction to Programming Language

The program works in two different modes, which are as follows:

 1. In deterministic mode, we can give any two lists and derive the third list. For exam-
ple, append ([1, 2], [a, b], Zs) will give the value of Zs as [1, 2, a, b].

 2. In a nondeterministic mode, we can give a query append(Xs, Ys, [a, b]), and the pro-
gram will generate values for the first two arguments. The possible values are [] and
[a, b]; or [a] and [b]; or [a, b] and [].

10.2 ABSTRACT IMPLEMENTATION MODEL
The implementation of a given logic program is at two levels: (1) mapping the execution
of a logic program to an AND-OR tree and (2) mapping the AND-OR tree on a low-level
abstract machine supported by von Neumann machine. AND-OR tree is a logical tree. The
properties are as follows:

 1. There are two types of logical nodes: AND-nodes and OR-nodes. OR-nodes are true if
one of their children is true. AND-nodes are true if all their children are true.

 2. The levels of AND-nodes and OR-nodes alternate: the children of AND-nodes are
OR-nodes, and the children of OR-nodes are AND-nodes.

Figure 10.3 shows a schematics of AND–OR tree. The node at level 0 is an OR-node, the
nodes at level 1 are AND-nodes, the nodes at level 2 are OR-nodes, and so on.

10.2.1 Query Reduction

Logic programs solve a problem by asking a query in which the variable that needs to get
a value is not bound to any value in the beginning. The complex query is matched with
the left-hand side of a rule having the same relation-name and number of arguments, and
the set of bindings is added to the environment. In classical logic programs, unification is
used for pattern matching. After the unification, the set of derived bindings are applied to
the right-hand side subgoals to instantiate subgoals that split the query to a conjunction of
simpler subqueries. Each subgoal is solved repeatedly, unless facts are reached or a kernel
function is reached. If the unification with a fact succeeds, then the corresponding subgoal
returns true. If all the subgoals are true, then the left-hand side of the corresponding rule

Level 0 – OR-node

Level 1
AND-nodes

Level 2
OR-nodes

FIGURE 10.3 An AND-OR tree.

Logic Programming Paradigm    ◾    375  

becomes true. The process is repeated. If the root node is true, then the query succeeds,
and the value of the variable is picked from the environment. Note that the environment
of the each rule is separate from other rules’ environments, and the multiple values may be
bound to a variable: one or more values for each successful rule.

Example 10.6

Let us consider the logic program given in Example 10.1:

sibling(X, Y) :- parent(X, Z), parent(Y, Z), not(X = Y).
sibling(X, Y) :- fraternity(X, Z), fraternity(Y, Z), not(X = Y).
parent(tom, mary). parent(neena, mary). parent(tom, john).

Assume that we want to derive siblings of Tom. We will ask a query: Who is a sibling of
Tom? A query is stated as sibling(tom, M)?. This query is progressively reduced using rules to
the fact level. First we look for rules that have the same name ‘sibling’ and two arguments.
Two rules are identified. One can take either of the rules first because of logical-OR between
the two rules. Let us assume that the first rule is selected first. Currently, the environment
is empty. The query sibling(tom, M) is unified with the left-hand side of the rule, and the
set of bindings are put in the environment. So the environment becomes {X/tom, Y/M}: the
variable Y has been substituted with the variable M, because M is existentially quantified
and Y is universally quantified. This set of bindings {X/tom, Y/M} is applied on the subgoals
on the right-hand side of the clause. The three subgoals are instantiated to parent(tom, Z),
parent(M, Z), and not (tom = M). At this point, there are two ways to solve the subgoals:
(1) solve in the left to-right order, and follow the data dependency caused by producer–
consumer relationship because of shared variable Z or (2) solve the subgoals parent(tom, Z),
and parent(M, Z) individually, and then take the intersection of the set of values for variable
Z returned from both the subgoals. Logic programs use the first approach of left-to-right
order and follow the data dependency. When we solve the query parent(tom, Z), it can unify
with two facts giving two possible values: mary and john. Let us assume that we pick up the
correct value mary so that the variable Z is bound to the value mary. The new environment is
{X/tom, Y/M, Z/mary}. This binding Z/mary is applied to all the subgoals on the right to make
the remaining subgoals parent(M, mary), not (tom = M). The subgoal parent(M, mary) is uni-
fied with the corresponding facts. Only two facts unify giving the possible values of M as tom
or neena. If we bind the variable M to the value tom, then the third subgoal not (tom = tom)
will fail. Let us assume that we again make the correct choice, and bind the variable M to the
value neena. The new environment is {X/tom, Y/M, Z/mary, M/neena}. The binding M/neena is
applied to the third subgoal that gets instantiated to not (tom = neena), which is true. That all
three subgoals are true implies that left-hand side of the rule is true. That means the top-level
query is true. The value of M/neena is picked up from the environment and returned.

Although in theory logic programs can be executed in nondeterministic order, it is not
always possible because of (1) the dependences introduced by producer–consumer rela-
tionship between the shared variables and (2) the nontermination of recursive clauses in
some cases.

376    ◾    Introduction to Programming Language

For example, let us take the logic program for factorial/2 in Example 10.4. The variable
M1 is a shared variable, and unless its value is computed, recursive definition of factorial
cannot be invoked.

10.2.2 Mapping Query Reduction to AND-OR Tree

Solving a logical query can be mapped on AND-OR tree as follows:

 1. Top-level query is mapped on an OR-node or a conjunction of OR-nodes.

 2. Clausehead is mapped on an AND-node.

 3. The subgoals on the right-hand side of a clause are mapped to the next level OR-node.

 4. Unification occurs on the edges connecting OR-node to an AND-node.

Using this mapping, a query-reduction process basically becomes an AND-OR tree. The
schematic is show in Figure 10.4.

Figure 10.4 shows the AND-OR created during the reduction of the first clause. The part
of the AND-OR tree made by query reduction using the second clause is similar to the
reduction of the first clause. The solid arrows show the edges in the AND-OR tree, and the
dashed arrows show data dependency caused by producer–consumer relationship between
the subgoals because of shared variables. The facts are shown by the symbols F1, F2, and
F3: F1 denotes the fact parent(tom, mary); F2 denotes the fact parent(neena, mary); and F3
denotes the fact parent(tom, john). The thick solid arrows show successful unifications, and
shaded single arrows show failed unification.

Producer–consumer dependency

sibling(tom, M)? – OR-node

sibling(X, Y) AND-nodes

parent(tom, Z)
parent(M, Z)

not(tom = M)

AND-nodes

F1 F2 F3 F1 F2 F3

{X/tom, Y/M}

OR-nodes

parent(tom, mary). % F1
parent(neena, mary). % F2
parent(tom, john). % F3

Applying binding to terms

Unification and creation of new bindings
Failed unification

FIGURE 10.4 Mapping query reduction to an AND-OR tree.

Logic Programming Paradigm    ◾    377  

For example, the subgoal parent(tom, Z) unifies successfully with facts F1 and F3. The
unification of parent(tom, Z) and F1 derives a possible value for the variable Z as mary, and
the unification of parent(tom, Z) and F3 derives a possible value of the variable Z as john.
Similarly, the subgoal parent(M, mary) successfully unifies with either of the facts F1 or F2
giving the possible values of the variable M as either tom or neena, which is passed to the
third subgoal.

Till now we have been assuming that the underlying engine that implements an AND–
OR tree is capable of picking up the correct bindings that can be applied to the right-hand
side subgoals for a successful solution. In reality, finding out a solution is a search space
problem, and exhaustive search is used to find out a solution. Depth first search has been
used to implement sequential version of logic programs because depth first search moves in
a focused way to find out the solution quickly and needs less memory to explore. Variations
of depth first search and breadth first search have been used to implement AND–OR trees
for concurrent implementation of logic programs. Here, only depth first search-based
implementation is discussed, because Prolog uses depth first search. Depth first search
means executing the subgoals in left-to-right order and selecting the clauses in the textual
order from top to the bottom.

A regular search tree has the same type of nodes. However, an AND–OR tree has two
different types of nodes. OR-nodes have option of exploring subtrees rooted at alternate
children, whereas AND-nodes provide only substitution to their children. OR-nodes are
called choice-points, because they have alternatives to explore, and a trail of choice points
is kept to facilitate the exploration of the alternate paths in case the previous exploration
does not yield a solution.

10.2.3 Backtracking

The mechanism to go back to the previous choice-points using the trail and to explore
alternate possibilities in the search tree is called backtracking. To store the trail of choice-
points, a trail-stack (or OR-stack) is needed in addition to a control stack and a heap. The
purpose of the trail-stack is to mark all the choice-points in reverse order and unbind all
the variables that were bound after or during unification in previous choice-points. Each
trail is a pair of the (choice-point marker and a sequence of references to the variables that
have been bound). Abstract operations performed by backtracking are as follows:

Step 1: Pop the last choice-point from the trail-stack.

Step 2: Unbind all the variables that were bound between the last choice-point (includ-
ing the binding caused by unification between OR-node and AND-node at the last
choice point) and the failed subgoal.

Step 3: Pick up next unexplored AND-node, and unify the OR-node corresponding to
the choice-point and the next AND-node to pick up new set of bindings.

Step 4: If all the alternatives are consumed at the last choice-point, then go back to step 1
and keep repeating until the trail-stack is empty or a solution is found.

378    ◾    Introduction to Programming Language

Example 10.7

Let us understand backtracking using the following program, and a query
sibling(billing, W)?

sibling(X, Y) :- parent(X, Z), parent(Y, Z), not(X = Y).
par ent(billy, linda). /* fact F1 */
parent(billy, bill). /* fact F2 */
parent(john, bill). /* fact F3 */

In the above program there are two procedures: sibling/2 and parent/2. The procedure
sibling/2 has one clause, and the procedure parent/2 has three facts. The three facts will
be denoted as F1, F2, and F3 for the convenience of illustration in Figure 10.5; the fact
parent(billy, linda) is denoted as F1; the fact parent(billy, bill) is denoted as F2; and the fact
parent(john, bill) is denoted as fact F3. Figure 10.5 illustrates an AND–OR tree to solve the
query sibling(billy, W)?

We assume left-to-right traversal of the AND–OR tree. The dashed arrows show the
backtracking to the previous choice-point. The list of choice-points keeps changing
 dynamically on the stack. Given the query sibling(billy, W), the logical terms sibling(billy,
W) and sibling(X, Y) are unified to derive the set of bindings as {X/billy, Y/W}. The
 right-hand side subgoals become parent(billy, Z) ∧ parent(W, Z) ∧ not (billy = W) after
the application of the set of bindings. The subgoals are executed in left-to-right order. The
first choice-point is the OR-node parent(billy, Z). The subgoal can unify with the facts F1
and F2. First we unify the subgoal parent(billy, Z) with the fact F1. The unification binds
the variable Z to the constant value linda. The binding {Z/ linda} is applied on subgoals to
the right. The remaining subgoals become parent(W, linda) ∧ not (billy = W). The subgoal
parent(W, linda) is the second choice-point. It can unify with the fact F1. This unification
derives the binding {W/billy}. This binding {W/billy} is applied on the remaining subgoal not
(billy = W) to get the instantiation not (billy = billy), which fails. The program backtracks

parent(billy, linda). % F1
parent(billy, bill). % F2
parent(john, bill). % F3

CP # 1

sibling(billy, W)?

sibling(X, Y)

parent(billy, Z) not(billy = W)

F1 F2 F3 F1 F2 F3

{X/billy, Y/W}

parent(W, Z)

CP # 2

Backtracking

Failed
unification

Applying binding

May unify

Successful
unification

FIGURE 10.5 Illustrating backtracking in AND-OR tree.

Logic Programming Paradigm    ◾    379  

by popping the second choice-point and unbinding the value of the variable W. Because
there is no other alternative for CP #2 (choice-point #2) that would successfully unify,
backtracking pops CP #1 from the trail-stack, and unbinds the variable Z. Now the next
clause F2 is tried. This returns the value of the variable Z as bill. The choice-point CP #1 is
pushed back again on the trail-stack, and the binding {Z/bill} is applied on the subgoals on
the right to derive the instantiated subgoals parent(W, bill) ∧ not (W = bill). The second
subgoal succeeds with the binding {W/billy}. The third subgoal fails because not(billy =
billy) is false, and the program backtracks again unbinding the variable W. The new value
of the variable W is john. The third subgoals succeeds with this new binding as not (billy
= john) is true.

10.2.4 Warren Abstract Machine

Warren abstract machine (WAM) is a low-level abstract machine to compile AND-OR
trees on a von Neumann abstract machine. It uses a hash table to jump to specific proce-
dure, if-then-else statements to try out alternative clauses, registers to hold the references
to the arguments, and a trail-stack in addition to control stacks and heaps to support back-
tracking. The major difference between an abstract machine for imperative languages and
the WAM is the presence of the trail-stack to handle backtracking.

Local variables bound to constants are stored in the control stack or processor regis-
ters, and complex logical terms and other variables involving lists and n-ary structures
are stored in the heap. The information about the choice-points is stored in the trail-
stack. Variables bound to complex logical terms are references to the corresponding logi-
cal structure in the heap. An n-argument nested structure is represented as multiple cells
connected through chain of pointers. For example, a structure f(a, b(M, N), L) will be
represented as register1 ↝ f(a, X1, L), X1 ↝ b(M, N), where the symbol ‘↝’ shows the refer-
ence. The above representation means that register1 points to a structure f(a, X1, L), which
has three arguments: the first argument is a constant, the second is a reference to another
structure b(M, N), and the third is an unbound variable. Each n-argument structure has
n + 2 cells, where the first two cells contain the name and number of arguments of the
cell, and the remaining cells carry reference to the arguments or the basic values. A list is
modeled as a two-argument structure: reference to the first element and reference to the
rest of the elements.

The code area corresponding to each clause contains a label to make the jump to that
clause. Calling a procedure is very similar to the implementation of procedure calls in the
imperative languages, as described in Chapter 5. Arguments (or references) are held in reg-
isters for execution efficiency. Only those registers that are altered in the called procedure
corresponding to a subgoal are stored in the control stack to save the state of the calling
procedures; unaltered registers are not saved. The type of instructions supported in WAM
are hashing on the procedure-name, arity and first argument, set_structure, set_value, get_
structure, get_value, put_value, conditional jump, arithmetic operations, unify_variable,
and unify_value, try_me_else <Label> retry_me_else <Label>, trust_me_else_fail, and
proceed. The instructions get_structure and get_values are used to get the information from
the arguments of the calling subgoal, and the instructions put_structure and put_value are

380    ◾    Introduction to Programming Language

used to set up the argument values of the subgoals on the right-hand side subgoals before
invoking them. Given a rule of the form

clausehead(Args0) :- subgoal1(Args1), … subgoalN(ArgsN),

when translated in WAM will have following pattern:

Allocate N % for at least N variables
get_arguments of Clausehead in the registers
put_arguments of subgoal1
call subgoal1
…
put arguments of subgoalN
call subgoalN

The instructions try_me_else <label> is a composite instruction that stores the label
<label> in the control stack and executes the first clause. If the first clause fails, then it
pops the label <label> from the stack and jumps to the next clause. The instruction retry_
me_else <label> is similar to try_me_else <label> except it is used for compiling the clauses
other than the first clause and the last clause. The instruction try_me_else_fail is used for
the last clause and states that if the clause does not succeed, then treat the calling sub-
goal as having failed, which means go back to the previous choice-point by performing a
pop(trail-stack) operation and unbind the variables between the previous choice-point and
the failed subgoal.

10.2.5 Program Analysis

Logic programs do not support memory reuse. Hence, they need to perform smart program
analysis to identify the variables that can be reused. Fortunately, tail-recursive procedures use
many such variables that can be reused in the following recursive calls. Compilers for logic
programs use many program analysis techniques to improve the execution efficiency of the
compiled programs. The general technique for program analysis is called abstract interpreta-
tion, which means the program is interpreted in some abstract domain such as type domain
(or input/output mode domain) to infer type-related information (or mode related infor-
mation) about variables. Using these abstract interpretation techniques, the execution effi-
ciency of the programs is improved significantly. Abstract interpretation has also been used
to derive producer–consumer relationship for automated parallelization of logic programs.

10.3 PROGRAMMING USING PROLOG
Prolog is a popular backward reasoning based logic programming language that can be
implemented on a uniprocessor machine. It is based upon depth first search of the AND–
OR tree and uses backtracking to explore the alternatives and simulate nondeterminism.
Backtracking can be enforced programmatically by failing after getting a solution to gen-
erate multiple solutions. The clauses in Prolog are called Horn clauses. Horn clauses have
only one n-ary structure (n ≥ 0) on the left-hand side.

Logic Programming Paradigm    ◾    381  

Prolog is based upon first-order predicate calculus. Negation in Prolog is based upon
closed world assumption using negation-by–failure, which means Prolog assumes that if
the solution cannot be derived, it does not exist. This is a serious limitation.

There are four popular implementations of Prolog: Sicstus Prolog, Bin Prolog, GNU
Prolog, and SWI Prolog. There are also implementation such as Visual Prolog that integrate
visual and logic programming. All these implementations are descendants of the standard
Edinburgh Prolog. However, different implementations have enhanced their capabilities by
incorporating various libraries for system-based programming, network-based program-
ming, array-based programming, visual programming, object-oriented programming, use
of blackboards and global variables, use of modules and libraries, etc. Although Sicstus
Prolog uses blackboards and mutable dynamic arrays for allowing limited imperative
style programming, GNU Prolog supports mutable global variables and mutable dynamic
arrays for limited imperative style programming.

We have already seen basic Prolog style of programming in the definitions of sibling/2,
factorial/2, and fibonacci/2. Prolog programming is quite different from the imperative
style of programming for many reasons, which are as follows:

 1. Logic programming is a declarative style of programming and does not explicitly
support destructive update, memory reuse, and global variables for storing partial
results. Owing to this, Prolog has developed more recursive style programming,
including a tail–recursive style of programming. Tail-recursive programming is
used to simulate indefinite iteration, as shown in Example 10.8. Internally, the index-
variable N and other memory locations are reused using smart compile-time pro-
gram analysis.

 2. The rules in Prolog are not mutually exclusive and are not simply if-then-else state-
ments, as if-then-else statements do not allow the execution of alternatives after suc-
cessful condition is executed. In Prolog, even if a clause succeeds, backtracking can
be forced to try out alternate clauses.

 3. The imperative style of programming does not support nondeterministic program-
ming and do not support implicitly multiple solutions.

 4. Prolog has operators to build predicates as data and then convert them into predicates.

 5. Prolog supports meta-programming to reason about the programs.

 6. The pointers and pointer-based declarations are not explicit. List is a very high-level
construct closer to the abstract definition of sequence.

 7. Prolog supports tuples. However, there is no explicit named tuple like ‘struct’ or
‘record’. However, structs and extensible data entities can be easily constructed.

Prolog supports destructive updates through the use of (1) assert and retract predicates,
(2) the use of blackboards as in Sicstus Prolog, and (3) global variables as in GNU Prolog.
Many variations of Prolog also support dictionaries in the form of associative maps.

382    ◾    Introduction to Programming Language

Assert and retract predicate can change the rule database and facts database. Blackboard
is a global key-value pair, where the value can be accessed by giving the key. Blackboard
has operations like bb_get(+Key, -Term), bb_put(+Key, +Term), bb_delete(+Key, ?Term),
bb_update(+Key, ?OldTerm, + NewTerm). Here the symbol ‘+’ means input mode; the
symbol ‘-’ means output mode; and the symbol ‘?’ means the mode is not determined
and can be either.

Example 10.8

The following program illustrates the use of the blackboard (supported by Sicstus
Prolog) to store the result of previous computations to improve execution efficiency.
There are two procedures: factorial_bb/2 and factorial/2. The function factorial/2
 computes factorial using the blackboard. The function factorial_bb/2 has two clauses:
the first clause looks up the blackboard for the stored result that has been previously
computed. If the value is not stored, then it calls back the factorial in a mutually
recursive manner. The use of blackboard provides efficiency, because the computed
value is looked up in the blackboard.

factorial_bb(N, V) :- bb_get(fact:N, V), !.
factorial_bb(N, V) :- factorial(N, V), bb_put(fact:N, V).

fa ctorial(N, M) :- N > 0, !, N1 is N − 1,
factorial_bb(N1, M1), M is N * M1.

factorial(0, 1).

10.3.1 Cuts—Programmer-Directed Efficiency

Solving a Prolog query is a depth first search of the AND–OR tree. Many times, we need
just one solution. For example, let us take the following procedure for membership test.
The underscore is used in Prolog to denote anonymous variables that are not needed in the
procedure.

me mber(X, [X | _]). % Use unification to match arguments
member(X, [_ | Xs]) :- member(X, Xs).

The above procedure states that the given value is a member of the sequence if the given
value is the same as the first element of the sequence. Otherwise, the second clause steps
through the rest of the sequence using tail-recursion.

If we give a query member(4, [3, 7, 4, 9, 4, 12])?, then once the membership test succeeds,
there is no further need to go through the wasteful searching of a choice-point for alternate
solutions. To improve the execution efficiency, a barrier is put programmatically to restrict
the exploration of the choice-points. This programmatic barrier is called cut in Prolog.
Placement of a cut puts the restriction of exploring the choice-points generated in the

Logic Programming Paradigm    ◾    383  

subgoals within the procedure in alternate clauses and the subgoals before the occurrence
of the cut in the same clause. Once the cut barrier has been crossed, the backtracking in
that procedure to any choice-point before the “cut” within the same procedure will fail the
subgoal and take the control to the choice-point to the subgoal that called the procedure
with an embedded “cut”.

The deterministic version of the procedure member/2 with “cut” will look like the
following:

member(X, [X|_]) :- !.
member(X, [_ | Xs]) :- member(X, Xs).

In the above program, the program succeeds once after the first match of the value in
the list. Subsequent backtracking will return failure.

Cut should be used very carefully, because it prunes the search space. Unsafe use of
cut may change the control flow missing the solution, because the solution may lie in
the pruned search space. Sometimes the unsafe use of “cut” is called red cut, and the
safe use of cut is called green cut. A “cut” is safe if it does not prune the search space
that contains the solution. Generally, placing a “cut” in a procedure that is being used
deterministically to generate only one solution is safe; any procedure being used non-
deterministically to generate more than one value will need its choice-points making
the use of “Cuts” unsafe. “Cut” has been used effectively in modeling if-then-else and
case statements.

10.3.2 Programming with Sets

Because Prolog is capable of generating solutions from different clauses, it can be used for
set-based programming. It supports a predicate setof/3 that takes three arguments: (1) the
variable whose multiple values have to be generated, (2) the top-level predicate that needs
to execute to generate multiple solutions, and (3) the variable representing the set of solu-
tions. One can define set operations like union, intersection, and Cartesian product to per-
form complex operations. Set-based programming is quite a powerful way, as illustrated
in Example 10.9.

Sets are generated using backtracking and collecting solution in the factbase, using
assert/retract predicates, that remains unaffected by backtracking. Each time a choice-
point allows exploration of a new part of the AND–OR tree, it potentially produces a
new solution. This solution is collected using assert/retract predicates, and the process
is repeated by backtracking. After the backtracking returns failure, all possible branches
have been explored, and the set of solutions is collected from the database.

Example 10.9

The following program illustrates the use of set-based programming in Prolog.
Given the students with multiple majors, we want to find out the students who
are only cs_majors or double majors who are doing both computer science and

384    ◾    Introduction to Programming Language

biology. The procedure cs_majors/1 uses the predicate setof/3 to find out the set of
cs-scientists, set of mathematicians, and set of biologists; removes the union of the
set of biologists and mathematicians from the cs-scientists to remove the possibility
of double majors. The procedure compbio_majors/1 finds out the set of cs-scientists
and the set of biologists, and takes their intersection to find out the set of double
majors doing both computer science and biology.

cs_majors(Students) :-
 setof(C, cs_majors(C), CS_Scientists),
 setof(B, biology_majors(B), Biologists),
 setof(B, math_majors(B), Mathematicians),
 union([Biologists, Mathematicians], Set1),
 subtract(CS_Scientists, Set1, Students).

compbio_majors(Students) :-
 setof(C, computer_science_majors(C), CS_Scientists),
 setof(B, biology_majors(B), Biologists),
 intersection(CS_Scientists, Biologists, Students).

cs _majors('Ahmad'). cs_majors('Kevin').
cs_majors ('Shivani').
biology_majors('Ahmad'). biology_majors('Julie').
math_majors('Tom'). math_majors('Kevin').

10.3.3 Nondeterministic Programming

Logic programs support nondeterminacy because of (1) the use of logical-OR between the
clauses of the same procedure, (2) logical-AND between the subgoals of the same clause,
and (3) bidirectional information f low between goal and clausehead during unification.
Arguments can be used in multiple combinations because of the bidirectional infor-
mational f low of unification. For example, the member/2 procedure without the cuts in
Section 10.4.1 can be used in two mode combinations: (1) member(+, −) mode, where
‘+’ means input and ‘−’ means output and (2) member(−, +) mode, where the second
argument is given and the first argument value is being generated. Although the mode
member(+, −) is deterministic, the mode member(−, +) is nondeterministic, because
it can generate multiple solutions by backtracking and applying different clauses. The
query member(X, [a, b, c]) will generate the first solution ‘a,’ and if forced to backtrack
will successively generate ‘b’ and ‘c.’ Similarly, the procedure append/3 in Example 10.5
can be used in two different modes: (1) deterministic mode append(+, +, −), where
it generates only one solution and (2) nondeterministic mode append(−, −, +), where
given the third argument, it can generate multiple possibilities of first and second argu-
ments. A query like append(X, Y, [1, 2, 3]) will generate four possible combinations of
X and Y: (1) X = [], Y [1, 2, 3]; (2) X = [1], Y = [2, 3]; (3) X = [1, 2], Y = [3]; and (4) X =
[1, 2, 3], Y = [].

Logic Programming Paradigm    ◾    385  

10.3.4 Abstractions and Meta-Programming

Logic programming languages support n-ary structures, linked-lists, and unnamed tuples
that can be separated using different operators. Certain implementations of Prolog lan-
guages such as Sicstus Prolog support an extensive library for system and shell-based
programming, dynamic array-based programming, multithreaded programming library,
set-based programming, graph-based programming, and associative maps. List of key-
value pairs can be converted into associative maps, and associative maps can be converted
back into list of key-value pairs.

The named tuples such as structs or records are not explicitly supported. However, the
combination of named n-ary structures and tuples can be used to simulate any complex
struct (or record) effectively, as illustrated in Example 10.10.

Example 10.10

% mode student_new(+, +, +, +).
student_new(Name, Age, Course, Id) :-
 student_template(Template),
 Template = student(name(Name)−age(Age)−course(Course)−id(Id)),
 assert(Template), !.

% mode student_info(+, +, ?).
 st udent_info(age, Name, Age) :-
 student(name(Name)-age(Age)-_-_).
 st udent_info(course, Name, Course) :-
 student(name(Name)-_-course(Course)-_).
 st udent_info(id, Record, Id) :-
 student(name(Name)-_-_-id(Id).
student_template(student(name(_)-age(_)-course(_)–id(_)).

The above program shows how a record can be dynamically created and accessed.
The above program can be extended to update dynamically the data fields. The first pro-
cedure student_new/4 is a constructor that gets a template of the form student(name(_)-
age(_)-course(_) − id(_)) already in the database, uses unification to insert the input
values given in the arguments of the predicate student_new/4, and uses predicate
assert/1 to insert the new structure in the run-time database that can be accessed dur-
ing run time. The operator ‘−’ separates the fields. The procedure student_info/3 has
three clauses to extract specific fields: age, course, and id. The first argument of the cor-
responding clauses specifies the field-name for efficient indexing and hash-table lookup.

An if-then-else statement in Prolog is of the following form:

(Predicate1 → then-subgoals1
; Predicate2 → then-subgoals2
…
; PredicateN → then-subgoalsN
; otherwise → catch-all subgoals
).

386    ◾    Introduction to Programming Language

The right-hand side can contain another if-then-else statement. Different imple-
mentations of Prolog use different syntactic sugar for if-then-else.

Because variables can be bound to nonground terms, the feature can be used to
build a list or n-ary structure dynamically by unifying a uninstantiated variable to a
structure containing variables that can be extended again by binding the variables to
another structure. Let us understand this feature using two examples: Examples 10.11
and 10.12. Example 10.11 builds an output list using recursion. Example 10.12 builds
an extensible tree that can be treated like a dictionary.

Example 10.11

filter([], []).
 fi lter([X|Xs], Ys) :- integer(X), X > 0, !, Ys = [X|Zs],
 filter (Xs, Zs).

The above program filters the input list in the first argument to pick up the posi-
tive integers. The variable Ys denotes the output list. The query filter([a, 4, −3, 5,
9, 0], Ys)? returns the value of the variable Ys as [4, 5, 9]. To start with, the variable
Ys is unbound. After the value 4 is inserted, the variable Ys gets instantiated to a
nonground term [4|Zs], and the recursive clause builds up Zs. When the value 5 is
inserted, the variable Zs gets instantiated to a nonground term [5|Zs1]. The process
continues until the input list becomes empty, and the variables expansion is termi-
nated by putting an empty list at the end. So Ys = [4|Zs], Zs = [5|Zs1], Zs1 = [9|Zs2],
and Zs2 = []. It is equivalent to Ys = [4, 5, 9].

Example 10.12

% mode lookup(+,?, ?).
lookup(Key-Value, Dictionary) :-
 var(Dictionary),
 format(“Do you want to insert in dictionary?”, []),
 read(Answer),
 (Answer == ‘y’ → Dictionary = (Key-Value, _, _)
 ;otherwise → true
).
 lo okup(Key-Value, Dictionary) :-
 Dictionary = (Key1-Value1, _, _), Key == Key1, Value = Value1, !.
 lo okup(Key-Value, Dictionary) :-
 Dictionary = (Key1-_, Left, _), Key < Key1, !,

lookup(Key-Value, Left).
 lo okup(Key-Value, Dictionary) :-
 Dictionary = (Key1-_, _, Right), Key >= Key1,!,

lookup(Key-Value, Right).

The above program defines a dictionary that utilizes a binary tree of the form
 (Key-Value, LeftSubtree, RightSubtree). The leaves of the dictionary are unbound

Logic Programming Paradigm    ◾    387  

variables that can be extended by instantiating the variable to a tuple of the form (Key-
Value, LeftSubtree, RightSubtree). The first clause extends the leaf node by checking if
the node is an unbound variable then instantiating the unbound variable by unifying
to (Key-Value, LeftSubtree, RightSubtree).

The second clause checks if the given Key = = Key1, then it unifies the given input value
associated with the input key with the value associated with the key in the dictionary. The
unification process allows it to retrieve the value stored in the dictionary if the input vari-
able Value is unbound, and matches it with the value stored in the dictionary if the input
variable Value is bound. The third clause compares the input key with the dictionary key
and traverses to the left subtree if the input key is smaller than the key stored in the current
node. The last clause traverses to the right subtree if the given key is greater than or equal
to the key in the dictionary.

Prolog uses a combination of “cut” and tail-recursive programming to simulate equiva-
lence of if-then-else statement and repeat-loop. The following code simulates if-then-else
statement:

If- then-else(Predicate, ThenGoal, ElseGoal) :-
 call(Predicate), !, call(ThenGoal).
If-then-else(Predicate, _, ElseGoal) :- call(ElseGoal).

The first clause calls the predicate. If the predicate is true, then the control goes past the
cut and executes then-part. If the predicate fails, then it backtracks to the choice-point,
picks up the second clause and executes else-part.

Negation of a goal can also be implemented using “cut” as follows:

\+(Goal) :- call(Goal), !, fail.
\+(Goal) :- !.

The operator ‘\+’ is used in Prolog to denote negation. Note that the use of a combination
of “cut” and “fail” forces the control out of the procedure by forcing failure. The above pro-
gram states that upon successful execution of the goal, failure is forced using a cut, and the
calling subgoal fails. If the subgoal before the cut fails, then the second clause is trivially true.

Iteration is managed using tail-recursive programming and smart compiler analysis
that identifies the variables that can be reused in the next cycle, as shown in the following
example.

Example 10.13

The following example writes “Hello” N times. The first clause reads the number of
times to say “Hello” and then calls the procedure write_hello/2 with two parameters:
(1) the number of times to say “Hello” and (2) index-variable Index initialized to value

388    ◾    Introduction to Programming Language

1. The clause write_hello/2 keeps writing “Hello” until the value of the index-variable
Index is greater than the upper-limit Max. There are two major differences compared
to the imperative style of programming: (1) a new variable NewIndex is created every
time, and (2) tail-recursion is used to loop back. The memory reuse of the memory
location corresponding to the variable Index is handled at the compiler level. The
variable NewIndex uses the same memory location occupied by the variable Index.
All the occurrences of the index-variables are mapped to the same memory location
allowing for memory reuse.

print_hello :- read(N), write_hello(N, 1).
write_hello(Max, Index) :-
 (Index =< Max → write(“Hello”), nl,
 NewIndex is Index + 1,
 write_hello(Max, NewIndex)
 ;otherwise → true
).

Prolog also has an explicit repeat construct to write iterative programs. The con-
struct for the repeat structure is as follows:

repeat,
 <subgoal1>, <subgoal2>, …, <subgoalN>, !.

The abstraction keeps backtracking upto a repeat reserved word, to force the con-
trol to move forward. Because backtracking causes all the variables to get unbound,
a new alternative is explored. Generally, the last subgoal repeatedly fails to process
all the data items. After the last subgoal <subgoalN> succeeds, the control goes past
the cut and does not come back. Repeat-loop has been used to frequently to read and
process the data from files, where the last subgoal checks if the end of file has been
reached.

10.3.4.1 Operators for Higher-Order Programming
Logic programming has a mechanism that converts dynamically a predicate built as data
and executes it as a subgoal. The operator in Prolog is “ =..’. For example, Subgoal =..
[length, [a, b, c], X], call(Subgoal) will call a subgoal length([a, b, c], X), which will return
X = 3.

10.3.4.2 Modules
Many versions of Prolog support the notion of modules. The procedures can be exported
by specifying the predicate module/2, where first argument is the module name, and the
second argument is a list of predicates to be exported. Other modules can import all the
exported procedures or selected exported procedures from another module by using predi-
cate use_module/2 either from a specified library or a user module. The first argument is

Logic Programming Paradigm    ◾    389  

the module name, and the second argument is the list of predicates. An example from
Sicstus Prolog syntax is given below.

mo dule(<module>, [<pred1>, …, <predN>]) /* export */
us e_module(library(<module>), [<pred1>, …, <predN>]). /* import */
us e_module(<module>, [<pred1>, …, <predN>]). /* import */

10.3.5 Limitations of Prolog

Prolog is a backtracking-based language based upon unification. Unification process does
not evaluate an expression. This causes an extra step of flattening the expressions. The fol-
lowing syntax in a program would be more expressive. However, because unification does
not support evaluation of an expression, complex expressions in parameters cannot be
evaluated.

/* following programs are not allowed in Edinburgh Prolog */
factorial(0, 1).
factorial(N, M) :- factorial(N−1, M1), M is N*M1.

fibonacci(0, 1). fibonacci(1, 1).
 fi bonacci(M, N) :- fibonacci(M − 1, N1), Fibonacci(M − 2, N2),

N is N1 + N2.

Another problem is the occurs-check in unification. For example, if we unify X and f(X),
it would lead to indefinite loop. The third problem with Prolog is the overhead of storing
the choice-points even for the deterministic programs with multiple clauses. A program
is deterministic if the clauses are mutually exclusive, and only one clause can succeed at
a time. However, unless augmented with complex program analysis techniques, all the
choice-points generated for deterministic procedures cannot be removed. The use of
negation as failure is incomplete, as the lack of information in Prolog database does not
mean that the ‘negation of the goal is true.’ Pure Prolog does not support the concept of
 temporality—the notion of time and events occurring before and after other events.

10.4 EXTENDING LOGIC PROGRAMMING PARADIGM
Classical logic programming paradigm has been extended by (1) incorporating the notion of
time and ordering of the events; (2) incorporating constraint-based programming in logic
programs; (3) inferring the general rules from given positive and negative examples, which
means using inductive reasoning instead of traditional deductive reasoning; (4) incorporat-
ing higher order logic such that predicates themselves can be treated as terms; and (5) inte-
grating the logic programming paradigm with other programming paradigms—more
specifically functional programming paradigm, object-oriented programming, visual pro-
gramming, event-based programming, and concurrent programming.

390    ◾    Introduction to Programming Language

10.4.1 Temporal Logic Programming

Temporal logic programming includes the concept of truthfulness of a predicate in a time
interval: a predicate may be true in one time interval and false in another. There may be
temporal relationship between two predicates. For example, if a predicate is true at time
interval n, then another predicate may be true at time interval (n + 1). There are many
logic programming languages based upon extending Prolog with temporal operators such
as Templog and Tokio. Some of the operations for temporal logic implemented in the pro-
gramming language Templog are as follows:

 1. Predicate p is true at the next time instant.

 2. Predicate p is always true.

 3. Predicate p is never true.

 4. Predicate p eventually becomes true.

 5. Predicate p precedes predicate q.

 6. Predicate q is true until predicate p becomes true.

Using these operators, such programs can be written about scheduling queue, message
passing, and serving a request, because all these programs need a notion of chronologi-
cal order. For example, an element inserted in the queue before another element also gets
processed first; an acknowledgment for a message can only be sent after the message is
received. A server can only serve the request after the request is made.

10.4.2 Constraint Logic Programming

Constraint-based programming puts extra restrictions to prune the search space in
deriving the solution. An example of constraint-based programming is the Sudoku—
a constraint-based puzzle of a two-dimensional block with a size that is a multiple of 3.
It has several constraints: (1) numbers 1..9 should occur in each row; (2) numbers 1..9
should occur in each column; (3) numbers 1..9 should occur in the diagonal; (4) square
blocks of 3 × 3 starting from the left-hand side top corner should have numbers 1..9, and
(5) in any row, column, diagonal, and 3 × 3 blocks, the numbers should not be duplicated.
Another example of constraint-based programming is a map coloring problem, where
a map has to be colored with a minimum number of colors such that no two adjacent
regions have the same color. Another example of constraint-based programming is to
place N-queens on the chess board such that no two queens attack each other.

There are many applications of constraint logic programming in the real world such as
space optimization problems, time-scheduling problem, planning, resource allocation, mes-
sage routing to balance the traffic load, load balancing, and profit-maximization problems.
A real-world example of a space-optimization problem is to fit all the circuits on a PC board
such that total space is limited to box size. An example of a scheduling problem is to finish all
the work within a deadline. Another example is to manage all the expenses within a budget.

Logic Programming Paradigm    ◾    391  

Constraint logic programming integrates logic programming with an embedded
 constraint solver. Constraint solver uses a generalized form of unification, because unifi-
cation performs pattern matching only by using an equality operator, whereas constraints
also use inequality operators such as ‘<’, ‘>’, ‘≤’, ‘≥’, belonging to a range, etc. In a clause of a
constraint logic program, there are two types of subgoals: constraints and logical subgoals.
Constraints are stored in a constraint store. Constraints are solved using a constraint solver
during a query reduction. If the constraint solver shows that constraints are incompatible
with the values, then the program backtracks to find an alternate solution. Constraint logic
programs are solved like regular logic programs except that constraints must be satisfied.
For example, we can write a clause of the following form:

 Cl ausehead(X, Y) :- constraint(X), predicate1(X, Z),
 predicate2(Z, Y).

Here the constraint constraint/1 would be stored in the constraint store at run time
and solved using constraint solver, and predicate1/2 and predicate2/2 will go through the
standard unification process. All three will return truth values. So the reduction process is
still modeled by an AND–OR tree. WAM has been extended to handle the constraints in
addition to regular predicates.

Many constraint programming languages have been developed such as Chip and
ECLiPSe. Constraint programming has also been incorporated on top of the popular
implementations of Prolog such as GNU Prolog, Sicstus Prolog, and SWI Prolog.

ECLiPSe is a Prolog-like language that supports constraints and modules. ECLiPSe
supports different types of constraints using constraint libraries such as interval
 constraints, linear constraints, integer constraints, global constraints and user-defined
constraints. Interval constraints provide the capability to bind a logical variable to
an interval such as -4..20. The syntax to set up interval constraint is <variable> ::=
 <interval>. ECLiPSe supports a variety of control abstractions such as if-then-else state-
ments, case statements, iterative loops, and iterators such as foreach-loop. It supports
data abstractions like lists, arrays and shelf. Like blackboards, shelf is a persistent object
with multiple slots that preserves the written value even during backtracking unless
explicitly deleted by a programmer action. A sample program in ECLiPSe is explained
in Example 10.14 and Figure 10.6.

% handling interval logic

:- lib(ic). % use interval constraint library
:- use _ module(library(ic)). % load interval constraints

year(M) :- M :: 1..12. % assign interval 1 .. 12 to the variable M
winter(4).
fall(9).
summer _ months(M) :- % use of interval comparison
 year(M), winter(W), fall(F), M #> W, M #< F. % returns 5..8

FIGURE 10.6 An example of constraint-based programming in ECLiPSe.

392    ◾    Introduction to Programming Language

Example 10.14

The library lib(ic) is a library to handle interval constraints. The library and the cor-
responding module are loaded. The predicate year/1 sets up an interval 1..12. The
predicates winter/1 and fall/1 are predicates that store the starting months of the win-
ter season and fall season. The predicate summer_months/1 calls three predicates and
two interval constraints. The subgoal year(M) that returns the interval 1..12, the sub-
goal winter(W) returns value of the variable W as 4, and the subgoal fall(F) returns
the value of the variable F as 9.

The constraint M #> W returns the interval 5..12, which is further refined by the
constraint M #< F to derive the value of the variable M as the interval 5..8.

10.4.3 Inductive Logic Programming

Most of the programming system is based on logical deduction, which means that given a
rule-base, rules are applied to break up queries into simpler forms connected through logical
operators. However, deductive logic is not good for learning, because learning is based upon
collecting many positive and negative observations and infers a general rule that explains all
the observations. This is called inductive reasoning and is the basis of computational learn-
ing. The logic programming paradigm that uses induction instead of deduction is called
inductive logic programming. Progol is an inductive logic programming language that builds
rules given examples and dynamically asserts the generalized rules to be used later.

The rules are formed using positive examples, negative examples, and background
knowledge that include backgrounds facts and rules in the database. The ground terms are
generalized to variables, and if two ground terms share sufficient frequency of the same
values at different arguments, then a rule is formed. This rule may be too general and is
made more specific using negative examples.

Example 10.15

Let us take an example where there are many positive facts as follows:
New facts:

pa rent(tom, mary). parent(joe, mary). parent(cathy, john).
parent(nina, john).

An analysis of these examples will reveal that second arguments of fact1 and fact2
are the same. Similarly, second arguments of fact3 and fact4 are the same. A general
rule can be formed using these examples:

my _relationship(X, Y) :-
 parent(X, Z), parent(Y, Z), not (X = Y).

All four facts satisfy this rule. This would be inductive logic. If there were a negative
example that did not satisfy this rule, then it could be added as an exception in the rule.

Logic Programming Paradigm    ◾    393  

10.4.4 Higher-Order Logic Programming

We saw in Chapter 9 that function programming supports higher-order functions called
functional-forms that take functions as arguments and dynamically form a complex func-
tion that can be executed. An example of functional-form was apply in Lisp and map in
Haskell. A simple ad hoc form of support for higher-order logic programming is present
in Prolog with the operator ‘=..’, which takes a list of data elements and treats the first ele-
ment as functor-name and the remaining elements as the arguments to convert a list into
a predicate that can be executed.

Example 10.16

The following program takes a list of functions that work on a list of data elements,
and returns a list of output values such that ith element of the output argument
ResultList is generated by applying ith function in the argument FunctionList on the
input argument DataList.

construction(FunctionList, DataList, ResultList) :-
 (FunctionList == []→ ResultList = []
 ; otherwise →
 F unctionList = [Function | Fs],
 ResultList = [Result | Rs],
 append(DataList, [Result], ArgsList),
 Goal =.. [Function | ArgsList], call(Goal),
 construction(Fs, DataList, Rs)
).

The program reads as follows: if the first argument FunctionList is empty, then
return an empty ResultList. Otherwise, pick up the next function Function, make
an ArgsList by appending DataList with [Result], and convert the list [Function|
ArgsList] into a dynamic goal Goal using the operator ‘ =..,’ and then call this goal.
After that, build the remaining output list Rs recursively, using the rest of the list of
functions Fs.

For example, construction([length, sum_list], [4, 5, 6, 7], Results) will return a list
[4, 22], where 4 is derived by a dynamically created subgoal length([4, 5, 6, 7], Result1);
and the value 22 is derived by a dynamically created subgoal sum_list([4, 5, 6, 7],
Result2).

Example 10.17

The following program is equivalent to apply_all in functional programming. It
takes three arguments: a function; a list of data elements on which function has to
be applied; and a uninstantiated variable that will return a list of data elements, such
that the ith element of the variable ResultList is derived by applying the function on
the ith element of the list of data elements DataList.

394    ◾    Introduction to Programming Language

apply_all(Function, DataList, ResultList) :-
 DataList == []→ ResultList = []
 ; otherwise →
 Da taList = [Data | Ds],
 ResultList = [Result | Rs],
 Go al =.. [Function, Data, Result],
 call(Goal),
 apply_all(Function, Ds, Rs)
).

The program reads as follows: The procedure apply_all/3 returns an empty list in
the output variable ResultList if the input argument DataList is empty. Otherwise, it
takes the next data element Data, applies function Function on it to produce a value
Result, and builds the rest of the list Rs by recursively calling apply_all/3 with the rest
of the data list Ds.

We can also write Prolog predicates to handle functional-forms such as composition
and insertion. However, this mechanism of incorporating higher-order logic program-
ming is ad hoc, and there are efforts to integrate higher-order logic programming within
the framework of logic programming. Two such efforts are λ-Prolog and Escher. These lan-
guages embed functions as arguments to Prolog predicates, and this λ-expression can be
called as a regular function. The unification in λ-Prolog also needs to unify λ-terms. There
are many efforts to integrate functional and logic programming paradigms, as described
in Section 10.5.

10.5 INTEGRATION WITH OTHER PARADIGMS
Another effort to enrich the logic programming paradigm is to integrate other program-
ming paradigms within the framework of logic programming using Horn clauses. The
major efforts in integrating other paradigms are (1) integration of the functional program-
ming paradigm, so that arguments can be functions and expressions that can be evaluated
before passing the parameter; (2) concurrent execution of logic programs; (3) extending
logic programs by incorporating objects in the logic programming paradigm; and (4)
interfacing logic programming with visual programming languages. In addition, there are
efforts to integrate multiple paradigms together into one language.

10.5.1 Integration with Functional Programming

The motivation behind integrating functional and logic programming paradigms is
to exploit the advantages of both functions and relations. Relations have bidirectional
information flow, and functions complex expressions as arguments to another function.
However, functional programming is based upon evaluation of expression and unidirec-
tional information flow. The major problem is the incorporation of logical variables in

Logic Programming Paradigm    ◾    395  

expressions, because the presence of uninstantiated logical variables makes the expressions
hard to evaluate.

The programming languages that integrate functional and logic programming par-
adigms use different approaches to integrate bidirectional informational f low pres-
ent in unification with unidirectional information f low and expression evaluation in
assignments. The integration approaches can (1) interface two languages or (2) modify
unification to handle λ-expressions. A combination of three techniques, namely, nar-
rowing, residuation, and semantic unification, are used to integrate unification in the
logic programming paradigm and term-reduction in the functional programming
paradigm.

Narrowing finds out minimal substitution between two terms using unification so that
a term can be reduced using term-reduction techniques. Narrowing has been used in inte-
grated functional and logic programming by unifying the subgoal with the clausehead and
applying the bindings to reduce the right-hand-side equation. Note that right-hand side of
the rule is an equation that can be evaluated.

Example 10.18

This example illustrates the integration of unification of the clausehead and the func-
tion term on the right-hand side, followed by the evaluation of expression.

sum_list(nil) <= 0.
sum_list(X::Xs) <= X + sum_list(Xs).

The above program reads that if the argument is an empty list, then evaluate the right-
hand side, and return the result that is trivially 0. The second clause reads that if the input
list is nonempty, then add the value of X with the result returned by sum_list(Xs) and
return the result. Note that right-hand side is an expression, and the recursive call sum_
list(Xs) uses unification with the clausehead to pass the substitution.

An alternate approach to narrowing is to delay the evaluation of expressions contain-
ing uninstantiated variables until the logical variables get instantiated. This approach is
called residuation. Languages like Funlog use residuation. Residuation is sufficient for
the functional programming style. However, if the language uses the logic program-
ming style, then the residuation technique may fail, and the terms will never be reduc-
ible. This failure is caused by the presence of do not care variables that are not needed in
the goal-reduction process.

Semantic unification finds out the semantically equivalent expressions and performs
minimum reduction until the two terms can be unified. For example, semantic unification
of (X, X) = (5, 2 + 3) will succeed, giving the set of binding {X/5}; the expression 2 + 3 has
been evaluated to give 5, and then unification of two terms succeeds.

Some of the languages that integrate functional programming and logic programming
are Curry, Funlog, LogLisp, F*, Qlog, Eqlog, and Escher.

396    ◾    Introduction to Programming Language

10.5.2 Integration with Object-Oriented Programming

There are multiple languages that integrate the logic programming paradigm and object-
oriented paradigm. There are different approaches to integrate logic programming with
object-oriented programming, which are as follows:

 1. A program in the object-oriented logic programming paradigm is a group of objects
that have methods that are like Prolog procedures instead of imperative style proce-
dures and are accessed as <object-name>.<method>. The languages that support this
approach are LogiC++, KSL, and Orient84.

 2. Languages that incorporate objects, classes, and inheritance within the framework of
logic programs. They use a preprocessor to translate an object-oriented logic program
to a regular logic program. The languages that take this approach are Intermission,
Vulcan, CPU, OOPP, and OLPSC.

 3. Many languages have a library to incorporate object-oriented programming. For
example, Sicstus Prolog takes this approach.

There have been attempts to integrate logic programming, functional programming, and
object-oriented programming. There are many languages such as G, FLOOPS, UNIFORM,
PARADISE, and LIFE that integrate all three programming paradigms.

Oz/Mozart is a multiparadigm language that integrates logic programming, object-
oriented programming, concurrent programming, and supports both deterministic and
nondeterministic programming.

10.5.3 Concurrent Logic Programming

Logic programming languages naturally support nondeterministic programming because
of built-in logical-AND and logical-OR. The clauses can be executed concurrently.
Similarly, subgoals can be executed concurrently. The concurrent execution of clauses is
called OR-parallelism, because different subtrees rooted at an OR-node are being executed
concurrently. The concurrent execution of subgoals of a clause is called AND-parallelism,
because subgols are the children of an AND-node. AND-parallelism, has two approaches
to handle the shared variables: (1) use streams between producer and consumer occur-
rence of shared variable to pass the values to the consumers and (2) use intersection of
the values generated by concurrent execution of subgoals with shared variables. There
have been many attempts to exploit concurrency in logic programs. Most notable are the
OR-parallel language PARLOG and the AND-parallel language Concurrent Prolog. Both
these languages use guards and commit to the guard after successful execution of guards
to restrict backtracking.

Another aspect of incorporating concurrency in logic programming languages is the
incorporation of multithreaded programming. Most of the logic programming languages
such as Sicstus Prolog and Oz support a library module supporting multiple threads and
lock mechanism.

Logic Programming Paradigm    ◾    397  

10.6 SUMMARY
Logic programming is a declarative programming paradigm that is based upon first-order
predicate calculus. First-order predicate calculus is an integration of propositional calcu-
lus, existential quantification and universal quantification.

A logic program is a set of procedures. Each procedure is a set of Horn clauses that are
related to each other using logical-OR. Each clause has a left-hand side and a right-hand
side such that the left-hand side is implied by the right-hand side. The predicates on the
right-hand side are called subgoals, and the term on the left-hand side is called a clausehead.
Logic programs are inherently nondeterministic because of commutativity of logical-OR
and logical-AND operators and bidirectional information flow in unification. However,
the presence of shared variables in a subgoal introduces data dependency because of the
producer–consumer relationship. A logic program has rules and facts. Rules have a non-
trivial right-hand side, and the right-hand sides of facts are trivially true.

There are two types of reasoning systems in logic programs: forward reasoning systems and
backward reasoning system. A forward reasoning system applies rules on facts to derive new
facts, and keeps repeating the process until no new facts can be derived. Backward chaining
systems take a query and find out whether it can be derived using the set of rules and facts
in the program. Because a forward chaining system applies rules on all the facts, it is inher-
ently slow in nature. However, it is good for monitoring systems where the implication of new
information has to be figured out. Backward chaining systems perform focused searches on
part of a search space for a solution and are inherently faster than forward chaining systems.
There are languages both for forward chaining systems and backward chaining systems. For
example, the OPS5 family uses forward reasoning, and Prolog uses backward reasoning.

Classical logic programming is based upon query reduction using unification. Unifi-
cation is a pattern matching process with two-way information flow without any expres-
sion evaluation. It matches position-by-position the logical subterms and upon successful
matching, returns the set of substitutions. There are four possibilities in unifying two logi-
cal subterms. If the corresponding subterms are constants, then they are simply matched.
If one of them is a variable, then all the occurrences of that variable are bound to the
corresponding logical subterms in the other logical terms. If both of them are unbound
variables, then both the variables are made aliases. Aliasing is an equivalence relationship,
and binding to any variable in the alias set binds every variable in the set with the same
binding. If the unification fails, then the substitution set is not generated.

The execution of logic program is mapped on a logical tree called an AND–OR tree. An
AND–OR tree has two types of nodes: AND-nodes and OR-nodes. All the children of AND-
nodes have to be true for the AND-node to be true. At least one of the children of an OR-node
has to be true for an OR-node to be true. The level of OR-nodes and AND-nodes alternate in
an AND–OR tree. Backtracking is used to simulate nondeterminism in logic programs. The
process of backtracking takes the control back to the previous choice-point, and unbinds all
the variables that have been bound between the failed subgoal and the previous choice-point.
An alternative rule of fact is selected for unification, and the search on an alternate part of
the tree is done to derive a new value for the variables that were unbound.

398    ◾    Introduction to Programming Language

Prolog is a popular logic programming language that is based upon first order predicate
calculus. It supports backtracking and simulates nondeterministic programming using
backtracking. Prolog supports many features such as set-based programming, use of
“cuts” to prune the search space, and meta-programming. However, because of the lack
of mutable variables in the standard definition of languages, it has to resort to alternate
mechanisms to store partial computations. There are three techniques to store partial
computations that do not undo the bindings with backtracking. The techniques are (1) use
of blackboards, as in Sicstus Prolog; (2) a combination of assert and retract predicates in
all the implementations; and (3) the use of global variables in GNU Prolog. Blackboard
stores key-values pairs and provides operations to access and update the values using
a key-match. The predicate assert inserts a fact in a Prolog database, and the predicate
retract removes a fact from the Prolog database. Both these techniques can be used to
simulate the effect of global variables in logic programming. Prolog also supports higher-
order programming using the operator =.. that is used to dynamically build predicates.
Using this facility, functional-forms like apply_all, composition, insertion, and construc-
tion can be simulated.

The implementation of logic programs is based upon mapping the AND–OR tree into
a low-level abstract machine WAM (Warren Abstract Machine). WAM supports depth
first search and many abstract instructions to compile logic programs. It uses hashing
on procedure-name and number of arguments to jump to specific procedures and uses
a combination of try_me_else, retry_me_else, and trust_me_else_fail, along with getting
and storing the complex structures in the heap. The references to the arguments are stored
in the processor registers. An extra stack called trail-stack is used to handle backtrack-
ing. The trail-stack stores the choice-points (OR-nodes with alternate nondeterministic
clauses), so that an alternate path can be explored in case of backtracking. Backtracking
traverses to the previous choice-point by popping the last choice-point from the trail-stack
and unbinding the last bound variable.

The major limitations of the classical logic programming is in (1) handling the nested
expressions, (2) passing functions as parameters, (3) lack of evaluation of expressions
while passing parameters for calling functions, (4) lack of handling temporality present in
real-world events, (5) lack of handling constraints, and (6) the lack of a theoretically clean
model to handle higher-order functions. The major advantage of logic programming is to
provide relations.

In the last two decades, a lot of effort has been made to extend the classical logic pro-
gramming paradigm by (1) incorporating constraints, temporality, and higher-order func-
tions and (2) integrating with other programming paradigms.

The integration of functional and logic programming provides the advantages of rela-
tions and equations in one language. The approach taken is to interleave unification in
logic programming with expression reduction in functional programming. Narrowing
provides partial minimal unification until the resulting terms can be reduced. Semantic
unification provides solving semantically equivalent equations before unification of logical
variables. Another scheme is to delay the process of reduction unless the logical variables
in the terms are instantiated.

Logic Programming Paradigm    ◾    399  

Temporal logic programming incorporates operators in logic programs to reason about
ordering the events using temporality. Different predicates can become true at different
time intervals and after certain sequences of events. TempLog and Tokio are two temporal
logic programming languages.

There has also been effort to integrate object-oriented programming with logic pro-
gramming and languages that integrate functional and logic programming. The most
notable languages are Hope, Oz, and Escher. Hope is a polymorphic language that inte-
grates functional and logic programming. Oz is a mutiparadigm language that integrates
logic, functional, object oriented, and concurrency. Escher also integrates functional and
logic programming.

Logic programs inherently support concurrency because of the presence of AND-nodes
and OR-nodes. The concurrency that is exploited by concurrently executing the subtrees
rooted at OR-nodes is called OR-parallelism and is equivalent to executing the different
clauses of a procedure concurrently. The concurrency that is exploited by concurrently
executing all the children of AND-nodes is called AND-parallelism. Because each sub-
goal of an AND-node is capable of producing multiple solutions, streams are used to con-
nect the subgoals, or an intersection is used to find out common values generated by two
subgoals for a shared variable. Both these approaches have been used in implementing
AND-parallelism. Parlog exploits OR-parallelism, and Concurrent Prolog exploits AND-
parallelism. Many versions of Prolog and the multiparadigm language Oz also support
thread-based programming through the use of a library module.

10.7 ASSESSMENT
10.7.1 Concepts and Definitions

Abstract interpretation; AND-node; AND–OR tree; AND-parallelism; arity; assert; back-
tracking; bidirectional information flow; blackboard; choice-point; clause, clausehead;
closed world assumption; concurrent logic programming; constraints; constraint logic pro-
gramming; cut; deductive logic; deterministic program; dictionary; goal; goal reduction;
green cut; ground term; higher-order logic programming; inductive logic; instantiation;
interval constraint; logical variable; inductive logic programming; meta-programming;
narrowing; negation as failure; nondeterministic programming; nonground term; occurs
check; OR-node; OR-parallelism; program analysis; query; query reduction; red cut; resid-
uation; retract; safe cut; semantic unification; set-based programming; shelf; subgoal; sub-
stitution set; temporal logic programming; trail; trail stack; unification; unsafe cut; WAM

10.7.2 Problem Solving

 1. Give the tree structure for the following logical terms:

a. class(cs, time(10), location(‘MSB 124’)
b. [a, b, 1, 20]
c. “Program” /* string is a list of ASCII characters */
d. instructor(course(cs), [michael, tom]).

400    ◾    Introduction to Programming Language

 2. Unify the logical terms f(X, X, [4, 5, 6], L) and f(M, Y, [M, 5, B], B) one step at a time,
showing the intermediate substitution set and instances of logical terms. Give the
final substitution set and the common instance.

 3. Draw an AND–OR tree for the following program and a query uncle(tom, U). Clearly
mark the OR-nodes and AND-nodes and identify the edges and bindings for success-
ful unification.

uncle(X, Y) :- parent(X, Z), brother(Z, Y).
brother(X, Y) :- parent(X, Z), parent(Y, Z), male(Y), \+ (X = Y).
parent(tom, neena). parent(neena, joe). parent(clark, Joe).
parent(tom, ted). parent(ted, mary).

 4. Show the choice points and backtracking for the following program. During back-
tracking, clearly identify the variables that will be unbound, and trace the forward
execution with the new value for the query provide_education(tom, X).

provide_education(X, Y) :-
 parent(X, Y), values_education(X), values_education(Y),

has_finance(Y).
parent(tom, mary). parent(tom, john). parent(cathy, mary).
values_education(cathy). values_education(john).
values_education(tom). has_finance(john).

 5. Write a recursive declarative style logic program for merge-sort, and execute using
GNU Prolog.

 6. Write a recursive declarative program to perform quicksort, and execute using GNU
Prolog.

 7. Write a nondeterministic program to find out a subsequence of a sequence.

 8. Simulate a struct professor that has fields name, course, room, office-hours, and
access various fields.

 9. Read more literature on the Internet about temporal logic programming and explain
how you would represent using temporal logic insertion of an element in the queue
only after the first element has been taken out.

 10. Write and execute the following programs in Prolog.

 a. Adding the list of numbers

 b. Adding two matrices of numbers

 c. Polymorphic program to remove duplications from a list of data elements

 d. Adding two polynomials

Logic Programming Paradigm    ◾    401  

10.7.3 Extended Response

 11. What do you understand by AND–OR tree? How it is used in the query reduction?
Explain using a realistic example.

 12. How is backtracking implemented using a trail-stack? Explain using a simple exam-
ple of logic program.

 13. What is unification? Explain using a nontrivial example.

 14. How does logic programming support nondeterministic programming? How has it
been simulated using backtracking in Prolog? Explain using a simple example.

 15. Explain the effect of placing a “cut” in terms of choice-points and trail-stack.

 16. What are the mechanisms in Prolog to store partial results, and how do they improve
execution efficiency? Explain using an example by writing and executing a program
not given in the book.

 17. What is the difference between forward and backward reasoning systems? Explain
using a simple but nontrivial example.

 18. Explain with examples and code how Prolog supports higher-order functional-forms.

 19. Explain different techniques used to integrate one-direction information flow in
functional programming with two-direction information flow in the unification pro-
cess in logic programming. Give examples.

 20. Read more literature and tutorials on the programming language ECLiPSe from their
website (http://www.eclipseclp.org), and discuss the use of constraints using two
nontrivial programs.

FURTHER READING
Abadi, Martin and Manna, Zohar. “Temporal logic programming.” Journal of Symbolic Computation,

8(3). 1989. 277–295.
American National Standard Institute. Programming Language PROLOG PART I. ISO/IEC 13211-1.

2012.
Apt, Krzysztof and Wallace, Mark. Constraint Logic Programming Using Eclipse. Cambridge, UK:

Cambridge University Press. 2007.
Clocksin, William F. and Mellish, Christopher S. Programming in Prolog (5th edition). Berlin,

Germany: Springer Verlag. 2003.
Diaz, Daniel. “GNU prolog.” Available at http://www.gprolog.org/manual/gprolog.html
Gavanelli, Marco and Rossi, Francesca. “Constraint logic programming.” 25 years of Logic

Programming, LNCS 6125. Berlin, Germany: Springer-Verlag. 2010. 64–86.
Hanus, Michael. “The integration of functions into logic programming: from theory to practice.” The

Journal of Logic Programming. 19,20, 1994. 1–48.
Haridi, Seif and Franz, Neils. Tutorial of OZ. Available at http://www.mozart-oz.org/documentation/

tutorial/

402    ◾    Introduction to Programming Language

Lloyd, John W. Declarative Programming in Escher. Technical Report ACRC-95:CS-013. Department
of Computer Science, University of Bristol. 1995. 121, Available at http://www.cs.bris.ac.uk/
Publications/Papers/1000073.pdf

Marriott, Kim and Stuckey, Peter J. Programming with Constraints. Cambridge, MA: MIT Press. 1998.
Muggleton, Stephen. “Inductive logic programming.” New Generation Computing, 8(4). 1991.

295–318.
Nadathur, Gopalan and Miller, Dale. Programming with Higher Order Logic Programming. New York,

NY: Cambridge University Press. 2012.
Ng, Kam W. and Luk, Chi-Keung. “A survey of languages integrating functional, object-oriented and

logic programming.” Microprocessor and Microprogramming, 41(1). 1995. 5–36.
Sicstus Prolog Manual. Available at http://www.sics.se/isl/sicstuswww/site/documentation.html
Sterling, Leon and Shapiro, Ehud Y. The Art of Prolog, (2nd edition). Cambridge, MA: MIT Press.

1994.
Warren, David H. D. An Abstract Prolog Instruction Set. Technical Note 309. SRI International.

Menlo Park, CA. 1983.

403

C h a p t e r 11

Object-Oriented
Programming Paradigm

BACKGROUND CONCEPTS
Abstract concepts in computation (Section 2.4); Abstractions and information exchange
(Chapter 4); Abstract implementation and low level behavior (Chapter 5); Data structure
concepts (Section 2.3); Dynamic memory management (Chapter 6); Distributed computing
(Section 8.4); Polymorphism (Section 7.5).

Object-oriented programming was born out of need to develop large-scale software. Object-
oriented programming has been applied to the development of large databases including multi-
media databases and major commercial software. In order to develop large-scale software, one
has to build upon software developed earlier to avoid duplication, make it robust, and main-
tain it. Software reusability and maintainability is a major factor for the large-scale software
development to (1) reduce the cost of development and evolution and (2) keep the number of
bugs relatively low. Major interrelated components of object-oriented programming are modu-
larity, reusability, and information-hiding of the implementation-level details of modules.

Modularity means breaking up large software into smaller modules that can be placed
as a class library and loaded in other modules when needed. This supports better reuse and
maintainability. Only a limited public part of a module is visible outside. This public part
is necessary for an object to communicate with other objects. Hidden parts of the module
are needed for the implementation and can change with time to incorporate new technol-
ogy or redesigned software to improve the execution efficiency. Reusability means that
proven debugged and robust software is used again to avoid the time and cost overhead of
development and maintenance. Information hiding means that the details of implement-
ing various entities declared in one module is invisible to other modules unless exported
intentionally by the programmer and intentionally imported in other modules.

Class-based languages extend the notion of modular programming by merging the passive
concept of module boundaries with the active notion of instances of classes called objects.
Like modules, classes are passive templates that group data objects as well as subprograms

404    ◾    Introduction to Programming Language

working on them with a difference that multiple instances of objects can be created at run
time, and these objects can communicate to each other by sending messages to invoke the
public methods associated with the objects at run time. Messages are different from pro-
gram invocation because messages invoke only public methods of other objects; private and
 protected methods cannot be invoked by objects that are instances of other classes and do
not belong to a class-hierarchy. These public methods in turn can invoke private methods
within the same object. These multiple objects have individual states at a particular time-
instance, and the total computational state of the program is the cumulative sum of the
individual states of the objects. The communication between objects changes the overall
cumulative state of the computation, because the object receiving the message changes its
state to another state, performs more computations, and transmits a new message.

Reusability requirement has necessitated two additional facilities: (1) development
of off-the-shelf software developed as class libraries that can be included in other class-
definitions and (2) hierarchical structure of class templates, such that previously declared
templates can be reused by refining the templates. The hierarchical structure of the class
allows descendants to inherit unrestricted data entities and the unrestricted methods
declared in the ancestor-classes. The root node is the root-class, also known as the super-
class, and all its children are called subclasses. Parent of a class is called the parent-class,
and the children are called the subclasses. The notion of the parent-class and subclass are
relative, which means a node in a directed acyclic graph (DAG) can be both a subclass for
its parent-class as well as a parent-class for its children. An object is an active instance of
any node in a DAG and is involved in computation, as shown in Figure 11.1.

A subclass (also called a derived class) and a parent-class are linked through an inheritance
link. Inheritance means if a subclass does not contain a data-entity or a method, then the
hierarchy will be traced back until the definition of the method or the data-entity is found.
In one hand, the use of inheritance promotes reusability by allowing tested off-the-shelf class
libraries. On the other hand, inheritance causes dependencies on the parent-class or other
 ancestor-classes: any change in the library may affect all the programs importing from class-
libraries, and many times this affects the program maintenance adversely. A change in the
definitions of the member-entities that can be inherited by the subclasses can also adversely
affect the behavior of the subclasses. Another problem of inheritance is in the object migration
in remote method invocation. A migrating object has to carry all the member-entities it uses,

Base class

Class1 Class2

Class3 Class4 Class5
Class6

Instance-of
subclass

Obiect

≺s ≺s

≺s
≺s≺s ≺s

≺s

FIGURE 11.1 Tree-based hierarchy of subclass and single inheritance.

Object-Oriented Programming Paradigm    ◾    405  

including inherited methods and class-variables. If the methods used are defined in ancestor-
class, then the ancestor-class definitions also have to be migrated, adding to the data-transfer
overhead. Owing to this problem, many language designers such as Emerald and Javascript
have used flat definitions of objects and do not support an hierarchical definition of inheritance.

Most of the modern object-oriented languages support the concept of class, class-
inheritance, polymorphism through the use of generic methods and inheritance, encap-
sulation, and abstract types. The methods embedded in the class-definition could be
functions or procedures. The notion of object and class varies from language to language.
In some languages like Ruby, every data-element is an object. For example, an integer value
10 is an object in Ruby. Built-in operations can be possibly overridden to provide flexibility
and extensibility of the class-definitions.

In object-oriented languages, polymorphism is present by the use of generic methods
that use type-variables. It is also present in multiparadigm languages such as Ruby and
Scala that support generic functions. Polymorphism is also present because of the use of
inheritance, where a subclass can inherit the attributes of a class. Thus, the same operator
defined once in a base-class can be used by all the descendant classes using inheritance.
Polymorphism can also be present using subtyping in object-oriented languages.

Object-oriented programming has been integrated with the imperative program-
ming paradigm, concurrent computing, and distributed computing for a long time
such as in C++, C#, Java, Modula-3, and Emerald. It also has been integrated with the
function programming paradigm such as in common Lisp object-based system (CLOS),
Ruby, and Scala, and with the logic programming paradigm such as object-oriented
variations of Prolog and Oz—a recent language that integrates object-oriented and logic
 programming paradigms.

11.1 CLASSES AND OBJECTS
The notion of class serves many purposes in object-oriented programming. Like module, it
becomes the natural boundaries for objects: variables and other declared entities. Methods
cannot be automatically seen outside the class, unless they are made public. Some lan-
guages like C++ allow the notion of friends to provide limited visibility of member-entities
declared in one class to another even if a member-entity is not public. The property of tree
structure supports inheritance of the entities declared in ancestor-classes by the descendant
classes. Class also acts as a template for run-time creation of objects. Owing to the hierar-
chical nature of the class, subclasses can extend the template of the parent-class either by
(1) redefining (called override in OO-jargon) a data-entity, or (2) redefining a subprogram
entity (called method in object-oriented programming jargon) including built-in opera-
tors. A class can be defined partially in the base-class and progressively extended in sub-
classes. Such class-definitions are called partial class.

A class structure can be nested, which means a class may be defined within another
class. Some languages like C++ and C# support this type of nesting. The nested classes
are called inner classes, and the class in which an inner class is nested is called an outer
class. An inner class can access only the static members of the outer classes in C++ and C#.
However, in Java, inner classes can access all the members of the outer class.

406    ◾    Introduction to Programming Language

An entity declared in a class, if redefined in subclass, is shadowed (hidden) in favor of the
new definition in the subclass. Different subclasses may redefine an already defined method
 having the same name in an ancestor-class. These methods are called virtual methods.
A method is accessed using the class-hierarchy followed by method name. A class- hierarchy is
the path from the root-class to the current class. For example, a class-path system.lang.thread
defined in Java has a three-level hierarchy of classes: system, lang, and thread; lang is a subclass
of system, and thread is a subclass of lang. The methods taken from the subclass thread would
be addressed as system.lang.thread.<method-name>. Alternately, the library system.lang.
thread can be included in the software being developed. Assuming that there is no name-
conflict, just the <method-name> can be used after loading the corresponding class-library.

An abstract method is declared only in a class. Its implementation—the body of the
method—is missing. The purpose of an abstract method is to provide the correct position
of the method in the class-hierarchy, so that it can be correctly inherited. A subclass may
implement an abstract method in its own way, including the possibility of not defining it at
all. An abstract class is a class that contains one or more abstract methods or a subclass that
inherits at least one abstract method without providing its implementation.

Like abstract classes, interfaces also contain the declarations. However, unlike interfaces,
abstract classes can contain fields that are not static and final, and they can contain some
implemented methods or partially implemented methods leaving it to subclasses to complete
the implementation. If an abstract class contains only abstract method declarations, it should
be declared as an interface instead. Interfaces have been used extensively in remote method
invocation in distributed object-oriented programming and event-based programming.

The following sections discuss these concepts and implementation of object-oriented
languages, and describe distributed model of object-oriented programming.

11.1.1 Object—An Instance of a Class

An object is an active instance of a class. Objects are allocated memory in a heap at run
time, and can have a state. The method that creates an object and initializes the instance
is called a constructor in object-oriented programming jargon. When an object is cre-
ated, it creates its own data area in the heap and uses the methods declared in the class.
An instance variable belongs to an instance of a class, whereas a class variable is part of
the corresponding class, and is common to every instance of the class. Each object has a
separate copy of instance variables and executes the methods (including virtual methods,
explained in Section 11.2.1) defined in the corresponding class or ancestor-classes based
on class-inheritance. A computational state changes state when the value of one of the
variables accessible from an object is updated.

Two objects that are instances of the same class are different because (1) instance vari-
ables occupy different memory locations and (2) two objects may be in different states at
a given time. A variable inside an object can be altered if (1) it is a public variable and is
altered by an object including other objects, (2) is a protected variable and is altered by an
object within the class-hierarchy of the actual class where the variable has been declared,
and (3) a private variable that is altered by the object’s method. A private method in an
object can be invoked only by a method declared within the same class of the object.

Object-Oriented Programming Paradigm    ◾    407  

Depending upon whether the method is static or virtual, the access mechanism is
 different. Depending upon the object-oriented languages, both mutable and immutable
objects are supported. In modern multiparadigm languages such as Ruby and Scala, lists
and strings are immutable objects, and arrays and vectors are mutable. The public data-
entities in an object are called outer subobjects, and the protected data-entities in the
instance of a class are called inner subobjects.

An object is created and initialized using a special initialization method(s). The method
allocates the corresponding memory locations in the heap and stack or both, depending upon
the language, and initializes the values of the member-variables of the created object. This
special method can be called an initialization method as in Ruby or a constructor in some
object-oriented languages such as C++, Java, and C#. An initialization can have zero or more
parameters that are used to pass the initial values to the public members of an object. Generally,
created objects have a default initialization value. However, parameters can be used to pass the
initialization values. For example, one can create a circle object by passing the parameter val-
ues of a center and the radius. There can be more than one initialization method, depending
upon how many initialization values are passed during the creation of an object.

Example 11.1

Figure 11.2 shows a class-definition for stack in Java-like syntax. The class stack is pub-
lic, which means every class can access the stack and its public entities. The stack-class
has been implemented using an indexible sequence (in this case, an array of objects).

public class stack

{ protected Object[] mySeq; // a vector of references

 protected static maxsize = 256; // maxsize is a class variable

 protected int top = 0; // top is an instance variable

 public stack() { this.mySeq = new Object[]; } // constructor

 public boolean isEmptyStack () { return (top == 0)}

 public boolean isFullStack () { return (top == maxsize) }

 public void push(Object next _ element)

 { if (top == maxsize) throw new OverflowException();

 mySeq[top++] = next _ element;

 }

 public Object pop()

 { if (top == 0) throw new UnderflowException();

 Object popped = myseq[--top];

 myseq[top] = null; // make the reference null

 return(popped);

 }

 public Object top() { return (mySeq[top – 1]) }

}

FIGURE 11.2 An example of class for stack using Java syntax.

408    ◾    Introduction to Programming Language

The class stack has three types of entities: variables, protected data-entities, and public
methods. Each abstract operation on stack is written as a public method. Objects are
accessed using a reference stored in an array element, and objects themselves are stored
in the heap. In order to garbage collect the object, the reference is assigned the value
‘null.’ The constructor public stack () creates a new instance of the stack. The method
isEmptyStack returns true if the value of the variable top is equal to zero. The method
isFullStack returns true if the value of the variable top is equal to the maximum size of
the stack. The method push takes an object reference and inserts it in the stack mySeq
after incrementing the index top by one. The method pop decrements the value of the
index-variable top, and removes the element indexed by the variable top.

11.2 CLASS-HIERARCHY AND INHERITANCE
Class-structure is arranged in the form of a DAG (directed acyclic graph), and tree is a
 special case of DAG that allows clear separation of various subclasses. In a tree-based
 hierarchical structure, a subclass inherits from only one parent-class and its ancestors as
shown in Figure 11.1. Note that there is only one root-class. Subclass relationship is denoted
by the symbol ‘≺s.’ All the nonleaf nodes can be both subclasses of the class corresponding
to the parent-node and parent-class, for the classes represented by their children-nodes.
The leaf-nodes are the final subclasses and have no children.

11.2.1 Subclasses

The subclass relationship is transitive, which means that class A ≺s class B ⋀ class B ≺s class
C implies class A ≺s class C. It is also called an is-A relationship using artificial-intelligence
terminology. A subclass is also called a derived class. In Figure 11.1, class3 and class4 are sub-
classes of class1; class5 and class6 are subclasses of class2; and class1 and class2 are subclasses of
the root-class. Alternately, the root-class is a parent-class for the classes class1 and class2; class1
is a parent-class of the classes class3 and class4; and class2 is a parent-class of class5 and class6.

A subclass may declare more entities than its parent-class or any of the ancestor-classes or
can override the definition of a method in any of the ancestor-class if it is permitted to do so by
the ancestor-class. A method cannot be overridden by a subclass if it is sealed inside the class
where it has been declared. Unless declared as private, inherited entities are accessible to the
descendants for reuse. Derived classes are different from parent-classes because (1) derived
class can inherit the member data-entities and methods using an inheritance link. However,
inheritance is antisymmetric, and parent-class cannot inherit methods and data-entities of
the derived class, (2) derived class can redefine (called override in object-oriented jargon) an
already defined method or define an abstract method in the parent-class, (3) a parent-class
can seal its member-entities to avoid being redefined by the subclass, and (4) a member-entity
in a parent-class can be made private to make it invisible in the subclasses.

Example 11.2

We extend the class stack given in Example 11.1 to an indexible stack that can act
as a stack as well as an indexible sequence, with an additional method get_data that

Object-Oriented Programming Paradigm    ◾    409  

picks up any data_element from a given valid index between 0 and top. The subclass
indexibleStack will extend the class stack using the following syntax:

 class indexibleStack extends stack
 { public Object getData(int index)
 { if (index < 0 || index > = top)
 throw new StackRangeException();
 else return (mySeq[index])
 }
 }

All other methods already declared in the class stack are inherited by the sub-
class indexibleStack. Different languages have different ways of declaring a subclass.
For example, Ruby notation will be indexibleStack < stack to state that the subclass
indexibleStack is a subclass of the class stack.

A subclass (derived class) can inherit all the member-entities (other than the sealed
and private entities) of the ancestor-classes. An ancestor-class is a parent-class or an
ancestor of a parent-class up to the root-class (or base-class). Given a method or a data-
entity in an instance of a class, it is first looked up in the class. It is used if it is found in
the class. Otherwise, it uses the inheritance link to go to the next level of parent-class to
search for the definition. The process is repeated until the member-entity is identified.

An object, which is an instance of a class, can use an inherited method from one of
the ancestor-classes with a data-entity declared in the class, provided the data-type of
the data-entity is compatible with the data-type of corresponding data-entity used in
the inherited method. Similarly, an object that is an instance of a subclass can apply
a method on an inherited data-entity, provided the method defined in the subclass is
type-compatible with the data-type of the inherited data-entity. Under certain condi-
tions, the type-compatibility condition can be relaxed using casting as described in
Section 11.3.3.

11.2.2 Virtual Methods

A method may be (1) defined in a base-class and inherited by a subclass (2) just declared in
the base-class and defined in the subclass, (3) defined in the base-class and redefined dif-
ferently later in different subclasses. If a method is simply declared in the base-class and
later used in the subclass, then it is called an inherited method. If a method is just declared
in the base-class and defined in different subclasses differently based on their requirement,
then the method in the base-class is called an abstract method or pure virtual function.
After defining a method in a class, there may be a need to change the method definitions in
different subclasses. Thus, a method may have the same name but different definitions in
different subclasses. Such redefined method is called a virtual method.

An abstract method can be used to define hierarchical position; only derived classes
provide implementations for pure virtual functions. A pure virtual function that is not
defined in a derived class remains a pure virtual function. A derived class containing only
abstract methods is also an abstract base-class.

410    ◾    Introduction to Programming Language

Virtual methods refer to different functions depending upon the corresponding
 subclass. Object-oriented languages that support class-hierarchy also support virtual
methods. Different languages have different syntax to declare virtual methods and
to specify whether a virtual method is being overridden in a subclass. For example,
 virtual methods are annotated with a reserve word “virtual” in C++ and C# to sepa-
rate them from other inherited nonvirtual methods—methods that have unique names
in class-hierarchies and are not redefined in subclasses. Java uses the reserved word “@
override” before the method definition to show that the method is being redefined in a
subclass. Similarly, C# uses “override” before the method name in the subclass. In the
case of extensible libraries and classes that can be derived further, the methods have to be
declared as virtual methods.

Example 11.3

Let us consider an example to explain the concept of virtual method. A company
has many types of employees such as executives, monthly salaried employees, and
daily workers. All three subclasses of employees’ salaries and benefits are paid using
different equations. Yet they all are employees. By default, they are treated as regular
employees who get monthly salary. Let us write a simple intuitive declaration for
 virtual method using C# syntax.

 using System;
 using System.Collections.Generic;
 namespace Salary
 { public class Employee
 {public virtual void salary()
 {Console.WriteLine(“Regular monthly salary”);}
 }
 public class Executive: Employee
 {public override void salary()
 {Console.WriteLine(“Gets executive bonus”);}
 }
 public class DailyWorker : Employee
 {public override void salary()
 {Console.WriteLine(“Gets only hourly wages”);}
 }
 public class OtherEmployee : Employee
 {… //no overriding inherits parent-class method
 }
 }

Methods with unique names that are declared in a class and never altered are called
static methods and can be given a unique identifier in the compiled code. However, the
methods that are defined in different subclasses cannot be given a unique identifier at

Object-Oriented Programming Paradigm    ◾    411  

compile time and need to be bound at run time after the object belonging to specific
subclass is known. Thus virtual methods need dynamic binding to the code-area.

11.2.3 Multiple-Inheritance

A subclass may also use multiple-inheritance, as there can be more than one parent-class.
An example of multiple-inheritance is in the definition of dolphin, which would inherit
some properties from land-bound creatures such as breeding and some properties from
fish such as swimming.

In a subclass that inherits from more than one parent-class, the inherited entity should
have a unique name across the parent-classes and their ancestors to avoid any ambiguity.
Occurrence of two entities with the same name causes ambiguity because of the name-
conflict and needs to be resolved. However, it is difficult to resolve name-conflicts if the
libraries are imported.

Example 11.4

Let us take an example of teaching assistants who are teaching basic-level courses.
They act both as instructors and students. They take and teach courses. They inherit
the pay-related information from the class employee, the course-teaching-related
information from the class instructor, the tuition-payment-related information from
the class student, and the course-taking-related information from the class student.

Definitions containing multiple-inheritance are modeled as DAGs, because there
are classes that have more than one incoming edge due to the presence of multiple par-
ent-classes. Multiple-inheritance can cause ambiguities in the inheritance of meth-
ods. For example, let us take the multiple-inheritance structure given in Figure 11.3.

A virtual method m declared in the base-class P is inherited by its subclasses
Q and R. Virtual methods are accessed using a Virtual Method Table (VMT) that is
an array of references to the code area of virtual methods in the current class and its
ancestor classes. The virtual method table (VMT) used to access virtual methods of
Q and R has reference entries for method m. Since the subclass S inherits from both
the parent-classes Q and R, there is ambiguity whether to accept virtual method m
from Q or R. Similarly, suppose Q does not declare a virtual method. Rather, it inher-
its the definition from P. Because Q is using the virtual method of P, again there is a
conflict as to whether P’s virtual method should be used or R’s virtual method should
be used by S.

P

RQ

S

Q ≺s P; R ≺s P
S ≺s Q; S ≺s R

FIGURE 11.3 An illustration of multiple-inheritance complexity.

412    ◾    Introduction to Programming Language

Depending upon the programming languages, such name-conflicts are treated
 differently. Although one language may treat such name-conflict as an error, other
languages may use some heuristics to resolve the conflict. One technique to resolve
the conflict is to explicitly specify which parent-class is being used when a method
with a common name in two parent-classes is being used. This explicit specification
can be done in two ways (1) by concatenating the parent-class name before the method
name as <parent-class-name>::<method-name> and (2) a reserved word using can be
used in the subclass-definition followed by <parent-class-name>::<method-name>.
Some languages like Scala do not support multiple-inheritance. Instead, they use
traits to include common features across different classes. Languages like C# and
Java do not support multiple-inheritance of classes. Some languages like CLOS, C#,
Python, and Ruby use mixins. Mixin is like an abstract class-definition that is added
to other classes to enhance their functionality. Mixins are implemented in the classes
where they are included.

11.3 VISIBILITY AND INFORMATION EXCHANGE
Unlike procedure-based languages where the scope was limited to procedures, class-based
languages have variables that are associated with class, method, and objects. Object-oriented
languages have four types of variables: global variables, class-variables, instance variables,
and local variables. Global variables are available across the classes. Class-variables have
limited scope within a class and descendant subclasses and are available to different meth-
ods inside the class and the subclasses. There is a single copy of the class variable that is
shared across multiple objects of the same class and the descendant subclasses. Instance
variables are specific to every object-instance of the class. Every time an object is created,
a new instance variable is created. Since instance variables are specific to dynamic objects,
they occupy a memory location when an object is created at run time. Local variables are
similar to local variables in imperative languages and have limited scope within the meth-
ods they are declared in.

In Example 11.1, the variable top is an instance variable. The variable maxsize is a class
variable, has only one copy within the class stack, and is shared among various objects of
the class stack. There is a need to separate these variables while declaring inside a class.
Different programming languages use different reserved words. As shown in Figure 11.1,
Java uses the reserved word “static” in front of the variable declaration to mark it as a class
variable. Ruby uses ‘@@’ sign in front of a variable to denote that it is a class variable.

11.3.1 Visibility of Member Entities

A class contains three types of entities and three types of visibility of the entities. A class
contains variables, data-entities, and methods. A method is a procedure or function whose
scope is limited within a class unless it is declared public. There are three types of visibili-
ties associated with entities. The visibility classifications are public, protected, and private.
A public entity is visible outside the class. Declaring an entity as public has the same effect
as exporting the entity to other classes. A protected entity has different meanings in differ-
ent languages. In C++ and C#, the declaration “protected” limits the visibility within the

Object-Oriented Programming Paradigm    ◾    413  

subclasses and their descendants using inheritance hierarchy. This is more like creating
nonlocal variables in nested procedures in the procedural programming paradigm. The
 declaration “protected” in Java is a little more liberal, and its scope is restricted within the
corresponding package. That means the other classes within the same package can also
see a protected entity. A private entity has limited scope within the class it is declared. In
addition, a method may be sealed so that its original definition may not be overridden. For
some languages, the default mode of a method is “public”, whereas for others default mode
is “private”. For example, the default mode of C++ and C# is “private”: unless specifically
declared “public”, a class or its entities are not visible to instances of other classes. Some
languages such as C# allow access to private methods using access methods get and put:
the method get reads the value of a private data-entity, and the method put writes into a
private data-entity.

A subclass can regulate the visibility of the members declared in the parent-class. This
regulation varies from language to language based on their design philosophies. For exam-
ple, in C++ a subclass can further restrict access only to the protected and public members
of the parent-class. A subclass in the object-oriented language Eiffel can also increase the
visibility of the members of the parent-class. In C++, protected or public members of a pro-
tected parent-class are protected members of the corresponding derived class, and protected
and public members of a private class are private members of the derived classes. In C++, a
derived class can restore the visibility of the members of the parent-class by inserting a dec-
laration “using” followed by the public or protected portion of the derived class declarations.

11.3.2 Encapsulation

The visibility of the entities is controlled by two features of object-oriented languages: pack-
age boundary and class boundary. We have already discussed the visibility of the variables
and methods declared within a class boundary. Encapsulation provides means to put mul-
tiple classes inside a package boundary, and the encapsulated classes cannot be used until
the corresponding library is loaded. In some languages like Java, package is also a bound-
ary for the protected variables declared in a class as described in Section 11.3.1. Packages
serve many purposes (1) allow the reuse of the name of the classes and interfaces—names
of the entities declared in a package are specific to a package and can be reused in other
packages, (2) provide regulated reusability, and (3) regulate the visibility. When a package
is imported by a program, only the public entities in the loaded package can be used by
other programs. A method in a package can access a public method in another package
by providing the hierarchical description of the method that includes <package-name>:
<class-hierarchy>.<method-name>. Alternately, by importing the package, short names
can be used. However, the use of short names has a possibility of name conflict if two or
more packages are imported and they use methods having the same name.

11.3.3 Information Exchange

We have already seen information exchange between the procedures in traditional
 procedure-based languages. However, object-class-based languages provide an additional
layer of class and then package around the classes. The use of class creates a new type of

414    ◾    Introduction to Programming Language

variable called class variable that is visible to every object-instance and is used for informa-
tion exchange between object-instances of different subclasses and the class. Information
can also be accessed from individual object-instances using public variables. An instance
variable of an object can also be read or updated using attribute-access methods or attribute
readers.

The information-exchange mechanism between the methods typically uses the local
variables and parameter-passing mechanisms. As explained in Chapter 4, object- oriented
languages use two types of parameter passing: call-by-value and call-by-reference.
Call-by-value is used to pass the information about the simple data-entities stored in the
control stack and for copying the reference of an object stored in the heap. Call–by-reference
is used to create a reference for complex data-entities stored in the control stack. Parameter
passing is also used to exchange the information to a constructor when a new object is
created.

11.4 POLYMORPHISM AND TYPE CONVERSION
In Chapter 7, we have seen the power of polymorphism and different types of polymorphism.
Most of the modern object-oriented languages also support different types of polymorphism.
The use of overloading, coercion, and inclusion is common.

The use of generic templates (or just generics) in many object-oriented languages or the
use of dynamic typing also supports parametric polymorphism. Generic class-definitions
use type-variables in the formal parameters. During an object creation, the type of the
parameter is passed to specialize the generic object to a specific type. The use of parametric
polymorphism makes an operation within a class behave differently, and this binding is
done dynamically at run time.

Inclusion polymorphism is supported through the use of inheritance. A subclass inher-
its the definitions of the parent class and can use the member-entities. Subclass allows
“override” in addition to inheritance because a virtual method can redefine a method.
Different subclasses redefine the virtual methods thus overloading the method name.

11.4.1 Parametric Polymorphism and Generic Templates

Generic methods use a generic declaration utilizing type-variables. A type-variable is
instantiated with a specific type at the time of invocation, and the method becomes specific
to the type passed as parameter. A general abstract syntax for generic method in C++
using template construct is illustrated in Examples 11.5, 11.6 and Figure 11.5. Similarly
Ada, Java, and C# support parametric polymorphism through the use of generic methods.
Example 11.6 illustrates the use of generic methods in C#.

Example 11.5

The following code illustrates parametric polymorphism through template dec-
laration. The variable Typevar is a generic type-variable that can be bound to any
type passed as parameter. The operator ‘>’ is overloaded and can be used to com-
pare integers as well as floating point numbers. For a call maximum<int>(a, b), the

Object-Oriented Programming Paradigm    ◾    415  

type-variable TypeVar will be bound to “int”, and the function will behave as an inte-
ger type. For a call maximum <float> (a, b) the function will behave as a “float” type.

 template <class Typevar>
 Typevar maximum (Typevar first, Typevar second) {
 Typevar MaxVal;
 if (first > second) MaxVal = first;
 else MaxVal = second;
 return (MaxVal);
 }

Example 11.6

The following example shows the use of generic method in C#. The procedure swap
has a generic type T that can be instantiated at run time to different type parameters,
such as int, float. For example, a call swap<int>(ref a, ref b) will bind T to int, and a
call swap<float>(ref a, ref b) will bind T to float.

 static void swap<T>(ref T first, ref T second)
 {T temp; temp = first; first = second; second = temp;}

Example 11.7

Let us consider the C++ program given in Figure 11.5 in Section 11.5.2. The declaration
“Template <class T>” defines a generic class using the type-variable T that can be spe-
cialized at run time by creating an object and passing the specific value for the type. For
example, if the type parameter integer is passed, then the object will behave as a stack of
integers, and if the type parameter float is passed, then the stack will behave as a stack
of floating point numbers. Similarly, the use of type-variables T in front of the stack ele-
ments is altered at run time, when the type-variable is instantiated to a specific type.

11.4.2 Casting

Liskov’s behavioral subtyping principle states that “if a data-entity has a subtype of another
data-type, then the object of the original data-type can be substituted with an object of the
subtype without loss of behavior-compatibility and without loss of desirable properties of
the program.” This notion of type compatibility has been used in object-oriented program-
ming to perform type-conversion of data-entities between parent-class and subclass while
using an inherited method in a subclass or an inherited data-entity in a subclass. This
notion of type conversion is called casting.

Casting allows the use of an object of one type in place of another compatible type,
among the objects permitted by class-inheritance rules. Casting should make sure that
data-types are compatible. If data-types are not compatible, then casting would give an
incorrect result. A type is compatible if there is no information loss. For example, an
integer attribute is compatible with a long integer because there is no information loss.

416    ◾    Introduction to Programming Language

However, a long integer object cannot be transformed to an integer because of the infor-
mation loss. There are two possibilities of type conversions involving the use of inherited
member-entities in an instance of a subclass.

Case 1: An inherited method is used on an object that is a subtype of an object originally
used in the inherited method. This case is called upcasting.

Case 2: A virtual method in a subclass uses an inherited data-entity such that the cor-
responding data-entity in the subclass is a subtype of the inherited data-entity. This
type of transformation is called downcasting.

11.4.2.1 Upcasting
Upcasting allows the promotion of an attribute to the corresponding attribute in the
ancestor-class of an object to utilize an inherited method declared in the corresponding
ancestor-class of the object. Upcasting is a special case of coercion because it preserves
the information during the transformation of the data-type of a data-entity declared in
 subclass to the corresponding data-entity in the parent-class. Upcasting is safe because
a class contains all the attributes of the ancestor-class (parent-class or classes further up
in the hierarchy), and a method in the ancestor-class will already have all the needed
 attributes. After upcasting, the corresponding methods available to the ancestor-class can
be used. Upcasting can be done automatically by the compiler, or it could be user-defined.
Compile-time checking is not always possible. For example, the use of Object type in Java
requires run-time-type checking.

11.4.2.2 Downcasting
Downcasting is not safe because (1) a subclass may add additional attributes including new
data-entities and methods in a subclass, and a virtual method may be operating on attri-
butes that are defined only in a subclass and do not exist in the transformed version of the
actual object in the parent-class and (2) the parent-class may not be able to cast type to a
subtype without information loss. Owing to this inherent safety consideration, downcast-
ing has to be done explicitly through a programmer action.

11.4.3 Subclass versus Subtyping

An interesting question is asked: Does subclass support subtyping? Certainly a subclass
supports upcasting and downcasting. An inherited method in the parent-class can be called
in an instance of the subclass with a compatible object-entity declared in the subclass dur-
ing upcasting. There is a common notion of inheritance in both subclass and subtype. As
discussed in Chapter 7, a subtype inherits all the operations of the original type. Similarly,
subclass inherits all the member-entities including methods from the ancestor-classes
including parent-class. The corresponding data-entity in a subclass can be a compatible
subtype because during upcasting no information will be lost, and the inherited method
could work on the subtypes after upcasting the subtype declared in a subclass to the
type declared in the parent-class. Another similarity is the notion of defining additional

Object-Oriented Programming Paradigm    ◾    417  

 operators in the subtypes and the notion of defining additional member-entities including
methods in the subclass. However, subtypes do not allow redefining the meaning of an
operator in the traditional sense, whereas subclass allows the override of a method. For
example, Ada is a language that supports subtyping. If we say that probability is a subtype
of float, then the subtype probability will inherit the addition, subtraction, multiplication,
and division operation defined for the type float. However, the meaning of the operators is
not altered. Overriding a virtual method in a subclass is a case of overloading—an ad hoc
 polymorphism. In that sense, subclass is different from subtyping. Another major difference
is the regulation of visibility between the parent-class and subclass. A parent-class can have
private member-entities: a private member entity is invisible to the subclasses and other
descendant classes in the hierarchy. However, the notion of subtyping does not restrict the
operations not to be inherited by the subtypes.

11.5 CASE STUDIES
In this section we will study the concepts of object-oriented languages utilizing four
 popular object-oriented languages: C++, Java, Scala, and Ruby. All these languages
 support multiple programming paradigms as shown in Appendix I. Although the basic
concepts of class-based hierarchical structure is common in all these languages, only
C++ supports multiple-inheritance in true sense. Other languages support single inheri-
tance along with some features such as mixin (used in Ruby) or traits (used in Scala) to
add common features in multiple classes. Scala and Ruby treat every entity as an object.
Even functions are objects in Scala that provide very interesting features that are different
from procedural programming style. Similarly, iterative constructs are methods for
data-entities.

11.5.1 Abstractions and Programming in C++
C++ is a programming language that has object-oriented programming features built on
top of the language C and uses many control and data abstraction features of C. It uses the
concepts of modularity; visibility using private, protected, and public entities; and pack-
ages. The default visibility in C++ is that the entities are private unless declared otherwise.
The visibility-type is added before the method declaration, and there is no restriction on
the order of method declarations based on the visibility.

In addition to traditional data-types such as built-in types, arrays, structs, pointers,
recursive data-types using pointers, enumeration types, and string types, C++ supports
polymorphic types such as generic methods using type-variables, inclusion polymorphism
through subclasses and inheritance. The subclasses can extend the parent-class-definitions
by (1) redefining the methods having the same name, and treating them as dynamic vir-
tual methods and (2) declaring new methods in the subclasses. C++ supports overloaded
operators and coercion.

A simplified version of an abstract syntax for a C++ programs is given in Figure 11.4.
The abstract syntax states that a C++ program is zero or more library inclusions followed
by class-definitions followed by the main-body of the program.

418    ◾    Introduction to Programming Language

A <class-definition> is defined as a <class-declaration> followed by the bodies of the
methods in the class. A <class-declaration> includes the reserved word class followed
by the <class-identifier> followed by <visibility> of the class members followed by
< class- member-declaration>. A <class-members-declaration> can be class-variables, data-
abstractions, and method-declarations in the class. A method-declaration can be either a
function or procedure. A method is defined as type information followed by an identifier
showing the name of the method followed by parameter information for the methods.
The parameters passed have the type information and the identifier-name. The type infor-
mation can be concrete as well as a type–variable as in the parametric polymorphism,
and type of the object can be passed as parameter. Similarly, polymorphic functions also
include generic type-variable as their type and the type of formal parameters so that they
can be instantiated to the concrete type of the passed parameters during run time.

C++ uses all the control abstractions of C and other traditional imperative pro-
gramming languages such as if-then--else statements, case-statements, while-loops,
 do-while-loops, ‘break’ to exit nested blocks, and user-defined functions.

The command to create objects is included in the body of the main program. A class-
object can be automatic or static. Automatic objects are allocated dynamically in the mem-
ory area when the control reaches the statement that creates it and destroyed when the
control exits the block. A static object is destroyed after the program terminates. A method
is accessed using <object-name>.<method-name>. The symbol ‘.’ is the member-access
operator. Objects are allocated in the heap. However, data structures and variables that
are not part of the class-definitions are created like traditional imperative programming
languages and use control stack as well as heap. All the local variables in a method are allo-
cated in the control stack, and recursive data-types and dynamic objects are allocated in a
heap. A subclass-definition in C++ is declared as follows:

class <subclass-identifier>: [<visibility>] <parent-class-identifier>

<C++ program> ::= {<library-declaration>}* {<class-definitions>}* <main-body>
<library-declaration> ::= # include <library-name> ;
<class-definition> ::= <class-declaration> {<methods>}*
<class-declaration> ::=
 class <class-identifier>
 ‘{‘ {<visibility> <class-members-declarations>’;’}* ‘}’ |
 ‘{‘ {<visibility>:{<class-members-declarations>’;’}* }* ‘}’
<class-member-declaration> ::=
 <class-variable-decl> | <data-abstractions-decl> |
 <method-decl> | <constructor-decl>
<visibility> ::= public | private | protected
<method-decl> ::= <function-decl> | <procedure-decl>
<class-variable-decl> ::= <type-info> <identifier> {‘,’ <identifier>}*;
<constructor-decl> ::= <identifier> ‘(‘ {<type-info>}* ‘)’
<function-decl> ::= <type-info> <identifier> ‘(‘ {Parameter-decl;}* ‘)’
<procedure-decl> ::= void <identifier> ‘(‘ {parameter-declaration;}* ‘)’
<parameter-decl> ::= <type-info> <identifier> {‘,’<identifier>}*’;’
<type-info> ::= <concrete-type> | ‘<’ <type-variable> ‘>’

FIGURE 11.4 An abstract syntax for a class-declaration in C++.

Object-Oriented Programming Paradigm    ◾    419  

A public or protected method can also be accessed inside a class-definition by giving
the full class-pathname starting from the root-class followed by the method name. The
nodes in the path are separated by the symbol ‘::’. For example, a method area described in
the subclass square in the hierarchy quadrilateral, rectangle will be given as quadrilateral::
rectangle:: square::area (<parameters>).

Constructors—C++ jargon for a method to create an object—are declared as public
methods in the class-definition. There is more than one way to declare a constructor.
The constructors without parameters are called default constructors. A constructor has
the following attributes: (1) it has the same name as the class name, (2) it just allocates
memory in the heap and has no type, (3) a class can have more than one constructor
based on how the parameters are passed, and (4) constructors are automatically exe-
cuted when an object is created. The general abstract syntax for a constructor is given
below:

<constructor> ::= <path>::<class> ‘(‘ {<parameter>}* ‘)’
 {<local-var> = (<init-value> |<parameter-value>)} *

An example of a subclass indexibleStack is described for C++ in Figure 11.5. All
the class declarations are grouped together, and the program-body comes after the class
 declarations. The subclass indexiblestack is defined after the definition of class stack. The
 subclass indexiblestack describes a new method, dataItem, that takes an index as param-
eter. The subclass indexedstack inherits information including the constructor from the
parent-class stack.

In C++, a problem can be solved using struct-(named tuple)-based programs as well as
class-based programs. The advantage of class-based programming over struct-based pro-
gramming is information-hiding provided by the class-definition. By default, the entities
declared in class-based definition are private and invisible to outside world unless declared
public. All entities declared within struct are always public.

11.5.2 Abstractions and Programming in Java

Java is a strongly typed language and supports multiple paradigms. In this section,
we limit our discussion to abstractions related to object-oriented programming. As
shown in Figure 11.1, Java supports classes and inheritance. However, Java has limited
support for parametric polymorphism through “Object” declaration and subtyping
hierarchy.

“Object” declaration creates a reference type that can be associated with any object
in the heap. Objects in heap exist as long as there is a reference from the control stack
to the heap. The reference has to be assigned null value to recycle the memory occupied
by an object. Java supports both mutable and immutable objects. Strings are immutable
objects. When an operation such as concatenation is done on a string, it returns a new
string.

Java is a single-inheritance language and does not support multiple-inheritance like
C++. Java class starts with a reserved word “class”. The subclass uses the reserved word

420    ◾    Introduction to Programming Language

“extends” followed by class-name. Methods are declared like a function preceded by the
visibility declaration. A Java method can be public, private, or protected. A virtual method
uses “@override” before the method definition to declare that virtual method definition is
being redefined.

11.5.3 Abstractions and Programming in Scala

Scala is a multiparadigm statically strongly typed polymorphic language that supports
functional programming, object-oriented programming, and concurrent programming.
It supports both mutable and immutable objects. Lists and strings are immutable objects,
whereas arrays are mutable objects. Scala is built on top of Java. So it implicitly uses many

template <class T> class stack {
 protected:
 T [] mySeq; // mySeq is an array of references
 static maxsize = 256; // maxsize is a class variable
 int top = 0; // top is an instance variable
 public:
 stack() ;
 ~stack();
 boolean isEmptyStack () ;
 boolean isFullStack () ;
 void push(<T>);
 T pop();
 T top();}

template <class T> indexedstack : public stack
{ public T dataItem(int); }

template <class T> stack <T>::stack()
{ this.mySeq = new T []; } // constructor

template <class T> boolean stack::isEmptyStack () {return (top == 0); }

template <class T> boolean stack::isFullStack () { return (top == maxsize); }

template <class T> void stack::push(<T> next _ element) {
 if (top == maxsize) throw OverflowException();
 mySeq[top++] = next _ element; } // insert the element

template <class T> stack <T> ::pop()
 T popped;{
 if (top == 0) throw UnderflowException();
 popped = myseq[--top]; // pull out the top element
 myseq[top] = null; // make the reference null for garbage collection
 return(popped);}

template <class T> stack<T>::top() { return (mySeq[top – 1]); }

template <class T> indexStack<T>::dataItem(int Index) {
 If (index < 0 || index == maxsize) throw RangeException();
 return (mySeq(index));}

FIGURE 11.5 Object-oriented programming in C++ using polymorphism.

Object-Oriented Programming Paradigm    ◾    421  

of the features of Java. In fact, Scala automatically loads the Java package java.lang by
default. Like any other object-oriented language, Scala imports the library of already devel-
oped classes using import command.

Scala is a pure object-oriented language. Everything is an object including numbers
and functions. Because numbers are objects, they also have methods. All the arithmetic
operators such as +, −, *, and /, are methods. For example, 2 + 3 is equivalent to 2.+ (3).
Because functions are also objects, they can be stored as objects in variables and passed as
parameters.

A function definition is preceded by the reserved word ‘def ’. Class-definitions are pre-
ceded by the reserve word ‘class’. A class can prevent further creation of subclasses by using
the reserved word ‘final’. Like C++, Java, C#, and other similar object-oriented languages,
an instance can refer to itself using ‘This’. Scala allows overloaded methods. Like Java, the
reserved word “extends” is used to declare that a class is a subclass of another class.

Scala does not support multiple-inheritance. Instead it uses traits to include the
common attributes in multiple subclasses. Traits can extend classes or other traits. A
subclass in Scala can inherit methods both from parent-class as well as traits. Traits
can also have parent-class and subclass relationships. Traits are declared using the
reserved word ‘trait’ followed by trait declaration. The body of a trait is executed when
an instance using the trait is created. The default parent for a class or trait is AnyRef, a
direct child of class Any.

A constructor in Scala is the whole body of the class-definition. When an instance of the
class is created, each field corresponding to a parameter in the parameter list is initialized
with the parameter automatically. An explicit constructor is not needed. The constructor
in a derived class must invoke one of the constructors in the parent-class. Traits use only
primary constructors without any arguments. Traits cannot pass arguments to the parent-
class constructor.

Scala’s visibility rules are similar to Java with some variations. Unlike C++, the default
visibility in Scala is “public.” The visibility is regulated using the keywords protected and
private. Visibility declarations appear at the beginning of function, variable, or trait dec-
larations. Scala also uses private[this] to make the declaration private to a specific instance
within a class.

Method definitions are regular functions and use reserved word ‘def ’ followed by
optional argument lists, a colon character ‘:’ and the return type of the method. Methods
are treated as abstract if the method-body is missing. Methods can be nested.

The class stack and queue are built-in classes in Scala. In order to illustrate the concept,
we take another simple example of abstract data-type complex number.

Example 11.8

Figure 11.6 illustrates the definition of class complex to define an abstract data-type
complex number. Complex numbers are modeled as a pair of them (real-part,
 imaginary part). The class-definition includes just two fields: realpart and imgpart.
There are three abstract operations: add, subtract, and multiply. The operation

422    ◾    Introduction to Programming Language

toString has been redefined using the override feature for ease of printing the result.
The three abstract operations have been written as three methods as described earlier.
Every method creates a new complex number that is automatically printed out on the
console using the redefined toString method toString.

After loading this program in Scala interpreter, if we give the following commands:

 val c1 = new Complex(3, 4) //print out a complex number 3.0 + 4.0 i
 val c2 = new Complex(4, 5) //prints out a complex number 4.0 + 5.0 i
 c1 add c2 //print out a complex number 7.0 + 9.0 i
 c1 subtract c2 //prints out a complex number -1.0 + – 1.0

11.5.4 Abstractions and Programming in Ruby

Ruby is a multiparadigm, dynamically typed interpretive language that integrates func-
tional, imperative, object-oriented, and concurrent programming (including threads and
locks) paradigms. We have already seen the functional and concurrent features of Ruby. In
this Section, we will study the object-oriented features of Ruby.

Like Scala, every entity including numbers and files is an object. It would be valid
to write an expression 2 + 3 as 2.+(3) since addition is treated as a method to object 2.
The class-definition is preceded by the reserved word ‘class’. The class-variables have a
prefix ‘@@’ to separate them from the instance variables, which are annotated with a
 prefix ‘@.’ An instance of a class is created by a built-in method new. A method initialize
(if defined) is executed whenever an instance is created, and sets up the initial state of
an object.

A subclass relationship is set by the symbol ‘<.’ A subclass is declared as <class> ‘<’
< parent-class>. All the methods declared in the parent-class or ancestors can be used by a
 subclass. Ruby does not support multiple-inheritance. However, Ruby can include features
using partial classes. This controlled acquisition of features is called mixin. A partial class

class Complex(first: Double, second: Double)
 { val realpart = first
 val imgpart = second
 override def toString = realpart + “ + “ imgpart + “i”

 def add(that: Complex): Complex =
 new Complex(realpart + that.realpart, imgpart + that.imgpart)

 def subtract(that: Complex): Complex =
 new Complex(realpart - that.realpart, imgpart - that.imgpart)

 def multiply(that: Complex): Complex =
 new Complex(
 realpart * that.realpart - imgpart * that.imgpart,
 realpart * that.imgpart + imgpart * that.realpart)
}

FIGURE 11.6 An example of object-oriented programming in Scala.

Object-Oriented Programming Paradigm    ◾    423  

need not define all its methods at once. The methods may be defined in separate parts of a
program. Thus partial class can be used to enhance the capability of a class. A partial class
is declared like a subclass.

Instance variables in Ruby are not shared with other objects even of the same type.
 Class-variables are shared across the instances of the class. An instance variable of an object
can be read using attribute-readers. Attribute-readers are methods that return value of an
 attribute when called, or they can be grouped together using a shortcut called attr_reader. It
is placed after the class-name. The syntax for the shortcut is <attribute-reader>:: attr_reader
{‘:’<instance-variable>}+. Attribute-readers can also be used to write into the instance variables.

Ruby methods are public by default. In order to limit them within the class, they need
to be declared private, and in order to limit to the subclasses only, methods have to be
declared protected. There are two ways to declare the visibility: (1) using visibility-reserved
words before defining the method and (2) at the end of all definitions using declaration
like <visibility-declaration>:: (private | protected) {‘:’<method-name>}+. Ruby allows
 accessing a method (having the same name as in the current class) of the parent-class using
the reserved word ‘super’.

Example 11.9

Figure 11.7 shows the same example of defining a class stack and then defining a
subclass indexedstack that adds an additional method. The example illustrates the
syntax to create and use a class, subclass, methods, initialization, class-variables, and
instance-variables. The instance variable @my_stack is a reference to a dynamic array.
The methods use the built-in Ruby-operations on indexed-sequence such as length,
pop, push, and last to define the methods in the stack.

The method push takes a single parameter newdata as an element and passes it
on to the built-in method. Note the absence of parenthesis in the statement @my_
stack.push newdata which is Ruby style of programming. Every method starts with
a reserved word ‘def ’ and is ended by a reserved word ‘end.’ The class-definition is
terminated by the reserved word ‘end.’

The statement IndexedStack < Stack declares the subclass IndexedStack. Its ini-
tialization method has the reserved word ‘super’ embedded in it. The reserved word
‘super’ invokes the initialization method of the parent-class that creates an instance
of a stack. At the end of the class-definitions there are a group of statements to test
the stack operations. The statement st = IndexedStack.new creates a new stack st that
is a dynamic array. The statement puts st.empty prints true if the stack is empty. The
statement st.push(4) puts the element 4 on top of the stack. The statement st.push(5)
puts the element 5 on top of the stack. The statement puts st.top prints the top element
of the stack, that is, value 5. The statement puts st.pop pops and prints the top element
from the stack. The statement puts st.full returns true prints true if the stack is full.

Many popular programming languages such as C#, F#, and Python are object-
oriented languages. Many other languages such as Lisp, Prolog, Modula-3, Fortran
90 onwards, COBOL, and Oz also support object-oriented programming. The main

424    ◾    Introduction to Programming Language

features of object-oriented programming as described earlier are class and subclass
definitions, inheritance, visibility within class-hierarchy and outside, capability to
override method definition, mechanism to create an instance, and mechanisms to
access instance variables and class-variables. Some languages such as Javascript do
not support the notion of inheritance and are often called object-based languages.

11.6 IMPLEMENTATION OF OBJECT-ORIENTED LANGUAGES
Object-oriented programming is different from traditional procedure-based programming
because of the presence of classes—an additional encapsulation, inheritance, virtual
 methods, and the dynamic nature of objects—instances of classes that receive the message
from other objects. Action to invoke a public method is taken by the receiving object based
on message. In turn, the receiving method may also invoke other protected and private
methods that are invisible to other objects. Static procedure call in procedural languages is
replaced by the dynamic calls of the objects. The dynamic calls are initiated by (1) calls to

class Stack // Defines a stack using an indexed sequence
@@maxsize = 256 // Declare a class variable maxsize
 def initialize // Constructor
 @my_stack = Array.new // Create stack as a dynamic array
 end
 def push(newdata) // Push a data element
 @my_stack.push newdata // Ruby has built-in push for sequence
 end
 def pop // Pop an element out of the indexed sequence
 @my_stack.pop // Ruby has built in pop to take out last element
 end
 def count
 @my_stack.length // Ruby has built-in length function for sequence
 end
 def empty
 @my_stack.length == 0 // Check if length is zero
 end
 def full
 @my_stack.length == @@maxsize // Check if length is maximum size
 end
 def top // Top element of the stack
 @my_stack.last // Last element of a sequence is the top element
 end
end
class IndexedStack < Stack
 def initialize
 super
 end
 def data(index) // Access an element by giving the index of the sequence
 @my_stack[index]
 end
end

st = IndexedStack.new; puts st.empty; st.push(4); st.push(5);
puts st.top; puts st.pop; puts st.top; puts st.full; puts st.data(0)

FIGURE 11.7 Object-oriented abstractions and programming in Ruby.

Object-Oriented Programming Paradigm    ◾    425  

create new objects, (2) messages sent by other objects, and (3) calls by other methods within
the same object. When a dynamic call is made, the control flow jumps to another function
or procedure that is decided by the receiver object. This phenomenon of jumping the
 control flow based on messages and receiver object is called late binding. The control stack
is a sequence of the frame of the methods that are invoked. Note that the sequence of
frames in the stack includes frames belonging to methods from different objects that are
instances of different classes.

There are three broad classifications of compilation schemes: (1) separate compilation
coupled with dynamic loading/linking, as in Java and .NET, (2) separate compilation with
global linking as in C++, and (3) global compilation as in Eiffel. Separate compilation
scheme is most general, where each class or group of classes in a package is compiled sepa-
rately irrespective of the knowledge of other classes and without any anticipation about
the inheritance mechanism, such as single inheritance or multiple-inheritance from other
classes. An important advantage of separate compilation is localization of error and the
effect of modifications. Thus separate compilation is in the spirit of object-oriented soft-
ware development.

Different implementations are quite different because of difference in philosophy of
overhead of time and space management. As we can see that identifying shared entities and
grouping them together will save space. However, it would also add an extra level of indi-
rection and thus slow down the execution because of an additional memory-access cost.
We will discuss a general schema for the implementation.

Some of the features of object-oriented programming languages are similar to the com-
pilation and implementation of procedural languages and have already been discussed in
Chapter 5 in detail. Those features are (1) compilation of nonvirtual functions and proce-
dures, (2) parameter passing, (3) allocation of global variables, (4) normal overloading of
operators, and (5) shadowing of class-variables.

The major issues in the implementation of object-oriented programming languages are
(1) allocation of the data structures of a dynamically created object in a heap, (2) accessing
the data-entities and methods of the parent-class and other ancestor-classes, (3) handling
of multiple-inheritance in the languages like C++, (4) handling of virtual methods, and
(5) dynamic subtyping. We will discuss the implementation of these features and a general
schematic of implementation in the following sections.

11.6.1 Storage Allocation and Deallocation

When compiling an object-oriented program, methods form the code area, and the
data-entities in the objects make the data area. Although objects are created dynami-
cally, the code area does not change; only the data area and the pointers to the compiled
version of the virtual methods are created dynamically. In addition, the upcasting and
downcasting of an object is done dynamically. Because the code part does not change, it
is compiled statically at compile-time. The pointers to the nonvirtual methods are also
computed at compile-time. However, the compilation of polymorphic types requires
dynamic switching to a different code area based on the data-type tags as described in
Section 7.8.2.

426    ◾    Introduction to Programming Language

11.6.1.1 Compiled Code
The code area of an object-oriented program is the union of all the methods declared in
various classes and subclasses and is identified uniquely by the concatenation <package-
name>::<class-hierarchy>::<method-name>. There are many ways to refer to a specific
method. One such technique is to map the full method name to some internalized symbol.
The function table is a hash table where the internalized symbol is the key, and the address
is stored along with the key in a tuple of the form (internalized-symbol, start address of the
compiled function). The hash function is used to look up the start address of the compiled
method in near-constant time, and the control is passed to the compiled code of the cor-
responding method. A schematic of the function table and the compiled code is given in
Figure 11.8. The assumption is that each class is compiled separately.

There are many hash-function techniques that are used to ensure that the collision among
the keys is kept to minimum. Since the name of the methods tagged with class-hierarchy
is unique, a perfect hashing function can be devised. A perfect hashing function is a hashing
function that maps to the value in key-value pair without any collision. However, here we will
assume that collision is possible. The unique symbol corresponding to the method is looked up
using a hash-function. Collision after the application of hash-function has been handled using
a linked list of tuples (symbol-name, function-address, link to next tuple). Each tuple carries the
address to one compiled method. When a class library is loaded at run time, the corresponding
symbol-name and the address of the compiled codes for methods are inserted in the hash-table.

11.6.1.2 Data Allocation
There are many types of data in an object-oriented language. Data is allocated based on
their scope and dynamic nature. For example, a data can be (1) a global variable, (2) a
class variable, (3) a local variable in a method, (4) a parameter, (5) attributes of an object,

Method-1 code

Method-2 code

Method-3 code

Method-4 code

Method-5 code

Method-6 code

Compiled code
class 1

Compiled code
class 2

Hash table

FIGURE 11.8 Schematics of code lookup using hash tables.

Object-Oriented Programming Paradigm    ◾    427  

(6) pointers to dynamic attributes such as virtual methods, (7) pointers to the attribute
table of the ancestor-classes, and (8) pointers to the functions-table in the code area. In
addition there may be constants that are only read. We can separate the data into multiple
parts: (1) data that can be included as part of the code area because it is read-only, (2) data
such as local variables in a method that can be made part of the control stack, (3) data such
as class-variables that can be made as part of the attribute-table of a class in the heap, and
(4) data-entities in an object that are stored in the heap with the object area.

There are two models of variables depending upon object allocation. In the value-based
model of variables, dynamic objects having the same life time as the method are allocated
in the frame of a stack. In the reference-based model of variables, dynamic objects are allo-
cated in a heap, and the stack only stores a reference to the object. Many languages like C++
that have extended an imperative programming languages use a hybrid model of allocating
some data-objects in stack while allocating the other dynamic objects in heap. Generally,
those objects that have scope and lifetime within a given method are allocated in the frame
of the method and reclaimed from the control stack as soon as the method is over. Many
languages such as Smalltalk, Python, Ruby, and Java use the reference model, whereas lan-
guages like Ada, C++, and Modula-3 also allow for a value-based model. There are advan-
tages and disadvantages in both the allocation schemes. Value-based allocation uses stack
for the allocation, which is efficient for storage allocation as well as memory reclaim as dis-
cussed in Chapter 5. Reference-based allocation uses heap that has (1) additional overhead
of allocating objects in heap, (2) an overhead of indirect access through the use of pointers,
and (3) the overhead of garbage collection. Thus reference-based model has an overhead of
execution efficiency. However, the mechanism of dynamic memory management of objects
in heap is straightforward.

Object-specific declaration in a class is stored in the heap using a template called attribute-
table. An attribute-table includes (1) information related to data-entities associated with the
class-instances, (2) pointer to virtual-method-table to access the virtual functions, (3) pointer
to the inherited data entities from the ancestor-classes, (4) pointer to the attribute tables
of parent-classes and subclasses for upcasting or downcasting, (5) pointer to shared data-
entities such as class-variables, and (6) pointers to inner subobjects. Inner subobjects are
protected subobjects in the class-hierarchy of the base-class. The mechanism to access the
data-entities is similar to the allocation of data in the heap already discussed in Chapter 6.
Internally there is a set of offsets for entities in the object; there is one offset for each declared
aggregate entity. The offset is computed at compile time based on order of the attributes, and
does not change at run time. Since the offset does not change at run time, some of the infor-
mation is embedded in the compiled code of the methods. The attribute table of subclass
can be merged with the attribute table of the parent-class if a subclass does not override any
method and does not insert any additional method. Such merging provides space efficiency.

11.6.1.3 Object-Allocation
The creation of the first instance of a class using a constructor in C++ or through the
use of reserved word ‘new’ in other languages creates an attribute table that includes the
invariant offsets to various attributes and the memory locations for various attributes

428    ◾    Introduction to Programming Language

in the heap. If a data-structure does not include generic type or extensible type then
it is allocated within the attribute table. Otherwise, a reference for the generic type or
extensible type is stored that points to the object stored in the heap. A processor-register
points to the attribute table in the heap.

A generic object-allocation for a single-parent-class is given in Figure 11.9. There are
different types of pointers followed by the allocated memory for the data-entities that have
been constructed using the information given in the attribute-table of the class. The major
classes of pointers are (1) pointer to VMT, (2) pointer to the memory location of the inner
subobjects, (3) pointer to the required attribute-tables to retrieve the relative offsets needed
for upcasting or downcasting.

A VMT-pointer, as the name suggests, points to a table that contains pointers to the
compiled code area of the virtual methods. Pointers to the memory-locations of inner
subobjects are used to point to the inherited data-entities, such as class-variables and the
inherited methods code area, in the class-hierarchy, starting from the root-class.

11.6.1.4 Deallocation
The objects are deallocated when (1) a frame is released after the execution of a method or
(2) the object is released by an action of explicit destructor or delete operation as in C++.
Java and C# use a finalize method that is the last method called before the release of an
object for garbage collection.

11.6.2 Implementing Casting

Both upcasting and downcasting have additional overheads of accessing information
because the attribute table of a subclass and parent-class are different from the attribute
table of the current class due to: (1) additional methods (including virtual methods) and
data-entities in a subclass, and (2) some of the methods and attributes like class- variables
are inherited from the parent-class and not declared in the subclass.

This difference in attributes including method declarations results in the variation of the
offsets of the equivalent attributes in two attribute-tables and has to be readjusted using the
knowledge of the amount of offset-shift. This offset-shift can be handled by (1) calculating
the offsets at the compile-time, embedding the offsets adjustment in the compiled code,
and adjusting the offset when going across the class-hierarchy or (2) using specific access-
functions to access the attributes in the attribute table. In the offset-method, an extra
table of the relative offsets is kept between two classes in the same hierarchy as part of the
 attribute-table. If the casting is dynamic, then the offset information has to be available at

To VMT (virtual method table)
Pointers to attribute-tables

Pointers to the inner subobjects in ancestor classes

Data-entities in the object

FIGURE 11.9 Schematics of object allocation in heap.

Object-Oriented Programming Paradigm    ◾    429  

run time for the proper transformation, and type-checking of the data-entities has to be
done at run time before casting.

11.6.3 Implementing Multiple-Inheritance

Handling multiple-inheritance is a bottleneck in the implementation of the object- oriented
languages because of (1) name-conflict of the inherited attributes in the ancestor-classes,
and (2) conflict of relative offsets of the same inherited attributes accessible from differ-
ent paths. Name-conflict is itself sufficient for many object-oriented languages to propose
alternate mechanisms such as traits or mixins.

One scheme for class-object layout for an object-allocation in the subclass S shown
in Figure 11.3 is given in Figure 11.10. There are as many VMT pointers as the incom-
ing edges to the class S. In Figure 11.3, there are two paths, P → Q → S and P → R → S,
that include edges Q → S and R → S. The virtual methods can be redefined along any of
these two paths. Hence there are two VMTs: the first one contains the virtual methods
in P and Q and S; and the second one contains the virtual methods in the classes P
and R and S, in that order. The pointer to VMT is followed by the pointers to the inner
subobjects of the corresponding ancestor-classes in the order starting from the base-
class P.

The allocation scheme in Figure 11.10 has a duplication of the VMT pointers and the
pointer to inner subobjects of P. This duplication can be removed, as illustrated in Figure
11.11, by keeping only one copy of the VMT of P in the first VMT and by altering the first
pointer to inner subobjects of P to point to the field that stores the second copy of the
pointer to inner subobjects of P.

The first VMT contains all the virtual methods of class P, Q, and S, in that order, whereas
the second VMT contains only the virtual methods of class R. Similarly, the first field
pointing to inner objects of P now points to the second field of the inner objects of P as
shown by the dashed pointer.

11.6.4 Implementing Virtual Entities and Methods

Virtual methods are handled using the integration of two techniques: (1) addition of the
class-hierarchy as prefix to the objects and methods, and compiling each of the meth-
ods with this unique, long name and (2) performing run-time resolution of the method

To VMT for P/Q/S

To VMT for P/R/S

To inner subobjects of Q

To inner subobjects of P To inner subobjects of P

To attribute-tables of P/Q/R

Data-entities

To inner subobjects of R

FIGURE 11.10 Object-allocation schematics for multiple-inheritance.

430    ◾    Introduction to Programming Language

being called. Since objects are created dynamically, the reference to actual method is
also generated at run time. The presence of virtual methods creates a need for run-time
reference to the compiled code area. If all the objects of a subclass create references in
their area in the heap, then there will be excessive number of pointers pointing to the
same compiled code area corresponding to the same virtual methods. In order to reduce
the wastage of memory, a dynamic shared table is created in a heap for every subclass.
This shared table is called VMT. The table is an array of pointers (or array of unique
symbolic-names to be used by hash-table lookup) of all the virtual methods declared/
accessible in a subclass. This includes the unshadowed (not overridden) virtual methods
in the ancestor-classes. The pointers point to the start address of the compiled virtual
methods in the compiled code area. The concept is illustrated in Figure 11.12.

To VMT for P/Q/S

To VMT for R

To inner subobjects of Q

To inner subobjects of R

To attribute-tables P/Q/R

Data-entities

To inner subobjects of P

FIGURE 11.11 Optimized object allocation for multiple-inheritance.

To inner subobjects
in ancestor classes Pointers to attribute-tables

Data-entities Object 1

Pointers to attribute-tables

Data-entities

Data-entities

Object 2

Object 3

To
compiled
code

To inner subobjects
in ancestor classes

To inner subobjects in
ancestor classes

VMT

Pointers to attribute-tables

FIGURE 11.12 Schematics of objects pointing to VMT.

Object-Oriented Programming Paradigm    ◾    431  

Multiple objects that are instances of the same subclass share the same VMT. In a hash-
table-based scheme, if the code area is relocated, only the address in the tuple is altered
accordingly; VMT remains unaffected.

11.6.5 Overhead Issues and Optimizations

The implementation of object-oriented languages suffers from the overheads caused by the
excessive number of pointers to implement inheritance, virtual methods, and offset shift-
ing to access the corresponding data-type during upcasting and downcasting. One way to
reduce the overhead of the indirect access is to use caching of the addresses of the corre-
sponding functions. The change in offset during casting can be handled using attribute-
access functions instead of transforming the offset. An attribute-access function can be
optimized by caching the exact address of the data-entity. The VMT of a subclass can be
merged with the parent-class if it does not redefine any of the virtual methods in the parent-
class. The redundant pointers to the virtual methods declared in ancestor-classes can be
removed from the VMT of the current class and the subclasses of the current class if the
inherited virtual method is not used during execution of all the object in the subclasses of
the current class.

11.6.6 Run-Time Behavior

The run-time behavior of the program involves interaction of the control stack, the objects
allocated in the heap, and run-time jumping of the control to various compiled methods.
The overall integrated schematic is illustrated in Figure 11.13. The figure shows that there
are two types of references from the control stack to the heap: (1) references to the extensible
data-entities in the heap and (2) references to object-allocations. The object-allocation con-
tains two types of pointers to the function table: (1) pointers for VMT along with the offset
of the virtual method in the table and (2) pointers for nonvirtual methods.

The main program creates a new object in the heap using the corresponding
 attribute-table, and sends a message to execute a method in the corresponding class. If it
is the first object created in the class, then the corresponding attribute table is also loaded
in the heap, and the corresponding VMT is created. The object uses the address of the
 nonvirtual methods or the pair (address of the VMT, offset within VMT) to pass the control
flow to the corresponding method. The frame of the new method that consists of the local
variables and parameters is placed on top of the control stack. Any variable bound to a
dynamic data-entity is a reference to the corresponding heap allocation. A variable bound
to basic data-type is allocated on the control stack for efficiency, as the memory location
can be easily reclaimed after the method has completed its execution. After the termi-
nation of a method, the corresponding frame is recovered from the control stack, and
the corresponding reachable objects in the heap are also released for garbage collection.
If a method calls another method, then the frame of the called method is put on top of
the frame of the calling method, like execution in the imperative paradigm discussed in
Chapter 5. Parameter passing between the methods and the main program to the first
method is handled conventionally as discussed in Chapter 5.

432    ◾    Introduction to Programming Language

Example 11.10

Figure 11.13 shows two classes, each having a VMT. There are two instances of Class1
and three instances of Class2. The object O1 is an instance of Class1, and object O2 is
an instance of Class2. The main program creates an object O1. At this time, the frame
of main is on top of the stack, and one of the locations in the main-frame is pointing
to the object O1.

The main program now invokes a public method O1::X in the object O1. In
response, the frame of the method O1::X is put on top of the control stack, and
the control is passed through pointers in object-allocation to the code area of X.
The method O1::X calls a public method O2::Y. The frame of the method O2::Y
is allocated on top of the frame, and the control passes to the compiled code
of O2::Y through the pointers stored in the object O2 and the function table.
After the completion of method O2::Y, the memory locations corresponding to
the frame of the method O2::Y are recovered from the control stack as described
in Chapter 5, and the control is passed back to the next instruction in the method

Compiled
class 1

Function
table

Compiled
class 2

Stack
growth

Frame of
method O2::Y

Frame of
method O1::X

Frame of main
program

Control stack

Heap

(3, 8, 40)

(3, 8, 40)

V
M
T

V
M
T

O1

O2

Extensible
data-object

Virtual method related
ointers to function table

Nonvirtual method
pointers to function tableObject

reference

Function table to compiled code link

FIGURE 11.13 Schematic of run-time behavior.

Object-Oriented Programming Paradigm    ◾    433  

O1::X. All the reachable objects in the frame of O2::Y that have a local scope are
released for garbage collection. A similar process is repeated after the method
O1::X terminates.

The object-oriented languages continuously create dynamic objects, and most of
the objects are dynamically and automatically disposed when they are not needed.
There is a heavy need for garbage collection in heap to keep the space available. There
is around 30–40% overhead of dynamic memory management in Java and 20–30%
overhead of dynamic memory management in C++. However, for large-scale software
development, object-oriented programming has established its usefulness because of
modularity and reusability. One of the goals we have is to reduce the overhead of
dynamic memory management in object-oriented languages. There have been hard-
ware and software attempts to make dynamic memory management efficient.

11.7 DISTRIBUTED OBJECT-ORIENTED MODELS
Programming languages like Emerald and Java use a network of processors to execute
object-based programs. Emerald is a strongly typed programming language suitable for
distributed object-based programming. Unlike other object-oriented programming lan-
guages, Emerald does not have a class structure and does not support inheritance but sup-
ports fine-grain distributed computing. Java uses Java virtual machine (JVM) to execute
and interface with multiple processors. Each processor has the corresponding JVM engine
and or uses JIT compiler to execute Java programs on local machines for efficient execu-
tion. In this section, we will study both types of object representation and the distributed
method invocation and information-exchange mechanisms.

11.7.1 Distributed Objects in Emerald

Emerald objects are like modules that can export the operations. Emerald objects are created
using a reserved word ‘object.’ Operations are equivalent to methods in typical object-
oriented programming languages. Emerald objects are independent of their location. This
independence allows a programmer to develop a program similarly to program develop-
ment on a uniprocessor machine. Emerald objects consist of private data, private opera-
tions, and public operations. Only exported objects can be accessed. A constructor is used
to create an object.

Objects can be embedded inside a control abstraction. For example, if a constructor
is placed inside a loop, then multiple objects can be created. Emerald objects are flat and
do not support any hierarchical structure. There is no notion of inheritance: there are no
parent-classes or the notion of virtual methods or overriding or inherited methods.

Emerald separates the type of information as abstract type and implementation type.
Abstract types are a group of signatures where a signature is defined as a name and type
of the arguments in an operation. The difference between abstract type and implementa-
tion type is that abstract type can be implemented in different ways. Emerald type can
be passed as an object, and thus a type can be constructed or refined and can be used to
implement polymorphism.

434    ◾    Introduction to Programming Language

Emerald uses the notion of conformity instead of inheritance. Conformity is related to
the notion of inclusion. The property of conformity states that an abstract type T1 con-
forms to another abstract type T2 if object of type T1 can substitute for an object of type T2.
An object of type T1 confirms to an object of type T2 if the following three properties are
satisfied: (1) T1 has all the operations of T2, (2) for every operation in T2, the corresponding
operations in T1 have same number and argument of types, (3) the type of argument and
results of T1 conforms to the types of arguments and results in T2, respectively.

The difference between conformity and inheritance is that conformity allows inclusion
and thus the substitution. However, the notion of hierarchy is missing: conformity, unlike
inheritance, does not support code sharing. The major advantage of not sharing the code
and the lack of the hierarchical nature of class is that code mobility of ancestor-classes is
not needed when Emerald objects move from one processor to another.

Emerald supports concurrency: multiple objects can be working at the same time. An
active object contains a process that is started after an object is activated. A thread of con-
trol can spawn multiple objects that may be working on separate threads independently
providing fine-grain concurrency.

11.7.2 Distributed Objects in Java

With the availability of network of processors, there has been a clear need for the develop-
ment of distributed object models for the web-based languages like Java. Java is supported
by JVM, which makes Java portable on almost every operating system and architecture.
Although Java programs may be running on a heterogenous network of architectures and
operating systems, the whole system works as if it is working in a homogenous environment
because of the portability of JVM. The methods in Java can be executed on remote proces-
sors without any problem of format conversion because of uniform representations in JVM.

11.7.3 Remote Method Invocation

Remote method invocation (RMI) uses remote procedure call with a difference that it
is built on top of JVM, transmits an object over the communication channel, and uses
 built-in Java operators for type matching of the remote objects and casting. RMI layer is
built on top of the JVM, and the application layer is built on top of the RMI layer. The over-
all system architecture for RMI is :Client → RMI layers → Server. The JVM layer takes care
of classloader, security management, and distributed garbage collection. The RMI system is
distributed into multiple layers: (1) stub/skelton layer, (2) remote reference layer, (3) trans-
port layer, and (4) reference-counting distributed garbage collection layer. Distributed
reference-count garbage collection is used for garbage collection. Stub is a reference to the
remote object. A remote object can be persistent. A call to method on a stub object sends
a request to the corresponding remote object after setting up the communication channel.
The server-side object executes the method and then sends the result back to the originat-
ing JVM.

The parameters are passed either using call-by-reference or call-by-value in the RMI sys-
tem. If the parameter being passed is a remote object, then its reference is passed. Otherwise,
a copy of the object is passed to the remote method. Object serialization marshals and

Object-Oriented Programming Paradigm    ◾    435  

unmarshals the parameter values and results returned from the remote method; the object
is encoded into a stream of bytes from one of the JVMs during “marshalling” and back to
a copy of the object during “unmarshalling.” Because an object often contains references
to other objects, the process of serialization traverses the graph of objects during serializa-
tion, and maintains the graph structure at the other end. Serialization iterates through the
class-hierarchy structure from the root-class to the actual class of the object and writes all
the class information and nontransient and nonstatic public, protected, and private fields
including the fields holding references to other objects into the stream. At the other end,
reading the stream involves building the class-hierarchy after reading the class informa-
tion, creating an instance of the object, restoring the contents of each field of the object,
and matching the type of the fields with the created fields. After an object is created at the
remote processor for the first time, a handle (collection of pointers to the object) is created
for the instance. Next time while referring to the object, the handle is used to minimize the
overhead of the object serialization. Because objects are serialized, the true Java type of an
object can be transmitted to the remote processor.

To invoke a method on a remote object, a client obtains a reference to the object using a
name server provided by the RMI system. The class-definition java.rmi.Naming provides
uniform resource locator (URL)-based methods to look up, bind, store, rebind, unbind, and
list the name-object pairings on a particular host and port.

11.7.4 RMI-Based Programming

In this section we will discuss simple format and scheme for RMI-based programming
using Java. Clients of remote objects interact with remote interfaces, and local arguments
are passed by copy rather than by reference. A remote object is passed by reference. Clients
have to handle exceptions that occur during a remote method invocation. The Java library
to handle remote interfaces is called Java.rmi.remote, and the client side classes extend
java.rmi.remote by additional remote methods. The remote methods have two compo-
nents: “method declaration” and “capturing remote exception”. The abstract syntax for
remote method interface is as follows:

<remote-method-interface>::=
 public interface <interface-name> extends
 <interface-name>, java.rmi.Remote
 ‘{’ {public (void|<function-type>) <identifier>
 ‘(’<parameter-list> ‘)’
 throws java.rmi.RemoteException ‘;’}+
 ‘}’

In the above declaration, the first interface-name is like a class-definition, and the
second is like a parent-class-definition that is being extended. There are two additional
remote interfaces: java.rmi.Remote and java.rmi.RemoteException. RemoteException class
is a super class of remote exception that includes communication failure, protocol errors,
failure during serialization process, and failure of the method at the remote end.

436    ◾    Introduction to Programming Language

The class that implements the remote method imports the following two libraries: java.
rmi.RemoteException and java.rmi.server.UnicastRemoteObject. The abstract syntax for
the implementation of remote class is as follows:

<remote-class> ::= public class <identifier> extends
 Unicast RemoteObject implements
 <interface-name> ‘{’ {<remote-method>}+ ‘}’
<remote-method> ::=
 (public | protected | private) (void |<function-type>)
 <identifier> ‘(’ <parameter-list> ‘)’
 throws RemoteException, {<Exception-name>}*
 ‘{’ <method-body> ‘}’

The abstract syntax states that a remote implementation class implements the given
interface, and it describes one or more methods. The method definition includes the excep-
tion RemoteException in addition to other exceptions. The super class UnicastRemoteObject
provides support for point-to-point active object references (invocations, parameters, and
results).

11.8 SUMMARY
The major goal of object-oriented programming is the development of large-scale soft-
ware. Large-scale software construction requires modularity, reusability, robustness, and
ease of software evolution and maintainability. Object-oriented programming achieves
this goal by encapsulating functions along with data entities within an object; generic
template-based programming called class, notion of packages(modules), regulating vis-
ibility of the functions, and procedures in a class-definition using private, protected, and
public declarations, and inheritance. The class libraries can be imported for software
reuse. Although there is some debate about the use of inheritance in reusability because
of the propagation of effect of changes in the methods modified in the ancestor-classes
as is evident in the development of inheritance-less languages like Emerald, inheritance
has the advantages of using the previously declared class library. To avoid name-conflict
while using different classes in a program, full-name prefixed by the class-hierarchy is
also used to describe methods. An object is created and initialized using constructors
that are like special methods in a class. Constructors can be initiated explicitly or invoked
when a new object is created using the reserved word ‘New’. An object can be explicitly
destroyed by a programmer action as in C++ or automatically destroyed. Treating every
entity as an object has resulted in an interesting style of programming in multiparadigm
languages, such as Ruby and Scala as basic arithmetic operations and control abstractions
can be treated as methods.

The object-oriented programming paradigm supports the notion of polymorphism
using the notion of generic-templates to support parametric polymorphism, notion of sub-
class to support inclusion polymorphism, and through the use of overloaded operators that
can be overridden using a new method definition in a subclass.

Object-Oriented Programming Paradigm    ◾    437  

Multi-inheritance means that a subclass has more than one parent-class. Handling
more than one parent-class causes problems of name-conflict. Name-conflict occurs
because both the parent-classes may have the same name methods. Name-conflict can
be removed by qualifying the inherited method by the proper-class name. However,
most of the languages other than C++ do not support multiple-inheritances; they
use single inheritance or some restricted version of multiple-inheritance. Languages
like Java and Scala use single inheritance with a capability to enhance the capability
of a class.

The implementation of object-oriented programming languages has additional com-
plexity because of run-time memory allocation of objects and their interaction with the
functions and jumping of the control from one method of an object to a method in another
object. The compiled code can be generated separately one class at a time, or globally, which
involves a library of classes and includes their hierarchy. The compiled code is accessed
using a function table that can use the pointers or hash-functions along with symbolic
references to access the start-address of the compiled-method. The attribute-table of a class
stores the type information and offsets needed for memory allocation of an object in the
heap. An object-allocation has multiple pointers to access the virtual methods of the cur-
rent class up to the base-class, inner subobjects that can be inherited from the base-class up
to the parent-class, pointers to remove duplicate entries because of multiple-inheritance,
and memory locations for the declared data-entities in the corresponding class.

The run-time behavior of the object-oriented programming languages involves object-
allocations in the heap as they hold the pointers to the method being executed. The frames
for the methods being executed are placed in the control stack. The basic data-entities, ref-
erences to complex objects in the heap, and pointers to return back to the calling method
are allocated in the control stack. The objects local to a method are deallocated from the
heap after the method has finished execution and later reclaimed by the garbage-collection
process.

The distributed object-oriented programming is based on migration of the object to
the remote processor and executing. Emerald uses a flat object structure that is like a
 module that includes data-entities and operations on data-entities. An operation is made
public by exporting it out of an object. The objects easily migrate to the remote processor
because of their flat structure. To support the inclusion of objects, Emerald uses abstract
types. Emerald executes objects transparently by embedding objects inside the control
 abstractions and using thread-based programming. An object is created when an object is
referenced for the first time.

Java uses remote method invocation analogous to the remote procedure call studied in
Chapter 8 in terms of the use of stubs, skeletons, and connection through the ports. However,
it is built on top of the JVM that provides homogenous treatment of the implementation
across different operating systems and architectures. Remote method invocation transmits an
object and the corresponding class structure by traversing the class-hierarchy and serializing
the object including the class structure. Once an object is transferred to the remote processor,
it is rebuilt by a deserialization process, and a handle is created for the reuse of the object in
the future. RMI uses both references and copying of the object for parameter passing.

438    ◾    Introduction to Programming Language

11.9 ASSESSMENT

11.9.1 Concepts and Definitions

Abstract class; abstract method; abstract type, ancestor-class; attribute-table; base-class;
casting; class, class-hierarchy; class-library; class-variable; code migration; conformity;
constructor; data migration; derived class; deserialization; distributed objects; downcast-
ing; encapsulation; function table; generic method; global compilation; implementation
type; information hiding; inheritance; inner subobject; instance, instance-variable; inter-
face; maintainability; marshaling; message passing; method; mixin; module, modularity,
multiple-inheritance; object; operation; override; package; packing; parent-class; partial
class; perfect hash function; private, protected, public, pure virtual function; receiver;
remote method invocation; reusability; root-class, separate compilation; serialization;
signature; skelton layer; stub; subclass, subtype; super; super class; trait; transport layer;
unmarshalling; unpacking; upcasting; virtual method, Virtual Method Table (VMT);
visibility.

11.9.2 Problem-Solving

 1. Write an object-oriented class-definition in C++ that can perform the follow-
ing operations on strings where strings are modeled as an indexible sequence of
characters.

 a. Comparing two strings for equality

 b. Comparing two strings to identify the string that precedes the other using alpha-
neumeric comparison based on ASCII value

 c. Finding out if the two strings are palindromes

 d. Finding out the position where two strings differ

 2. Write a Ruby class-definition for handling priority queues. It should support the fol-
lowing operations:

 a. Get next element based on the priority

 b. Insert an element based on the priority

 c. Insert at the end of the queue

 d. Count the number of elements in the queue

 e. Return a Boolean value if the queue is empty

 f. Return a Boolean value if the queue is full

 3. For the class-definition indexedStack defined in Figure 11.3, give a possible object-
allocation scheme.

Object-Oriented Programming Paradigm    ◾    439  

 4. Write a simple class-definition exhibiting upcasting. Rewrite the class-definition
using access methods to access the attributes of classes.

 5. Write a simple class-definition exhibiting downcasting. Rewrite the class-definition
using access methods to access the attributes of the classes.

 6. Self-study the remote method invocation of Java, and write a simple Java program
that finds out the maximum value in a sequence of numbers on a remote processor
and returns the result.

 7. Write a simple Emerald program to perform a bubble-sort of a sequence.

11.9.3 Extended Response

 8. What do you understand by upcasting and downcasting? Explain using simple
examples.

 9. What are the overheads of implementing upcasting and downcasting in object-
oriented programming languages? Explain.

 10. What are the different restrictions on visibility of declared entities? Explain each one
of them using a simple example.

 11. What do you understand by inheritance? How does it affect reusability? Answer both
pros and cons of using inheritance in an object-oriented language.

 12. Explain the concept of virtual methods and their advantages in object-oriented pro-
gramming languages. How are the virtual methods different from abstract methods
and inherited methods? Explain.

 13. What do you understand by VMT? What is the need for VMT? Comment on the time
and space efficiency of using VMTs.

 14. Compare and contrast multiple-inheritance in C++ and “single-inheritance + traits”
in Scala in terms of modeling real-world phenomenon, limitations, and implementa-
tion overheads.

 15. What is the difference between conformity in Emerald and inheritance in other typi-
cal object-oriented languages? Explain.

 16. Read about the advantages and disadvantages of Java Object type using the Internet,
and discuss using your own examples.

 17. How is the object-oriented implementation model different from the procedural
model of implementation discussed in Chapter 5? Explain.

 18. What are the problems in implementing multiple-inheritance? Explain using a sim-
ple example in C++, represent the class-definition as a DAG, and then give the cor-
responding object-allocation scheme.

440    ◾    Introduction to Programming Language

 19. Compare and contrast object definitions in Emerald with object definitions in Java.

 20. What are the inner subobjects in a hierarchical-class? Explain using a simple example
that has at least two levels of subclasses, with virtual and nonvirtual methods in each
of the classes.

 21. Explain the advantages of JVM in handling remote method invocation.

 22. Explain the mechanism of remote method invocation including remote exception
handling.

FURTHER READING
Bacon, David F., Fink, Stephen J., and Grove, David. “Space- and time-efficient implementation

of the Java object model.” In 16th European Conference on Object-Oriented Programming,
 Springer-Verlag, Berlin, Hydelberg. LNCS 2374. 2002. 1–21.

Bloch, Joshua. Effective Java. 2nd edition. Stoughton, MA: Addison-Wesley. 2008.
Corson, Tim and McGregor, John D. “Understanding object-oriented: a unifying paradigm.”

Communications of the ACM, (33)9. 1990. 40–60.
Ducournau, Roland. “Implementing statically typed object-oriented programming languages.” ACM

Computing Surveys, (43)3. 2011. 18:1–18:48.
Gil, Joseph Y., Pugh, William, Weddell, Grant E., and Zibin, Yoav. “Two-dimensional bi-directional object

layout.” ACM Transactions on Programming Languages and Systems, 30(5). August 2008. 28:1–28:30.
Gil, Joseph Y. and Sweeney, Peter F. “Space-and time-efficient memory layout for multiple inheri-

tances.” In Proceedings of the 14th Annual Conference on Object-Oriented Programming Systems,
Languages, and Applications, OOPSLA ’99. ACM SIGPLAN Notices 34(10). 1999. 256–275.

Gosling, James, Joy, Bill, Steele, Guy, and Bracha, Gilad. The JAVA Language Specification. 3rd edition.
Addison-Wesley. 2005.

Lippman, Stanley B. Inside the C++ Object Model. Redwood City, CA: Addison Wesley. 1996.
Liskov, Barbara and Guttag, John. Program Development in Java: Abstraction, Specification, and

Object-Oriented Design. Upper Saddle River, NJ: Addison-Wesley. 2000.
Liskov, Barbara and Wing, Jeannette. “A behavioral notion of subtyping.” ACM Transactions on

Programming Languages and Systems (TOPLAS), 16(6). 1994. 1811–1841.
Maasen, Jason, Nieuwpoort, Rob V., Veldema, Ronald, Bal, Henri, KIelman, Thilo, Jacobs, Ceriel,

and Hofman, Rutger. “Efficient Java RMI for parallel programming.” ACM Transactions on
Programming Languages and Systems, 23(6). 2001. 747–775.

Meyer, Bertrand. Object-Oriented Software Construction. 2nd edition. Upper Saddle River, NJ:
Prentice Hall. 1997. 1370.

Nierstrasz, Oscar. “A survey of object-oriented concepts.” In Object-oriented Concepts, Databases and
Applications, ed. W. Kim and F. Lochovsky. New York, NY: ACM Press and Addison-Wesley.
1989. 3–21.

Odersky, Martin, Spoon, Lex, and Venners, Bill. Programming in Scala: A Comprehensive Step-by-
Step Guide. 2nd edition. Mountain View, CA: Artima Incorporation. 2011.

Philippsen, Michael and Zenger, Matthias. “JavaParty: Transparent Remote Objects in Java,”
Concurrency Practice and Experience, 9. 1997. 1225–1242.

Raj, Rajendra, Tempero, Ewan, Levy, Henry M., Black, Andrew, Hutchinson, Norman C., and Jul,
Eric. “Emerald: A general-purpose programming Language.” Software: Practice and Experience,
21(1). 1991. 91–118.

Stroustrup, Bjarne. The Design and Evolution of C++. Reading, MA: Addison-Wesley. 1994.
Wegner, Peter. “Concepts and paradigms of object-oriented programming.” ACM SIGPLAN OOPS

Messenger, 1(1). 1987. 7–87.

441

C h a p t e r 12

Web and Multimedia
Programming Paradigms

BACKGROUND CONCEPTS
Abstract computations (Section 2.4); Abstract implementation of programming languages
(Chapter 5); Abstractions in programming languages (Chapter 4); Concurrent programming
(Chapter 8); Distributed computing (Section 8.4); Distributed objects (Section 11.6); Operating
system concepts (Section 2.5); von Neumann machines (Section 2.1).

Since the early 1990s, with the ubiquity of Internet connectivity, the need for code and
data mobility has taken off due to the need of resource sharing. Ubiquity means the
availability of resources on the Internet irrespective of their physical locations and the
 locations of clients. The presence of wireless computing has further facilitated ubiquity.
Many application areas have been positively impacted by the Internet connectivity also
called Web. Web is a network of information nodes such that each node is capable of
(1) performing computation, (2) storing and retrieving information from an information
node, (3) requesting data or code to be transmitted from a remote node, (4) transmitting
data or code to a remote node, and (5) setting up connection with remote nodes for code
and data transfer. The remote node location is called the uniform resource locator (URL)
in web-programming jargon.

Web-based programming intertwines code mobility and data migration including
 multimedia transmission and rendering at the client-end. Multimedia information
includes a combination of text, images, sound, audio clips, video clips, and audiovisuals
that integrate and synchronize both audio streams and video streams to give a minimally
perceptually distorted visualization of real-time events as they occurred. Multimedia
 information is important for better comprehension of real-world events, because we
 perceive the world by using multiple sensors and modes.

Different applications have different needs based on the size of code, size of data,
 security needed for code or data, and privileges provided to the client or the server for the
use of code or data. For example, a banking transaction related code and data cannot be

442    ◾    Introduction to Programming Language

transmitted to remote processors without high security. However, a software code for cal-
culating a monthly mortgage by a consumer can be transmitted to the client-end.

Application areas that have benefitted by the presence of the World Wide Web (WWW)
include banking; telephony; transportation; stock market investments; sale of consumer
products; the entertainment industry such as game-playing and demand-based movies;
 information archives and exchanges; the education industry; and collaborative design
and modeling. Web-based applications have also improved the speeds with which we do
business and the quality of service (QoS). Textual information has been replaced by real
multimedia, which involves audiovisuals, movies, and clips. Books are being replaced by
e-books, and availability of e-books is becoming pervasive—available at any place at any
time. Information retrieval and processing has become demand driven. There is auto-
mated software that is used to collect and index information from various computers, and
the indexing is used to perform search by search engines like Bing, Google, and Yahoo.

If we look closely, all these applications require an integration of computation, resource
sharing, visualization, and security during information transmission and sharing. The
computation has to be distributed over the Internet on different information nodes of the
WWW to reduce overload on servers. Either code or data or both can be transferred from
one web-node to another. If the data is transferred, it is called data mobility (or data migra-
tion), and if code is transferred, it is called code mobility (or code migration). In recent years,
multiple web scripting and multimedia languages have been developed.

This chapter shows models of computations involving code and data mobility, the new
language constructs to facilitate web-based and multimedia programming, and various
virtual machines and languages that support this integrated web-based programming.

12.1 CODE AND DATA MOBILITY
There are four models of mobile computing based on how data and code migrate over the
web. The models are (1) client-server, (2) remote evaluation, (3) code-on-demand, and (4)
migrating agents. Depending upon the supported models, different languages support dif-
ferent constructs and security mechanisms.

Client-server model assumes that one of the web-nodes needs information from other
web-node. The requesting node is called the client, and the provider node is called the
server. A request is transmitted from the client to a server. The server performs compu-
tation, retrieves information, and sends the result to the client. There is no mobility of
the code. In the remote evaluation model, the data is transmitted from a web-node NC to
another web-node NR that has the resources and code to process the data transmitted by
NC. This paradigm supports data mobility. In the code-on-demand model, the client node
NC has the resources to execute mobile code and the needed data. The node NC requests
mobile code from the remote node NR to process the data. After receiving the requested
code, the mobile code is executed using local resources and data.

In the migrating agent model, the code may be sent from one node to different web-nodes.
The mobile code is self-sufficient and uses the local resources of the remote nodes to process
the data present at the remote node. The code has the capability to migrate from one node to
another node and may have an embedded plan and itinerary to visit different nodes based on

Web and Multimedia Programming Paradigms    ◾    443  

certain criterion. During that visit, the migratory code may process data resident on the remote
nodes and transmit the result back to the node that initially originated the migratory code.

Most of the web-based information retrieval uses client-server model. The programs
have two parts: client-end and server-end. Client-end and server-end programs commu-
nicate to each other using web-forms and HTTP protocol—a web-based communication
protocol built on top of TCP (Transmission Control Protocol). TCP is a low-level commu-
nication protocol to transfer data over the Internet. Languages like Java support applets—a
mobile code that migrates and executes at the client node.

12.1.1 Issues in Mobile Computing

The major issues in mobile computing are (1) handling heterogeneity of environments,
(2) handling overhead of execution and transmission caused by code and data mobility,
and (3) handling security problems caused by code and data mobility. Different computers
have different architectures with different internal data formats and have different operat-
ing system. Such a network is called heterogenous, where data representation, computer
hardware, and operating systems are different.

Mobility of code and data causes inefficiency because of packing and unpacking of the
code and data, as we discussed in the remote procedure call section in Chapter 8 and the
remote method invocation in Chapter 11. In addition, because web-based programming
also involves rendering the data to the user in a perceptible multimedia form, it slows down
the overall execution significantly. In a client-server model, a server can be heavily loaded,
because there are too many clients making requests.

The last major issue is problems with security because of (1) infection of mobile code
by malicious code during transit to the client, (2) attack on the processors by malicious
code disguised as mobile code, (3) attack on the client-end processor because of infection
of the return data from an infected server, and (4) leak of the sensitive information to
some malware during transmission. The following sections discuss approaches to handle
 problems of code and data migration to remote computers.

12.1.1.1 Handling Heterogeneity
Heterogeneity problems are caused by (1) difference in computer architecture; (2) differ-
ence in hardware configurations, such as available memory and performance capability of
the machine where code is being executed; (3) difference in operating systems and their
versions; (4) difference in the available compilers to compile the mobile code; and (5) dif-
ference in the available system libraries and language-specific libraries needed for pro-
gram execution. Because of this heterogeneity, a mobile code may not execute on a remote
node. In order to remove the problem of heterogeneity, there have been two approaches:
(1) interoperability to translate the format of the source node to the format of the destina-
tion node and (2) virtual machine implementation on every architecture and operating
system to enforce homogeneity of the environment.

Interoperability is concerned about transforming code and data from one architecture and
operating system to other architectures and operating systems. This can be done by the source
node before transmitting the code and data to the target node or by the target node after receiving

444    ◾    Introduction to Programming Language

the code and data. Either way, one of the machines (source machine or the target machine)
has to be aware of the organization of the other machine to perform the transformation. To
handle this problem of transformation, a common language interface has been used. The com-
mon language interface translates an outgoing data to a common metadata representation, and
incoming metadata is translated back to the destination machine’s native representation.

The second approach implements a common virtual machine on every web-node to
provide homogeneity, and the high-level language is translated to this low-level common
instruction set of the common virtual machine. In essence, the use of a common instruc-
tion set used in a common virtual machine transforms the network of heterogenous com-
puters to a network of homogenous computers.

The problem of availability of resources on the remote computer can be handled if the
machine transmitting the code is aware of the resource requirement and the capabilities
of the remote machine and can match the capability before requesting for code migration.
The problem can also be caused because of changing load conditions or the network condi-
tions. If the load condition in a remote machine is quite high, then code migration to the
remote node should be avoided. The compatibility problem between compilers and libraries
is serious and can cause run-time failure. Compatibility across compilers or interpreters
and the built-in libraries has to be maintained when the virtual machines evolve.

12.1.1.2 Handling Execution and Migration Efficiency
Efficiency has been handled at different levels (1) using a just-in-time (JIT) compiler to transform
into efficient native machine code; (2) using cache to reduce data transfer overhead; (3) using
stream-based transmission of multimedia objects, so that rendering of video and audiovisuals
at the client-end can be interleaved with transmission; (4) run-time adjusting the resolution
based on the communication channel capability and traffic congestion; and (5) keeping multiple
copies of the frequently used code and data at various nodes called mirror-sites.

12.1.1.3 Handling Safety
With the availability of mobile code, the chance of malicious code affecting the host
machine, the chance of a malicious host corrupting the mobile code, and the chance of a
malicious host making a mobile code a carrier of hostile code that can affect other hosts
has increased tremendously. For example, mobile malicious code can delete private files,
system files, and classloader to crash a machine. Even worse, it may corrupt the boot area,
so that machine cannot boot again. Many times mobile malicious code is transmitted as
data files and can become active once in the host machine.

A mobile code can be corrupted during transmission or become malicious in an inter-
mediate node during transmission from the originating node to the destination node.
Privileged mobile data can be read by snooping software or the intermediate nodes during
transmission from the originating node to the destination node. Worse still, a malicious
website may disguise itself as a genuine website, stealing all the privileged information.
This phenomenon is called phishing.

Safety is handled at multiple levels: (1) at the client-end, (2) during transmission, (3) at
the server-end, and (4) verifying the identity of the client and the mobile code. The first

Web and Multimedia Programming Paradigms    ◾    445  

level of safety is that any active mobile code is not given full privilege to access a computer’s
address space and file system. Rather it is sandboxed—placed in a protected area, where the
mobile code has very limited access to the computer’s file structure, has no access to the
system area, and may not share the address space with software on the host machine. In
addition, the transmitted data is encrypted at the source-computer and decrypted at the
destination computer. Each packet carries the identity of the originating web-node and
intermediate web-nodes to ensure that data did not originate or pass through known mali-
cious sites. Section 12.2.4 deals with security in more detail.

12.2 WEB-BASED PROGRAMMING
We need programming languages and extensions to existing programming languages that
are capable of transferring code and data between information nodes over the web and
process the resident data or the data retrieved from the remote node using the resident
code on the local node. We also need capabilities to encode, visualize, embed, and render
complex multimedia data such as images, sound, audiovisuals, text, and their integration
over the web. In the past 20 years, because of the invention of WWW, new visualization
languages as well as the new languages and extensions of existing languages for web-based
programming have been developed.

The first web-based language was HTML (Hyper Text Markup Language), which could
embed the resource locator (hyperlink) of the multimedia object including formatted text such
as tables and text with various styles, images, sound, video and display at the client-end. The
client would send a request by clicking an embedded hyperlink, and the request would be sent
to the corresponding server. The data would be transmitted from the server to the client, and
the browser located at the client-end would display the information to a user. A schematic of the
client-server model using HTTP (Hyper Text Transmission Protocol) is given in Figure 12.1.
The HTML browser includes many decoders to display various media objects embedded in the
document. A decoder is a software that interprets the format of multimedia files for rendering
at the client-end. In addition to the browser, the client-end also carries a cache that archives the
data stored in the recently visited sites so that a revisit to that site can avoid the overhead of data
transfer; data is pulled out from the local cache instead of the server during revisits.

Browser

CGI Server1

ServerN

Cache

ListenerLocal cache
HTTP

Client end Server end

Front-end processor

FIGURE 12.1 A schematics of client-server model of web browsing.

446    ◾    Introduction to Programming Language

At the server-end, there may be more than one server involved in retrieving and
 processing the data from the database. The servers pass the retrieved information to a
 common gateway interface (CGI) that reformats the retrieved data into the format accept-
able to the browser and transmits the result back. The server keeps a cache of retrieved
data, so that the next request for the same data can be retransmitted with little retrieval
overhead. Many times, on the Internet, more than one intermediate node is involved in
data transmission between the client and server. In that case, intermediate nodes may also
cache the data to lower the data transfer overhead.

12.2.1 HTML

The language HTML has three major components: head, body, and hyperlinks to other media
objects. The head part includes the title of the documents, transmission protocol name, format-
related information, author-related information, and keywords used by the search engines.
The transfer-protocol could be (1) http—for web-based browsing of data; (2) ftp—used in
file transfer without visualization; (3) file—denotes a file on local computer; (4) telnet—used
for remote login; (5) tel—used for telephone dialing; and (6) modem—for modem-based
 connection. The most common use is http, ftp, and file for information exchange. Usually,
the resource is a media file, such as text-file, or image-file, audio-file, or audio-visual file.

The body part contains the annotated document. The hyperlinks are embedded inside
the documents to take to another document or media object that may be on a local com-
puter or a remote computer. The locator is of the form <transfer-protocol>://<node-name>:
[<port-name>]/<path-name>/<resource-name>. A file resource is written in the form <file-
name>.<media-format-type>. Some of the common media formats are .jpg (image format),
graphical information format (.gif) (image format), .wav (sound format), .mpeg (audio-
visual clip format), .avi (Microsoft audio-visual format), .pdf (printable document), and
.mov (movie format).

HTML text formatting is done using a group of tags that annotate the text to (1) change
the text style such as color, boldness, size, or heading; (2) make and format a table; or
(3) embed and align media objects inside a table or within the text. The general format of
the tagged text is ‘<’ <tag-name> ‘>’ <tagged-text> ‘</’ <tag-name> ‘>’. The tags can have
multiple attributes embedded into them. For example, a table can have attributes such as
border, size of the cells, or padding from the top and the bottom. The abstract syntax for
attributes is <attribute-list> = {<attribute-name> ‘ = ’ <value>}*.

Example 12.1

<HTML>
 <Head>
 <M ETA HTTP-EQUIV = “Content-Type” CONTENT = “text/html;

charset = iso-8859-1”>
 <META NAME = “Author” CONTENT = “Arvind Bansal”>
 <M ETA NAME = “Keywords” CONTENT = “programming languages, text

book”>
 <TITLE> Programming Language E-book</TITLE>

Web and Multimedia Programming Paradigms    ◾    447  

</Head>
<Body BGCOLOR = “#F2FFFF”>
 <H 1 ALIGN = CENTER > Introduction to Programming

Languages </H1>
 <T ABLE border = 0 cellspacing = 0 cellpadding = 2

bottommargin = 0 topmargin = “0” bgcolor = “white”>
 <TR>
 <T D VALIGN = TOP ALIGN = LEFT>

 <TD VALIGN = TOP Align = Right>

 CRC Press
 </TR>
 </Table>
</Body>
</HTML>

The above code illustrates the overall organization of an HTML document. The
HTML document is divided into two parts: (1) the document-head, which contains
the metadata such as content-type, character-set, author, keywords, and the title of the
document and (2) the document-body, which contains the annotated document. For
example, the tag <H1> tells the type of heading; the tag <Table> describes the format
and content inside a table; the tag <TR> describes a row; and the tag <TD> describes
a data element in the data cell. There are multiple attributes associated with different
tags. The hyperlink tag CRC Press puts
a hyperlink under the text CRC Press. Most of the tags end with an end marker. In case
of <TD>, the end tag is optional, because it can be terminated by another <TD>, <TR>
or </TR>.

HTML works well for visualizing formatted documents. However, it has the
 following limitations: (1) tag and attribute values are mixed with the text mak-
ing rearrangement and style change difficult; (2) a tag cannot be defined by a user;
(3) HTML does not support any computation and text processing; (4) HTML has
limited capability of any action based on events; and (5) HTML lacks the capability
of dynamically changing the text style based on some condition. That means that
e-commerce organizations have to make lot of effort to reformat the website.

The above limitations have been solved by the development of new languages that
(1) facilitate dynamic transformation of tag-attributes, (2) allow user-defined tags,
(3) integrate HTML with web scripting languages having computation capability,
and (4) transmit the code to the client-end and use the local resources at the client-
end to process the data. The language XML extends HTML by allowing user-defined
tags. XHTML integrates HTML browser capability and XML’s (eXtended Markup
Language) user-defined tag.

In recent years, many web programming languages have been developed to
 integrate web-based information retrieval, visualization, computing, and event-based

448    ◾    Introduction to Programming Language

programming. Some of these languages are Javascript, PhP, Obliq, Microsoft ASP,
C#, AJAX (Asynchronous Javascript AND XML), SMIL (Synchronous Multimedia
Integration Language), Telescript, TCL, and Java.

12.2.2 XML as Middleware Interface Language

There are two major advantages of XML-based representation: (1) an arbitrary directed
acyclic graph (DAG) (includes tree) structure can be represented into flat textual format,
using tags and (2) user-defined tags can represent any complex object if the object can be
decomposed as DAG. This representation is easily serialized and recovered at the remote
processor. XML flattens nested database tables to facilitate transmission over the Internet.
Similarly, XML has been used to annotate and transmit complex 3D objects and 3D anima-
tion over the Internet using languages like X3D.

XML description has two parts: (1) document-type definition (DTD) and (2) a docu-
ment. DTD describes the constraints on the structure and values of the documents. DTD is
described like extended BNF, and does not follow XML tag structure. DTD description can be
associated with an identifier, and the reference to the description is provided by the identifier
in place of the description. DTD can be stored either along with the document or as a sepa-
rate file with suffix ‘.dtd’. An XML document is a valid document if it meets the restrictions
imposed by DTD. An XML document has user-defined attributes associated with tag words.

Example 12.2

The example shows the structure of an XML document. The first line states that it is
an XML document. The second line shows how the comments are encoded. The third
line shows the declaration and the file-name book.dtd, where the declaration is stored.

<?xml version = 1.0?>
<!-- comment - DTD description starts here -->
<! DOCTYPE book SYSTEM “book.dtd”>
<!-- comment – document description starts here -->
<book>
 <author> John Doe </author>
 <publisher> XYZ-publisher </publisher>
 <year> 1980 </year>
</book>

XML-based languages such as “Mathematics Markup Language” (MathML) and
“Chemical Markup Language” (ChemML) utilize user-defined tags and their inter-
preter to describe complex equations and chemical formulae for transmission over
the Internet and rendering at the remote node.

Example 12.3

The following example shows a 2 × 2 matrix expressed in MathML. The MathML
interprets these tags and invokes the corresponding rendering software routines to

Web and Multimedia Programming Paradigms    ◾    449  

display the matrix. For example, <mo> denotes a math operator, <mtr> denotes a
matrix row, <mtd> denotes a matrix data, and the tag <mrow> denotes one-row visu-
alization. The first row of this matrix contains two data elements—10 and 20—and
the second row contain the elements 40 and 60.

 <mrow>
 <mo>(</mo>
 <mtable>
 <mtr> <mtd> <mn> 10 </mn> <mn> 20 </mn> </mtd> </mtr>
 <mtr> <mtd> <mn> 40 </mn> <mn> 60 </mn> </mtd></mtr>
 </mtable>
 <mo>) </mo>
 </mrow>

12.2.2.1 DTD—Document Type Definition
DTD consists of element structure definition, attribute-list structure definition, and entity
definitions. The type information describes the possible structure of an element or attribute
list. For example, the document-type declaration for the XML description in Example 12.2
is as follows:

‘<!’ ELEMENT book (author | publisher | year)* ‘>’

The above declaration states that the element book can have one or more occurrences
of three subelements: author, publisher, or year. A simplified syntax grammar for DTD is
given in Figure 12.2.

<dtd-definition> ::= <element-dtd> | <attrList-dtd>
<element-dtd> ::= ‘<!’ Element <element-name> (<element-type> |
 EMPTY | ANY | ‘(‘ #PCDATA’)’) ’>’
<attrList-dtd> ::= ‘<!’ ATTLIST <element-name> { <attrName-Type-Default}+

 ‘>’
<element-type> ::= ‘(‘ <type> {(‘,’ | ‘|’) <type>]* ‘)’ | <identifier>
<element-name> ::= <identifier>
<attrName-Type-Default> ::= <attrName> ’ ‘<attrType>‘ ‘ <default>
<attrName> ::= <identifier>
<defaultValue> ::= ‘”’ <value> ‘”’ | #REQUIRED | #IMPLIED | #FIXED <value>
<attrType> ::= CDATA | {<entity> ‘ ‘ }* | <enumeration> | <identifier> |
 { <idRef> ‘ ‘}+ | {<NMToken> ‘ ‘}+ | NOTATION
<entity> ::= <general-entity> | <parameter-entity> | <embedded-media>
<general-entity> ::= ‘<!’ ENTITY <entity-name> <visibility> <definition> ‘>’
<parameter-entity> ::= ‘<!’ ‘%’ ENTITY <entity-name> <visibility>
 <definition> ‘>’
<embedded-media> ::= ‘<!’ ENTITY <entity-name> <visibility> <definition>
 NDATA <format> ‘>’
<idRef> ::= <identifier>
<format> ::= .jpg | .gif …
<visbility> ::= PUBLIC <FPI> | SYSTEM

FIGURE 12.2 A simplified abstract syntax grammar for DTD in XML.

450    ◾    Introduction to Programming Language

Elements can pick up a combination of tag value defined within the document,
‘EMPTY,’ or a user-supplied value denoted by #PCDATA, or could be declared of any
type denoted by the reserved word ‘ANY’. An attribute list is qualified by the element
name followed by a list of triples (attribute-name, attribute-type, and default-value)
separated by white spaces. An attribute type could be a character data (CDATA) or a
defined entity, or a reference to an already defined entity or an enumeration type, name
token, or notation. Notation is used to define user-defined notations using a declara-
tion like ‘<!’ Notation <notation-name> SYSTEM <external-identifier> ‘>’. Attributes
can be given default values. Default values can be specified as required (#REQUIRED),
can be a constant declared using the reserved word ‘FIXED’, or could be implied
(#IMPLIED). The reserved word ‘#REQUIRED’ specifies that the default value could
be any value but must be specified. The reserved word ‘#IMPLIED’ states that the value
is optional. The purpose of declaring entities is reuse of the entity definition elsewhere
in the XML program. An entity could be a general entity, a parameter, or an embedded
media object.

A general entity has a name and a definition. An entity could either be public or pri-
vate. An example of an entity is <! ENTITY publisher “CRC Press”>. Now the entity-
name publisher can be used elsewhere using a reference ‘& publisher.’ A parameter-entity
binds a name to the whole definition statement so that the entity-name can be used in
place of the definition. Parameter-entities use an additional ‘%’ symbol that precedes
the entity-name to separate it from general entities. For example, ‘<!’ Entity %mybook
“<! Element book Any>” ‘>’ will declare an element with a parameter-entity that can be
used anywhere using the name ‘%mybook.’ A media-entity can be embedded in an XML
document using a declaration of the general-entity, visibility of the object, and the for-
mat of the media object.

12.2.2.2 Style Sheets
Style sheets have been used to separate the attribute values of the tags from the HTML and
XML files. Although the tag in the original text remains the same, changing the style in the
style sheets alters the attribute values of the tags. The style sheet carries multiple options
for the attribute-value pairs of the tags. Different attribute-value pairs can be picked based
on some conditions such as time of the day, season, month, country where the browser is
being displayed, the rendering device such as laptop or mobile phone, the bandwidth of the
communication link. Changing the style of browsed text needs two files: (1) the original
XML document and (2) a style sheet description. A program that transforms XML file to
another XML file based on a different style sheet file is called “eXtensible Style Language
Transformation” (XSLT).

The style sheet description is kept either internally inside the head of the XML document,
or in a separate external file and can be altered easily, because it is relatively small: it does
not contain the document text. The attributes of different tags are specified in the style
sheet files. In the styling sheet file, different templates associated with tag words are given
a name, and in the XML file, these template-names are used to apply the attribute-values.

Web and Multimedia Programming Paradigms    ◾    451  

Cascading style sheets have a suffix ‘.css’ and extensible styling sheets have the suffix. ‘xsl’.
The XSL templates are described as .template-name ‘{‘ {<attribute>:<value>}* ‘}’.

The XML documentation on which XSLT performs the transformation is enclosed
between the tag ‘<’ xsl:template-match <node-name> ‘>’ and ‘<’ xsl: template-match/’>’.
Transformation is applied on the template using the command ‘<’ xsl: apply-templates ‘>’
after the text document. XSLT also has if-then-else and for-each loop operation to check the
attribute types and values and loop through multiple matching tag names to substitute the
attribute values in each of them.

12.2.2.3 Modeling 2D and 3D Objects in XML
A two-dimensional region can be decomposed into multiple homogenous regions.
A two-dimensional object can be abstracted as a pair (polygon, attribute-value pairs).
Polygons are represented as a sequence of vertices such that there is an edge between
the adjacent vertices and the first and the last vertices. Thus a complex region is mod-
eled as follows:

<complex-region>
 <region name = ”Ohio” points = 3 color = “red”>
 <elements> x-value y-value </elements>
 <elements> x-value y-value </elements>
 <elements> x-value y-value </elements>
 </region>
 …
 <region name = ”Oregon” points = 4 color = “green”>
 <elements> x-value y-value </elements>
 <elements> x-value y-value </elements>
 <elements> x-value y-value </elements>
 </region>
</complex-region>

Alternately, a two-dimensional image can be modeled as a group of images such that
each image is identified by its center of gravity (cog) and its image-URL.

<complex-region>
 <region name = ”Ohio”>
 <cog> x-value y-value </cog>
 
 </region>
 …
 <region name = ”Oregon”>
 <cog> x-value y-value </cog>
 
 </region>
</complex-region>

452    ◾    Introduction to Programming Language

These techniques can be extended to model 3D objects. A realistic 3D objects will have
many attributes such as shape, texture, luminosity, and connectedness to other subparts. This
information can be represented as a list of attribute-value pairs in each node. Homogenous
objects like cones, spheres, and cylinders are modeled easily by knowing the properties
that characterize the objects. For example, a sphere can be characterized by center of grav-
ity, number of dimensions, and radius. A cube can be characterized by coordinates of the
leftmost point, number of dimensions, and length of the side.

We can model a complex 3D object using a graph such that each vertex in the graph is
associated with a component 3D shape, and edge is associated with the points joining two
3D shapes. For example, a table is a two-level tree with a root node associated with the table
top, and four of the leaf nodes as legs of the table. The four leaf nodes can be associated with
a cylinder or some 3D image.

The idea of modeling 3D objects programmatically using regular basic objects such
as cones, cylinders, prisms, and spheres came from “Virtual Reality Markup Language”
(VRML). It was integrated with 3D representation capability of XML to generate lan-
guage like X3D. X3D has the capability to transmit 3D objects over the web for remote
visualization.

12.2.2.4 Embedding Computation in XML
There are two ways to incorporate control abstractions: (1) interface with code written in
a web-based programming language such as Javascript, PhP, Microsoft ASP, or C# using
a special tag and (2) annotate the control abstractions as tags, and features of the control
abstraction as attributes of the tags. Both the approaches have been used to extend the
capabilities of XML. Section 12.2.3 shows the integration of code written in web-based
languages and XML. In this section, we will study how control abstractions can be added
using user-defined tags.

“Voice eXtensible Markup Language” (VoiceXML) is used for the voice interaction over
the telephone and uses the second approach. The declaration of variables, blocks, if-then-
else statements, foreach-loop statements, data, and expressions are used as XML tags. For
example, a variable can be declared as the following:

‘<’ var name = <identifier> expression = <url> ‘>’

This statement binds a variable-identifier to an URL, and this variable-identifier can
be used later to refer to the URL. Similarly, if-then-else statement has the following
structure:

‘<’ if cond = <conditional-expression> ‘<’ audio src = <url> ‘/>’
 <else/> ‘<’ audio src = <url>/>
‘<’/if ‘>’

The above structure states that if the conditional-expression evaluates true, then select
the first URL. Otherwise, select the second URL for audio.

Web and Multimedia Programming Paradigms    ◾    453  

12.2.2.5 Embedding Communication in XML
“Simple Object Access Protocol” (SOAP) is a XML-based protocol to exchange informa-
tion between two Internet-based applications. It solves the compatibility problem between
the heterogenous processors by using a flat XML format. Soap messages use an XML for-
mat without DTD description. The tags have a prefix of soap namespace: the header tag is
called <soap:Header>, and the body is called <soap:Body>. The whole message is embed-
ded between the tags <soap:Envelope> and </soap:Envelope>. The <soap:Body> block has
the information that includes the URL name where the message is being sent and the mes-
sage within the user-defined tags. The <soap:Body> block also has an optional embedded
<soap:Fault> block to handle the faults. There are four subelements in the <soap:Fault>:
(1) <faultcode>—code to detect the faults; (2) <faultstring>—an explanation of the fault;
(3) <faultactor>—what caused the fault; and (4) <detail>—application-specific descrip-
tion. The overall template for the soap message is given below.

<?xml version = “1.0”?>
<soap:Envelope
 xmlns:soap = “http://www.w3.org/2001/12/soap-envelope”
 soap:encodingStyle = “http://www.w3.org/2001/12/
 soap-encoding”>
 <soap:Header>
 …
 </soap:Header>
 <soap:Body>
 …
 <soap:Fault>
 …
 </soap:Fault>
 </soap:Body>
</soap:Envelope>

12.2.3 Web Scripting

Till now we have discussed the advantages of representing the structure of the information
and objects in XML. However, XML alone does not have the capability to compute and
interact with the user or process complex data abstractions, such as collection of URLs,
each holding different media objects or processing the strings and data. Web scripting lan-
guages provide that capability. Java provides additional capability of mobile code through
applets. This section discusses the features of web scripting languages that facilitate web
programming, followed by discussion on the integration of XML and web scripting
through XML extensions.

Web scripting languages have the capabilities: (1) to create a web document on the fly,
(2) to modify the web document based on user interaction or an event, (3) to interact with
the user to fill up a form, (4) to provide password security, (5) to provide data and control
abstraction capabilities to process the data, (6) to interface with databases such as SQL or
Microsoft Access, (7) to change the style of the text, and (8) to create and access abstract

454    ◾    Introduction to Programming Language

graphics objects such as radio buttons, box, or canvas, for user-friendly interactions.
If a web programming language is used to render a scene involving multimedia objects,
then many web languages provide (1) concurrent constructs to render multiple streams
simultaneously and (2) time-delays between streams to simulate causality between the
events.

12.2.3.1 Integrating XML and Web Scripting
Languages like PhP, Javascript, and Java have been used for web programming. All these
languages support the notion of events, objects, and capability to interface with web docu-
ments to provide web programming. They support history, navigation, form, and windows
as objects for ease of dynamic access and manipulation. Various fields of these objects can
be accessed using the format <object-name>.<field-name>. The scripting language codes
are embedded within XML using a tag ‘<’ script src = <file-name> ‘>’ … </script>. The
function name of the scripting language can be called from elsewhere by specifying the
name and the parameters.

12.2.3.2 XAML—eXtensible Application Markup Language
XAML is a Microsoft version of XML to support images, objects, and animation that
embeds images and objects inside XML. XAML integrates Microsoft’s graphics toolkit
and XML by embedding special tags that invoke the methods to draw the graphics objects
with various parameters. The objects could use the built-in library or customized objects
defined by the XAML files. All name declaration use a prefix ‘xmlns:x = ’ to specify that it
is an XAML tag.

<page>
xmlns = http://schemas.microsoft.com/winfx/2006/xaml/
presentation

 xmlns:x = “http://schemas.microsoft.com/winfx/2006/xaml”
…
</page>

For example, we can make a button using the following XAML statement:

<button x:name = “btnExit” Height = “50” Width = “50”
 Background = “white” Foreground = “Red” Content = “Exit”
 click = “btnExitApp”/>

The name of the button is “btnExit.” Its size is 50 pixels × 50 pixels, and its color is red.
The content displayed on top of the button is the string “Exit,” and the event name method
associated with it is called “btnExitApp.” Clicking on the button will send a signal to the
event handler (described in Chapter 13) that will pass the control to the method “btnExi-
tApp.” By default all methods associated with XAML events are public. XAML supports
nesting of the definitions.

Web and Multimedia Programming Paradigms    ◾    455  

12.2.3.3 Javascript
Javascript is an object-based dynamically typed web programming language. It does not
support class inheritance. However, it treats the forms, navigation pane, and history as
objects and can use the construct <object-name>.<field> to go to any embedded field. It
has the capability to embed any URL for rendering multimedia objects. Javascript is sup-
ported by XML: a Javascript function can be embedded in the client-side XML code and
be invoked in response to an event, such as mouse-motions over a media object or a region
in the window pane, filling up a form, and clicking on a hyperlink. Javascript programs
are used for (1) client-end user interactions, (2) simple authentication of the user at the
client-end, (3) form checking at the client-end, (4) providing simple code such as display-
ing a clock or a calendar on the webpage, (5) changing the display style of HTML code,
and (6) interfacing with the CGI. A language-specific description of Javascript is given in
Section 12.6.4.

12.2.3.4 AJAX—Asynchronous Javascript and XML
Ajax is a programming tool that integrates Javascript with XML (or XHTML) for dynamic
display and user interaction over the web. Although XML provides the capability of data-
interchange and information retrieval, Javascript provides the computation capability and
user interaction capability at the client-end. Thus there are two layers of data transfor-
mation: (1) user-interface to Javascript and (2) Javascript to CGI through HTTP request.
The AJAX engine has two functions: (1) transforming Javascript call to HTTP request
and (2) transforming XML data coming from the server-end to XHTML + CSS data. The
Javascript layer can perform validation and error checking on the input data before send-
ing the HTTP request to the server. This validation on the local processor reduces the
overhead on the server.

12.2.4 Applets

An applet is a mobile code that migrates to the client-end on demand and is executed on the
host machine either as a compiled code using JIT compiler or interpreted as instructions
of the virtual machine to remove the problem of heterogeneity. Applet is supported by Java
and many agent-based languages like TCL and Odyssey. An applet migrates to the client-
end when the webpage containing the applet is loaded. Applets are embedded in HTML
and XML files using an <applet> tag. As discussed before, applet goes through code verifi-
cation and is sandboxed for security against malicious code, as discussed in Section 12.2.5.

Applet has five methods: init(), start(); paint(), stop(), and destroy(). Init method is exe-
cuted when an applet is invoked. Start method is executed when the user returns to the
page containing an applet or after the applet is initialized using init method. Start method
is run under a new thread that is destroyed by the stop method. Stop method is activated
when the user moves to another page that does not contain the applet. Destroy method is
executed when the browser shuts down. Paint method is used to repaint media objects dur-
ing an applet’s execution.

Applets have multiple attributes such as codebase, code, object, archive, alt, and name,
and media layout primitives such as width, height, align, vspace, and hspace. Applets are

456    ◾    Introduction to Programming Language

either pulled from an URI or are part of an XML file. Java virtual machine (JVM) run-time
 environment is needed to visualize applet in Java. Applet uses the optional tag ‘<’ param
name = <identifier> value = <value> ‘>’ embedded inside the HTML or XML document to
pass the parameter values. The syntax for the applet tag is as follows:

<Applet-tag> ::= ‘<’ Applet
 [codebase = <URI>] code = <Applet-file>
 [alt = <Alternate-text>]
 [name = <AppletInstance>] width =
 <pixel-value> Height = <pixel-value>
 [align = <alignment-type>] [vspace =
 <pixel-value>]
 [hspace = <pixel-value>] ‘>’
 {‘<’ param name = <Attribute-name>
 value = <Attribute-value> ‘>’}*
 ‘</’ Applet ‘>’

The attribute codebase describes the URI where the code is located. The attribute code
describes the file-name that contains the compiled subclass of the applet. The attribute
alt describes the alternate text to be displayed if the applet cannot be executed. The attri-
bute name describes the name of the applet instance so that other applets can access this
applet using that name. The attributes width and height describe the size of the applet
display area. The attribute align describes the alignment of the display in the viewing area.
Alignment could be top, bottom, left, right, middle, and so on. The attributes vspace and
hspace describe the spacing around the applet.

Java applets need to import two class libraries—java.applet.Applet and java.awt.
Graphics—to execute. Applets are treated as a subclass of java.appplet.Applet class in Java.
The applet base class has many methods that are inherited by the applet subclass such as
(1) URL of the file containing the applet and the applet class definition and (2) fetching
and rendering the media objects. Applet supports event-based programming using the
container classes java.awt.event.MouseListener and java.awt.event.MouseEvent. There are
multiple events such as clicking of the mouse, mouse over a media object, or mouse leaving a
region. Images are retrieved from a URI by method getImage and are rendered in a graph-
ics window using the method drawImage. A text string is displayed by using a method
drawstring.

Example 12.4

The code below shows embedding of an applet in XML and the corresponding code
for the applet gps.Java. The applet code has four major methods: start, stop, run,
and paint. The applet gps class is a subclass of applet class and starts a thread called
gpsthread. The thread gpsThread wakes up every 200 milliseconds, picks up the new
coordinates, and repaints the graphics window. The method paint picks up the rel-
evant coordinates (omitted here), and method run repaints the value in the XML

Web and Multimedia Programming Paradigms    ◾    457  

designated window. The parameters declared in XML code are pulled in the applet by
using a method getparameter(<Parameter-name>).

Browser end embedding

<applet code = gps height = 200 width = 200>
<param name = font value = “Arial”>
<param name = size value = “36”>
<param name = style value = “bold”>
</applet>

The corresponding code for gps.Java will be as follows:
Applet-code

import java.applet.Applet;
import java.awt.*;
…
public class gps extends Applet implements runnable {
protected Thread gpsThread = null;
…
public void start() {
if (gpsThread = = null) {
 gpsThread = new Thread(this);
 gpsThread.start();
}
}
public void stop() {gpsThread = null;}
public void run() {
 while (Thread.currentThread() == gpsThread) {
 repaint();
 try {Thread.currentThread().sleep(200);} catch
 (InterruptedException e) {}
 }
}
public void paint(Graphics g) {
 string myFont = getParameter(“font”);
 string myStyle = getParameter(“style”);
 int mySize = Integer.parseInt(getParameter(“size”));
 Font f = new Font(myFont, myStyle, mySize);
 …
 }
}

12.2.5 Security in Web Programming

This section deals with handling security against malicious mobile-code in web
 programming. To handle security threats caused by mobile code, four techniques are
used: (1) ensure minimal trust threshold in files and use of digitally signed applets, (2) safe
 interpreters, (3) fault isolation, and (4) code verification.

458    ◾    Introduction to Programming Language

A server should meet a minimal trust threshold such that it is not seen as frequently
sending malicious code. No server or intermediate nodes used during transmission of
an applet can be guaranteed to be devoid of malicious software. If the severity and the
 frequency of malicious software transmitted from a server crosses a threshold, then the
mobile-code from that server is avoided. An applet is considered safe if it is digitally signed
by the trusted producers, and the public cryptographic key can ensure that they originated
from the same originating source.

In the safe-interpreter, the applet is put in a protected area and is interpreted using a mas-
ter interpreter instead of executing a compiled code. Communication between the applets is
regulated to make sure they do not collude to perform a malicious action. Aliases are used
outside the protected area to communicate with the applets. To regulate the excessive use
of resources by the applets, each applet is allocated some electronic cash upon entry that
is deducted after every use; upon excessive use, the remaining electronic cash is forfeited.

Code verification ensures that the JVM bytecode matches with the Java language speci-
fications and does not perform unsafe operations. Unsafe operations are (1) operations
causing stack overflow or underflow; (2) namespace violation; (3) forging of pointers,
security managers, and classloaders; (4) local disk accesses; (5) opening its own windows;
and (6) communication with processors other than the host processor or the originating
processor. The classloader separates the namespace of the local trusted bytecode and the
downloaded applet. Java loads a security manager to perform code verification when an
applet is loaded.

Fault-isolation identifies the untrusted and unsafe code and makes sure that it does
not access any area permitted only for trusted code. Rather it accesses the local allo-
cated address space called fault-domain. This process is called sandboxing. Sandboxing is
achieved by (1) inserting a conditional statement to raise exception in case an address space
is accessed outside the fault-domain and (2) separating the addressing mechanism that
fault-domain has different higher order bits than the remaining memory space. However,
the second scheme makes the code architecture dependent, as different architectures have
different word-sizes.

12.3 VIRTUAL MACHINES AND RUN-TIME INTERFACE
In order to provide a homogenous environment across heterogenous nodes two approaches
are used: (1) development of virtual machines and translating web programs to the com-
mon instruction set of the virtual machines or (2) development of a common low-level
interface and all the high-level code is translated to low-level intermediate code that can be
later compiled to individual machines. There are two virtual machines that are used com-
monly for Internet-based computing: (1) JVM to execute Java programs and (2) Microsoft’s
stack-based virtual machine CLR for .NET framework used to execute programs written
in C#, Visual C++, Visual Basic, and F#. “Common Intermediate Language” (CIL), also
called Microsoft intermediate language (MSIL) is an object-oriented intermediate lan-
guage like the JVM instruction set.

The execution of instructions in virtual machines is slow because of the use of inter-
preters and needs to be compiled to the native machine code for faster execution.

Web and Multimedia Programming Paradigms    ◾    459  

Run-time compilation of a common instruction set is called JIT compilation. Both JVM
and CLR use JIT compilation on frequently executed segments of the interpreted instruc-
tions to speed up the execution. The languages like C#, Visual C++, and Visual Basic are
first converted into CIL, and then use JIT-compiler at native machines to improve the
execution of frequently executed code segments. CLR provides additional service such as
garbage collection and memory management.

12.3.1 Java Virtual Machine

JVM is a zero-address machine that uses a stack-based implementation. The instructions are
classified as load instructions, store instructions, instructions for arithmetic and logical opera-
tions, setting up a reference to an object in the heap, stack management operations, object man-
agement operations, method invocation operations, jumping to another instruction including
subroutines, returning from a subroutine, and instruction to support widening (coercion) and
narrowing (casting). In narrowing, lower order bits are discarded. There are multiple stack
instructions such as push, pop, duplicate, and swap. The instruction swap interchanges top two
elements. The instruction set also supports multiple conditional branches and unconditional
jump to implement higher-level control abstractions such as if-then-else and iterative loops.

The instruction set also supports the creation of new objects and arrays and returns
the reference to the objects. To invoke methods, there are five instructions: invokevirtual,
invokeinterface, invokestatic, invokedynamic, and invokespecial. The methods invoke-
virtual, invokestatic, and invokeinterface invoke a virtual, static, and interface method,
respectively. Invokespecial is used to invoke methods that need special handling such as
constructor or private methods where visibility bit has to be set.

A Java instruction has a one-byte opcode followed by the operands. The instruction
length is one byte to three bytes long depending upon the number and type of the oper-
ands. This code is called bytecode. Java instructions carry the type information with them,
and there is no type check at JVM level. Because only one byte is used for opcode, all Java
types cannot be encoded in opcodes, and many types have been mapped to instructions
handling other types. For example, when loading Boolean type, short integer type, and
character type all are mapped to the integer instruction iload.

There are three types of references: class type, array type, and interface type. Data areas
are created when the corresponding thread starts, and are destroyed when the thread exits.
JVM utilizes a heap that is shared among all the Java threads. A reference to an object
points to a pair of references in the heap: (1) the first reference points to the table of refer-
ences pointing to the corresponding methods in the object and (2) the second reference
points to the memory block allocated for the object. A method is polymorphic if the formal
parameter and return values are of the type Object [].

The method area is common to all the Java threads, and the method area is started when
JVM starts. Every class has a symbol table called runtime constant pool. Each thread has
its own stack to support native methods—methods written in languages other than Java.
A new frame is allocated every time a method is invoked. Each frame has its own local
variable allocation, a reference to the runtime constant pool and its own operand stack to
perform arithmetic and logic operations for zero address instructions and to prepare the

460    ◾    Introduction to Programming Language

parameters to call other methods. After a successful execution of a subroutine a value is
returned, the control stack is restored back to the computational state of the calling method.

An exception handler specifies (1) the offset of the code within a method where the
exception-handler is active and (2) the reference to the code for the exception handler.
When an exception occurs, the offset is matched with the current execution location. The
control is passed to the code for the exception handler upon match. If no exception han-
dler is found, then the current frame is removed, the control is passed back to the calling
method, and the exception is thrown again in the context of the calling method.

JVM supports synchronization in synchronized methods using a single construct called
monitor. When invoking a synchronized method a flag ACC_Synhronized is tested and set.
The flag is checked by other synchronized methods before executing the method.

In Chapter 11, we briefly mentioned attribute-tables that carry the information related
to class attributes. An attribute-table in JVM carries the following information: (1) a magic
 number—a globally unique identifier—specifying the class file format; (2) a version of the
class file format; (3) information related to runtime constant-pool (symbol table related to
the class), (4) access flags for private and protected; (5) references to the symbol table of the
current class and the parent class; (6) count and references to the interfaces in the constant
pool; and (7) count and references to the various fields, methods, and other attributes in
the class.

The compiled code in JVM has an abstract syntax <instruction> ::= ‘<index-value>
<opcode> [<Argument1>] [Argument2]’. Index value is used for jump and branch instruc-
tions. The compiler translates methods in each class into bytecode instructions, as illus-
trated in Example 12.5, and places the bytecodes for all the methods in a separate file.

Example 12.5

Let us take a simple program and compile it. The comments show the effect of each
compiled instructions, and the explanation is built into the comments.

Source code

x = 4; y = 5;
If (x > y) y = y – x;

Compile code
Index Instruction Comment
1 bipush 4 % push constant 4 on top of the stack
2 istore_1 % store top of the stack in local variable 1
3 bipush 5 % push constant 5 on top of the stack
4 istore_2 % store top of the stack in local variable 2
5 iload_2 % load local variable 2 on top of the stack.
6 iload_1 % load local variable 1 on top of the stack
7 cmple 10 % compare if top(Stack)< second(Stack) then

 % go to instruction 10
8 swap % swap the top two values on the stack
9 isub % subtract top of the stack from the next value
10 istore_2 % store top of the stack in local variable 2

Web and Multimedia Programming Paradigms    ◾    461  

12.3.2 Just-in-Time Compilation

JIT compilation optimizes the execution of the JVM instructions and the CIL to the native
machine code at run time for efficient execution. JIT compiled code is slower than static
compilation because of the lack of extensive optimization and run-time compilation over-
head. Compiled code is cached to avoid the overhead of run-time recompilation.

One of the major optimizations in JIT compilation is to break away from the linear exe-
cution of stack-based machines to DAG (Directed Acyclic Graph)-based representation of
expressions to reduce the execution overhead. Using graph-based representation, the order
of JVM instruction is transformed to improve (1) register-based operations using native
code, (2) reorder and regroup multiple interpreted instructions to map to one native code
instruction, and (3) remove redundant computations. Some of the redundant computations
in zero address machines are (1) storing (or loading) the intermediate results many times
to (from) local variables that can be left temporarily in the processor registers to reduce
memory access overhead and (2) array bound checks for every array access that can be
avoided if the first array access is within bounds and we know the extent of array access.
The generation of the equivalent machine instructions is delayed until a generated value
has to be consumed. The code-segment between the producer and consumer of values is
reordered and regrouped to generate a smaller number of native machine instructions.
Intermediate results are stored in unused registers instead of storing back in local variables.

Code compiled using JIT should interact with JVM in many ways: (1) method calls in
JVM may indirectly call a native method and (2) JVM should be able to locate stack frames
for the compiled methods and understand the format within those frames. JVM uses two
stacks for each thread: (1) Java interpreter stack for interpreted methods and (2) stacks for
the local evaluation within a method. After JIT-compilation, part of the interpreter stack is
not needed because of compilation of the code-segment.

One of the problem of JIT compiler is that only frequently executed parts of code-
segments are compiled to avoid the overhead of run-time compilation, and there is con-
tinuous transition between the format changes in handling the compiled format and
interpreted stack format, especially for parameter passing: compiled code frequently uses
processor registers for parameter passing, whereas Java-interpreted code uses Java stack for
passing the arguments. The performance results show that JIT compilation improves the
performance from two to ten times of the execution time of the interpreted code.

Example 12.6

Let us compile the code in Example 12.5 using JIT compilation. We assume that the host
machine has a three-address instruction set. The values of local variables are first used
in instruction #7. Thus the instructions #1 to instruction #6 are rearranged to avoid the
use of local variables. One possible rearranged instruction sequence can be as follows:

1. bipush 4
2. istore_1
3. iload_1

462    ◾    Introduction to Programming Language

4. bipush 5
5. istore_2
6. iload_2

Now we can replace first three instructions by one native machine instruction for
a three-address machine as move #4, R1. Note that storing and loading overhead has
been removed by storing the constant 4 in the register R1. Similarly, instructions 4–6
are replaced by another native machine instruction move #5, R2. The instruction 7
can be replaced by branchle R2, R1, 5. The new JIT-compiled code will be as follows:

JIT compiled code

1. move #4, R1 % move constant 4 to register R1
2. move #5, R2 % move constant 5 to register R2
3. branchLE R2, R1, 5 % jump to index 5 if R2 = < R1
4. subtract R2, R1, R2 % R2 = R2 – R1
5. store R2, Y % store the new value of R2 in variable Y

JIT compilers also do limited dependency analysis to reshuffle the code sequence
to improve performance and remove redundant codes. However, extensive depen-
dency analysis is not possible because of the run-time overhead of JIT compilation.

12.4 COMPONENTS OF MULTIMEDIA SYSTEMS
A multimedia system is a combination of multiple media to facilitate realistic human
perception. Humans understand an event by integrating the sensor-acquired perception
of multiple media: text, still images, vocal sound, music, video-clips, audiovisuals, and
 gestures. Without a meaningful integration, perceptual distortion causes confusion
instead of comprehension.

Multimedia systems can come in many forms: (1) multimedia over the local machine,
where all the media objects are residing on one or more local databases; (2) multimedia where
the remote media objects are being pushed by the server to the client; (3) demand-based
multimedia, where the remote media objects are being pulled by the client from the server
on demand; (4) multimedia objects are picked up from various URIs from remote servers;
(5) real-time multimedia objects are transmitted over the communication channel; (6)
multimedia objects are being synthesized using a multimedia modeling language and
transmitted; (7) multimedia objects are extrapolated at the client-end from the previous
transmissions using cache and an animation library; and (8) there is a combination of
 synthesized and real-time multimedia objects. Most of the time multimedia systems com-
bine two or more of these eight schemes to provide a realistic perception. The key is to pre-
serve the QoS (Quality of Service) while maintaining efficient transmission and rendering
to avoid perceptual distortion.

In recent years, multimedia systems have become important because of the pervasive-
ness of the Internet that has made possible: web-based movies; animated clips; instructions;
e- commerce; on-demand news; real-time news; multimedia stories for child education;
and augmented reality in surgery, transportation, battlefield situation awareness and;
Internet-based collaboration to name a few. There is a growing interest in developing new

Web and Multimedia Programming Paradigms    ◾    463  

languages and extending existing languages augmented with constructs to embed, visual-
ize, and understand multimedia.

12.4.1 Representation and Transmission

The basic goal of multimedia programming is to use multiple synchronized media to describe
a story. A story is made of multiple causally related activities in different scenes where mul-
tiple objects interact. Activities in the same scene have similar backgrounds. Multimedia
programs allow creation of 3D objects, creation of scenes, and animation of 3D objects in a
scene. Motion involved in activities is created either by object transformation programmati-
cally or by rendering images of activities that have already occurred.

Rendering images of activities over the web is done using multimedia streams. Each
stream is further divided into a sequence of smaller time-stamped units, such that the
objects occurring at the same time-stamp can be rendered at the client-end simultane-
ously. The basic unit in a video stream is called a frame, which is a snapshot of a real-life
activity. A video stream is a sequence of frames. For the perception of motion, 30 frames
are rendered per second. Sound has to be segmented accordingly such that each segment
corresponds to a video-frame with the same time-stamp. To encode video-frames, each
video-frame is divided into multiple n × n pixel two-dimensional regions called mosaics.
The properties of pixels in each mosaic are averaged to achieve better compression. With
some loss of accuracy, the multimedia information can be compressed and transmitted
over the Internet. There are various formats for multimedia representations: .jpg (JPEG)
and .gif are used for still images and drawings; .mvi and .wmv are used for movies; and
.mpg (MPEG) is used for video clips. The meta-information for a video-frame is palette of
colors used in the frame, frame-rate, aspect-ratio, mosaic-size, image-resolution, vertical size
of image, number of bytes in the image, etc.

An audio signal is sampled for amplitude. The sampling rate depends upon the fre-
quency of the sound and the desired quality of rendered sound at the client-end. A higher
 sampling rate increases the quality of sound while increasing the overhead of data-size to
be stored, processed, and transmitted. The sampled amplitude is digitized into a byte. If the
 samples’ rate is twice the base frequency of the wave, then the sound can be constructed at
the client-end. For vocal sound, one needs around 4000 samples per second, whereas for
 hi-fidelity instrumental music, one needs 40,000 samples per second. After digitization, a
sound wave becomes a stream of bytes that encode the sound-segment. Some of the popular
formats for sound are .wav and .avi. The meta-information for an audio signal is sampling
rate number of bytes per sample, number of channels, protection bit, size of the segment, etc.

12.4.1.1 Coding and Transmitting Complex Objects
Images are compressed using various techniques: (1) identifying only those colors that are
used in the image and creating a map between smaller actual color-index space and true-
color space, (2) grouping the pixels into a mosaic, averaging the mosaic features, and trans-
mitting only mosaic features instead of pixels, (3) modeling complex objects as a graph of
simpler images, and (4) transmitting only modified mosaics incrementally in the following
frames.

464    ◾    Introduction to Programming Language

Moving subobjects are transmitted regularly, while still parts of images are transmitted
once. Between two adjacent frames, only the motion vector of altered mosaics is transmitted.
The motion-vector is a pair of the form (difference of x-coordinates, difference of y-coor-
dinates). Because the number of mosaics that do not change the position is quite large, the
overhead of transmitting motion is significantly reduced by the use of motion-vectors. MPEG
uses three types of frames, with varying overheads of transmission. The frames are I-frames
(inter-frame), P-frame (predicted-frame), and B-frame (bidirectional-predicted-frame).
I-frame carries all the spatial information of every mosaic in the frame. P-frame carries only
those mosaics that have moved along with the motion vector with respect to the last transmit-
ted I-frame or P-frame. B-frame carries the motion vectors with respect to the last I-frame
(or P-frame) and/or future I-frame (or P-frame). The advantage of B-frame is in (1) providing
fault tolerance in case the previous frame is lost and (2) reducing the size of the transmitted
data compared to I-frame and P-frame, because B-frame contains the motion vector even
for objects that appear in future frames. Figure 12.3 shows a transmission scheme involving
I-frames, P-frames, and B-frames. Note that more B-frames are sent because of their smaller
size. I-frames have the largest size and are sent infrequently only for reference.

12.4.1.2 Segmenting Complex Multimedia Objects
MPEG 4 and MPEG 7—the current formats to transmit audiovisuals—decompose a
complex object as a graph of simpler objects such that each node is a smaller part of the
overall images. The decomposition of complex objects is done based on the attributes and
the usage of the simpler objects. In a complex object, some parts are moving, some are
high-resolution stills, and some need low-resolution rendering only. A server sends the
XML-coded graph of a complex object along with the images of subobjects and the cor-
responding metadata. The client-end rendering software uses this graph information and
the image of the subcomponents to rebuild the object at the client-end.

Example 12.7

Let us take an example of a news announcer. The announcer’s most focused part is
his or her face. The background and hair are almost invariant and do not change
much. Thus the image of the announcer can be split into three parts: background,

I-frame

B-frame

P-frame

FIGURE 12.3 Frame encoding in MPEG using motion vectors.

Web and Multimedia Programming Paradigms    ◾    465  

hair, and rest of the face. The background is sent once as a low-resolution image, hair
is sent infrequently when the head tilts. Changing mosaics in the face are sent in
every frame, because expression and lip position changes frequently. Actually, the
face itself can be split further in three parts: lips, eyes, and rest of the face. Lips and
eyes can be transmitted regularly with very high-resolution mosaics of smaller sizes,
and the face can be transmitted relatively infrequently with lower-resolution mosaics.

12.4.1.3 Animation and Transmission
Animation includes object image and its motion. The information about motion can be
sent in multiple ways: (1) by sending the mosaics that have been altered from the previous
images along with their displacement-vector or (2) by sending a parametric equation with
respect to time in the form of motion = f(t) instead of motion vectors. The information
about changes from one frame to another can be sent using a text-stream where the text
is encoded using XML. At the client-end, new frames can be constructed using the last
reference frame. This scheme saves the transmitted data and transmission time. However,
it pays some overhead in run-time analysis of the images to derive the information about
the attributes of displaced mosaics.

Each moving subobject in a scene is a combination of two streams: one video stream
and one audio stream that are synchronized using time-stamps. These streams may be sent
separately using different communication channels, or the same communication channel
alternately one frame-segment at a time.

12.4.2 Perceptual Distortion

A real-world action is decomposed into a combination of multiple, separate media activ-
ities. Each media activity is modeled as a stream. A stream can be a video stream, an
audio stream, or XML documents for text transmission. The synchronization among these
streams is important to perceive the real-world activity. Otherwise, different streams rep-
resenting part of the same activity occurring at the same time in real life will be rendered
at different times causing perceptual distortion.

Example 12.8

Let us consider the case of lecture delivery over the Internet. Delivery of lecture
involves (1) slide presentation and (2) hand movement, gestures, lip movement, facial
expressions, and sound of the speaker. The sound has to be segmented so that it corre-
sponds to the right slide, right movement, and right gesture. Sound should synchro-
nize with lip movement and facial expressions. Slide presentation should correspond
closely to hand movement and gestures that point toward different parts of the slides.
There are three different streams: video stream for slide presentation, video stream
for facial expressions and lip movement, and audio-stream. If we want to optimize,
then slides can be split in text and images and embedded in an XML document. The
synchronization of these three streams is very important. Otherwise, a perceptual
disconnect will occur making comprehension very difficult.

466    ◾    Introduction to Programming Language

Figure 12.4 describes four major steps: multimedia capture, archival, transmis-
sion, and rendering. During capture and rendering, the information is not digital
and involves different sensors. During transmission, different packets go at different
speeds because of (1) traffic congestion at a specific interval of time and (2) different
sizes of media objects: small media objects need less than one packet, whereas big-
ger media objects may need more than one packet. There is a natural time mismatch
between the synchronized actual events and the corresponding multimedia events
rendered at the destination.

The distortion can be contained by time-stamping the media-segments and display-
ing them within a reasonable interval. The reasonable interval is different for different
media streams. For example, if we are listening to a speech, then the maximum allowed
time difference for rendering the synchronized video-frame and the corresponding
sound segment is ±30 milliseconds. Higher delay will cause a sound-segment to be ren-
dered with the previous or the following video-frame causing perceptional distortion.
In multimedia rendering, when there are multiple media streams, mutual restriction
between streams has to be maintained to avoid perceptional distortion.

12.4.3 Synchronization in Multimedia

Multiple media streams needs to be synchronized to maintain (1) causality of events,
(2) frame level synchronization between multiple streams involved in the same event, and
(3) the order between the frame-segments within the same stream. The synchronization
between the frame-segments within the same stream is called instrastream synchroniza-
tion and is achieved by numbering the frames in chronological order. The synchronization
between the different streams belonging to the same object and event is called interstream
synchronization and is achieved by time-stamping the frames-segments. Both intrastream
and interstream synchronization are handled by the MPEG encoder.

12.4.3.1 Synchronization in Multimedia Rendering
To render media frames in order at the client-end, the frames should be received and orga-
nized in advance. When the frames start reaching the client-end, the following scenario
can happen: (1) media frames arrived in an unordered fashion and (2) some of the frames
are missing and need to be retransmitted. Thus, enough time should be allowed to provide
for retransmission of the frames from the servers. The received media frames are stored in
a buffer and sorted to put them in order.

Audio
sensor

Server

Video
sensor

Client
Speaker

Rendere

FIGURE 12.4 Sources of perceptual distortion in multimedia delivery.

Web and Multimedia Programming Paradigms    ◾    467  

There is a time lapse between receiving the frames and rendering. During the rendering,
the frames are removed from the buffer, rendered, and discarded. As shown in Figure 12.5,
there are three phases in the buffer. In phase I, frames keep accumulating in the client-side
buffer before rendering starts. In Phase II, frame reception and rendering occurs concur-
rently: new frames are accumulated, and rendered frames are being discarded. In the last
phase, all the transmitted frames have been received, but the frames are still being ren-
dered. In this phase, the buffer gradually becomes empty.

Memory-size requirement in the client-side buffer also changes during multimedia on-
demand when a user presses “fast-forward” or sees the video in slow motion, or temporarily
pauses a video display. Fast-forwarding increases the rendering rate, and buffer gets empty
faster. Thus the server has to push the data faster. Slow-motion video removes the frames
slowly from the buffer. Thus frames in the buffer keep accumulating, and the server has to
be requested to slow down the frame transfer rate. Similarly, the buffer keeps accumulating
during pause, and client has to request the server to pause transmission and then request fast
transfer when the pause is deactivated.

12.4.3.2 Synchronization at Program Level
Synchronization is done at multiple layers as the streams go through multiple layers of trans-
formation before being transmitted over the communication channel. Multimedia synchro-
nization at the programming level (application layer) involves incorporating concurrent
rendering of stream for (1) interstream synchronization and (2) synchronization to main-
tain causality between the events. The synchronization at multimedia programming level
is achieved by (1) concurrently rendering multiple streams for overlapping events, (2) align-
ing the stream-start and stream-ends of concurrent streams, (3) providing relative time-
delays between the stream-starts or stream-ends of the two overlapping concurrent streams
describing two different events, and (4) providing relative time-delays between the end of a
one stream and start of the next to render the streams sequentially. Figure 12.6 shows seven
classifications of synchronizing two media streams representing separate events.

The figures are self-explanatory. All seven alignments are expressed using a combination
of (1) constructs that spawn multimedia streams concurrently, (2) constructs that impose
sequential rendering of multimedia streams, and (3) constructs that introduce delays in
starting the second stream from the start (or end) of the first stream. The programming

Incoming
media

Incoming media
and rendering

Only
rendering

Time

Bu
ffe

r m
em

or
y

FIGURE 12.5 Buffer requirements during rendering.

468    ◾    Introduction to Programming Language

constructs of multimedia languages Alice and SMIL support three techniques: (1) associat-
ing a name with a media stream, (2) specification of delay-time, and (3) concurrent spawn-
ing of media stream to provide event-level synchronization.

Example 12.9

Let us take a scenario where a news clip is being rendered. Before rendering news,
an advertisement has to be rendered. After rendering the advertisement, music is
played for 2 seconds, and then the news clip is rendered. Both news and advertise-
ment have two concurrent streams: video stream and audio stream. The overall ren-
dering is illustrated in Figure 12.7. Stream 1 and Stream 2 correspond to the scenario
in Figure 12.6f. The rendering of stream 3 corresponds to scenario in Figure 12.6a.
Streams 4 and 5 are rendered concurrently and are aligned with respect to stream 3,
corresponding to the scenario in Figure 12.6a.

12.5 MULTIMEDIA PROGRAMMING CONSTRUCTS
Objects are constructed programmatically by specifying the graph-relationships between
the constituent subobjects and their transformations. Animation of 2D images such as
background is supported by incrementally changing the mosaics that change, and the

Stream 1 (audio)

Stream 2 (video)
Stream 3

Stream 4 (audio)

Stream 5 (video)

Start End

FIGURE 12.7 Multimedia stream synchronization.

Stream1
Stream1

Stream1

Stream2

Stream2

Stream2

Stream1

Stream1

Δt1

Δt

Δt

Δt2

Stream2

Stream2

(a)

(d)

(f) (g)

(b) (c)

(e)
Stream2Stream1

Stream2

Stream1

FIGURE 12.6 Multiple streams interval-alignments: (a) nonoverlapping, (b) overlapping, (c) aligned
at starts, (d) delayed and sequential, (e) aligned at ends, (f) fully aligned at both ends, and (g) time
difference at both ends.

Web and Multimedia Programming Paradigms    ◾    469  

animation of 3D objects is achieved by transformation operations such as translation, rota-
tion, shearing, and their combinations. The subobjects can be in a local database or can be
downloaded from the web by providing the URLs. Thus a multimedia language should
(1) support a library of basic 3D objects; (2) provide capability to combine basic objects to
form a complex object; and (3) provide capability to download objects by specifying URLs
if it is a web-based multimedia language like X3D.

A scene is created by placing multiple objects in a relative position to each other. The
interaction between objects is modeled by providing causality of actions. Many animated
actions are repetitive in nature and need iterative constructs in the program. For example,
a walking operation is repetitive in nature and can be broken into a sequence of repeat
 operations, as shown below, using a pseudo code.

loop
{lift left leg; move left leg forward; put the left leg down;

lift right leg; move right leg forward; put the right leg down;
}

Each of the six actions corresponds to some transformation of the original 3D objects. If
two actions are being done concurrently, then they should be supported using concurrent
constructs.

The motion of objects is modeled either by (1) program transformation as in Alice,
VRML, and X3D or (2) rendering multimedia streams with constructs for concurrency
and delay as in Synchronized Multimedia Integration Language (SMIL). Concurrency is
implemented by constructs like parbegin-parend pair.

Example 12.10

The streams in Figure 12.6 can be rendered using the following parbegin-parend con-
struct. The program uses SMIL syntax.

<seq>
 <par> <-- following actions begin concurrently -->
 <video xml:id = stream1 src = video-stream1.mpg/>
 <video xml:id = stream2 src = video-stream2.mpg/>
 </par>
 <-- sequentially execute after stream1 and stream 2 -->
 <video xml:id = stream3 src = video-stream3.mpg/>
 <par>
 <video xml:id = stream4 src = video-stream4.mpg>
 <video xml:id = stream4 src = video-stream5.mpg>
 </par>
</seq>

470    ◾    Introduction to Programming Language

An action can also include a repetitive rendering of a media stream. For example,
background music is 2 seconds long. However, while a video is being shown the back-
ground, music may be continuously played for more than two seconds using an itera-
tive loop.

12.5.1 Synchronization Constructs

Rendering a multimedia stream can be restricted to time-interval or start with a delay from
the start, or from the start of a specific stream, or from the end of a specific stream. This type
of limiting the time or providing delay is necessary for the synchronization of media streams.

Example 12.11

Let us take an example of starting a background music that repeats itself four times.
There is an event button, “SlideStart” that activates an event upon clicking. The text
source starts from the beginning. The music starts from the beginning and ends after
the event button “SlideStart” is clicked. The music file has a smaller duration and
repeats itself almost four times before it stops. The music also ends after the event
button “SlideStart” is activated. After the music ends, the video starts. The lecture
starts two seconds after the slide starts. The example involves concurrency, event-
based activation, and synchronization of the multiple streams. The whole activity
runs for at most 20 seconds. The code is given below in SMIL syntax.

<par dur = “20s”>

<text src = “slide1.html”/>
<audio xml:id = “music” src = “music.au” repeatcount = 4
 end = “slideStart.activateEvent”/>
<video xml:id = “video1” src = “video1.mpg”,
 begin = “music. end” duration = “10s”>
<audio xml:id = “lecture1” src = “audio1.au”
 begin = “video1. begin + 2s” >
</par>

12.6 CASE STUDY
We have already discussed XML and extensions of XML such as XAML and AJAX briefly. In
this section, we will discuss three multimedia languages: (1) Alice that works on synthesized 3D
objects using transformation operations, (2) SMIL that is an XML-based multimedia language
for web-based stream rendering and its synchronization, (3) Javascript, and (4) C# constructs
that are related to visual display and multimedia programming for .NET programming.

12.6.1 Abstractions and Programming in Alice

Alice is an object-oriented event-based 3D multimedia language used to teach multimedia
programming as a first course in programming using animation of synthesized 3D objects
and synthesized scenes. It has a library for 3D classes, and an instance of these classes

Web and Multimedia Programming Paradigms    ◾    471  

becomes a 3D media object that can be placed in a user-constructed scene. It supports
concurrency and sequential execution of methods. Multiple media objects can act concur-
rently. An action is a method within a media object. The language uses user-transparent
transformation techniques to model animation of 3D objects.

The language supports (1) variables, functions, strings, lists, and arrays in data
 abstractions; (2) nested if-then-else constructs, definite iteration: loop <m> time, infinite-
loops, while-loops, temporal-loops, function calls, Boolean functions, recursive func-
tions, message-passing capability to user, and ask functions to interact with the user; and
(3) capability to create new class after designing an object with customized methods. The
elements can be selected randomly from an array. The loop construct can be for a spe-
cific duration (including an indefinite duration) or specific number of times. The duration
can be defined by an event or action. For example, one can write a condition ‘while a key
is pressed’ followed by an action. The object will walk until the key is released. Actions
can be performed concurrently using a menu-command Do together. Similarly, the com-
mand ‘Do in order’ executes the methods corresponding to actions in a sequential order.
An action can be applied on all the objects in the scene or a group of objects. A new method
can be defined, or old methods can be altered. The new class can be saved for future use.

For multimedia animation, it supports (1) the ability to insert and add an object in the
scene; (2) creating different background effects related to lighting conditions such as fog
and brightness; (3) setting visibility of an object; (4) grouping objects to move together, or
associating an object with other moving object; (5) moving around an object (including
invisible objects); (6) capturing animated snapshots as poses and later using those poses;
(7) changing the camera position to get a different view of the scene; and (8) performing
transformation of one or more 3D objects such as translation and rotation.

To develop an Alice program, a programmer takes following steps: (1) defines a story in nat-
ural language; (2) identifies the major scenes in a story because a story is modeled as happen-
ings in a sequence of major scenes; (3) describes a scene background and objects; (4) adds initial
objects in the scene and locate their proper position in the scene; (5) writes pseudo code for
various actions using a library of actions; (6) adds program actions on the objects or group of
objects and (7) changes the parameter values for the scene and object actions. The actions could
be about movement of objects and object-parts independently or with respect to other objects.
Scene attributes are lighting affect, camera view, skin texture, background sound or music, etc.

An object has six basic motions: go left, go right, move back, move forward, go up, and
go down. That covers positive and negative directions from the current position in all
three axes. A motion is defined with respect to the center of the object or the orientation
of the object. The center of the object is defined as its center of gravity, point of contact
with the earth, or point of contact with a hinge. Basic motions are grouped to derive com-
plex motions such as translation, rolling, rotation about its own axis, or revolution around
another object while keeping a user-defined distance.

Alice has a graphical interface for scene layout and program development. The graphi-
cal interface allows adding new objects in the scene, defining and altering properties and
actions of an object, and defining variables and control abstractions involving objects
independently or a group of objects. A layout of the graphics editor is given in Figure 12.8.

472    ◾    Introduction to Programming Language

The tool bar contains buttons like File, Edit, Tools, and Help. The button Play runs a
created method. The world description contains attributes like camera-position, light-
condition, ground, class directory, and the objects in the scene. The window below the
world description window describes available methods in a class and provides a button
that facilitates creation of a user-defined method. The window-space ‘scene editor’ allows
addition of new objects and transformation of objects—such as rotation, orientation, and
 translation—to place the object at a particular location in a specific orientation. The event
editor describes the events after the action starts. The methods editor allows the definition
of a new method or the modification of an existing method. The control flow abstraction
tabs are a group of buttons that facilitate writing the template of the constructs. The control
flow abstractions are ‘Do in order’, ‘Do together’, if-then-else, loop, ‘ forall in order’,’ ‘ forall
together’, wait, and print. Each control abstraction has multiple attributes that are shown
in the window when the corresponding instruction button is clicked.

12.6.2 Abstractions and Programming in SMIL

SMIL is an XML-based web multimedia language that can be used for demand-driven
interactive multimedia events to be rendered at the client-end. SMIL is used for on-demand
newscasts, advertisement, multimedia interview, multimedia instructions and lectures,
and e-books over the Internet.

SMIL has capability to (1) alter the attributes of a region repeatedly over a period of
time, (2) provide synchronization of multimedia streams, (3) render multiple streams
concurrently, sequentially or mutually exclusively, (4) delay the rendering of stream, (5)
invoke methods based on an event, (6) repeatedly render a stream a fixed number of
times or for a particular duration, and (7) bind a stream with an identifier that can be
used later to refer to the stream. Like XML, SMIL stores meta-information in head-part
and SMIL code in body-part. Sample code for SMIL is given in Examples 12.10 and 12.11.
SMIL code can be interleaved with XML code using a container ‘smil:’ as shown in the
example below:

Alice Logo
Toolbar

Scene editor
World description

Play Undo Redo

Event editor

Methods editorCreate new
method

Control-abstraction buttons
Built-in and saved methods

Properties/methods/functions

FIGURE 12.8 Schematic of graphics editor for program development.

Web and Multimedia Programming Paradigms    ◾    473  

<ol smil:timecontainer = “seq” smil:repeatDur = ”infinite”>
<li smil:timeAction = ”display” smil:dur = ”10s”> Programming
 Languages
<li smil:timeAction = ”display” smil:dur = ”5s”> Publisher:
 CRC Press

Each stream can be bound with an identifier, and this identifier can be used later in other
stream definitions to align the begin and end of a stream with respect to other streams.
For example, a stream can begin with a delay after the begin and end of another stream
using the attribute value ‘BEGIN’ = <stream-id> + <delay>. The delay can be added as well
as subtracted. To animate an attribute, the syntax used is ‘<’ animate attribute Name =
< attribute> from = <from-value> to = <to-value> begin = <begin-value> dur = <dur-
value> ‘>.’ The command changes the value of the attribute from <from-value> to <to-value>
starting from the time given by <begin-value> for a duration given by the <dur-value>.

In addition to the <par> … </par> and <seq> … </seq> combination described above,
SMIL also supports the mutually exclusive concurrent rendering of a media stream using a
tag-pair <excl> … <excl/>. Any activity embedded within <excl> has similar semantics to
<par>, with an additional restriction that only one embedded media-stream is rendered at
a time. If any other stream is rendered, the currently executing stream is suspended.

SMIL supports low-level synchronization of video and audio segments using an attribute
syncbehavior. The attribute syncbehavior can take four alternative modes: locked, canslip,
default, and independent. Under locked mode, all the embedded elements inside the <par>
tag are forced to wait for other media-streams if any of the media-segment is delayed in
communication. Under canSlip mode, the associated element can slip with respect to other
streams under the same <par> tag. Under independent mode, the associated element is
independent of other media streams. Under the default mode, the behavior of the associ-
ated element is determined by the value of the syncBehaviorDefault attribute.

SMIL also has a powerful space layout editor and a graphical editor to specify and visu-
alize the stream order and the intervals. The space layout is declared in the SMIL head and
is associated with an identifier so that it can be referenced in the body area to display dif-
ferent multimedia in different regions within a space layout. An abstract syntax for space
layout is as follows:

<layout> ::= ‘<’ layout ‘ >’
 ‘<’ root-layout width = <value>
 height = <value> id = <identifier> ‘/>’
 {‘<’ region id = <identifier> [left = <value>]
 ‘ ‘ [top = <value>]
 width = <value> height = <value>
 [z-index = <value>] ‘/> ‘
 }*
 ‘</’ layout ‘>’
<value> ::= ‘”’ <integer> ‘”’ | ‘”’ <integer> ‘%”’

474    ◾    Introduction to Programming Language

The abstract syntax states that there is a root-layout followed by zero or more embedded
regions. Each region is a separate window where a different multimedia stream is rendered.
The region is specified by the reference-coordinate of the leftmost top-most point, followed
by the height and width of the rectangular region. The root-layout and the regions are
bound to an identifier, so that they can be referenced in the media stream for rendering
purpose. The reference in the media stream is ‘region-id = <identifier> . The z-index pro-
vides depth of the display. The stream with the highest z-value shows on the screen, in case
there is an overlap of the regions.

12.6.3 Abstractions and Web Programming in Javascript

Javascript is an object-based web programming language with the capability to treat
graphics window as an object. An object has a hierarchy and within a window object
multiple elements are embedded such as navigation, document, history, frame, java pack-
ages, location, and various fields within the rendering window. The document element
contains many subelements such as forms; anchors; media objects such as image, video,
and audio; and applets. Forms include multiple elements such as password, button, tex-
tarea, reset, submit, and checkbox. Any subelement can be accessed using the hierarchy
<root-node>. <element-node>.<subelement-node>. Sibling nodes can be accessed using the
parent-nodes.

Javascript supports many data and control abstractions, as summarized in Appendices
II and III. Briefly, Javascript supports multiple basic data types such as Boolean, integer,
character, float, objects, arrays, and strings. Arrays are objects too. Strings are treated as
immutable objects. Javascript supports multiple control abstractions, such as if-then-else,
case statement, for-loop, while-loop, functions, and exception handling. Through the use of
applets and documents as objects, it supports web-based mobile computing. The major use
of Javascript has been to provide a client-end interface for web-computing. It has been used
for small scripts for verifying user information and for formatting data for display. It passes
parameter using call-by-value for copying basic data types and copying the reference of the
complex objects. It uses call-by-reference to pass the reference of an object.

Javascript also supports event-based programming based on mouse actions and
actions on other objects through built-in methods such as onClick(), onBlur(), onFocus(),
onLoad(), onMouseMove(), onMouseOver(), onreset(), onLoad(), checkbox.click(), check-
box.blur(), and checkbox.onfocus(). Using these event-methods and windows-objects, any
field inside the form such as font, buttons, and checkbox can be verified and modified
dynamically based on some condition such as time of day.

Javascript can be embedded in any XML and HTML documents using the <script> tag
either as a file or as an embedded code. Javascript can also interface with Java programs
and use Java packages. The general format for embedding Javascript code in XML is as
follows:

<script Language = “Javascript”>
 //Javascript code
</script >

Web and Multimedia Programming Paradigms    ◾    475  

A Javascript file can be included using the following format:

<script src = “<filename>.js”/>

12.6.4 Abstractions and Web Programming in C#

C# is a high-level object-oriented language preferred for .NET programming, because of
its extensive support for graphics objects such as images and 3D objects, and their capa-
bility to be embedded in XML document through XAML. C# has extensive support for
the code development in Visual Studio software that enhances programmers’ productiv-
ity. Like Javascript, C# also supports client-end computation, verification, and integration
capability with XML. In addition, it supports inheritance and class library, and multiple
threads for concurrent programming. It also supports a windows framework as an object
hierarchy, as described in the preceding Section 12.6.3 related to Javascript. It is a com-
plete event-based programming language, and, like Javascript, supports many event-based
methods for mouse actions and for various form-based objects, such as check-box, buttons,
or scroll-bar. It also supports user-defined events. The event actions can be embedded in an
XML document similar to Javascript embedding, and the corresponding event-method is
activated when that part of the XML file is executed.

C# supports almost a complete set of various data abstractions and control abstractions,
as summarized in Appendices II and III. Briefly, C# supports all basic data types such as
integer; Boolean; floating point; strings; class inheritance; objects; and class polymorphism
including generics. In control abstraction, it supports if-then-else statement, while-loop,
for-loop, iterators, functions, threads, mutual exclusion, and exception handling. It has
very rich class libraries to handle media objects. It uses call-by-reference to pass the refer-
ence of arrays and call-by-value to copy the reference of objects in heap and to pass the
values of the basic types.

12.7 SUMMARY
With the increasing ubiquity of the Internet, web and multimedia programming have
become popular because of the need to share the resources, computer power, processed
data and better visualization. A typical web programming paradigm integrates traditional
programming with Internet-based resource and data sharing. Code and data mobility is a
common theme in Internet-based mobile computing models. Mobile code is used to avoid
the overhead of transmission of very large data.

There are four models that utilize code or data mobility: client-server, remote execution,
code–on-demand, and agent migration. In a client-server model, a client makes a service
request to a server. The server performs the service and sends the results back to the cli-
ent. The remote execution model reduces the load on a processor by executing the code
on another processor. In the code-on-demand model, the server sends the code to the
client-end. The code is executed on the client-end using the client’s resources and data.
Applet-based programming in web-scripting languages uses this approach. This approach
significantly reduces the data transmission overhead. The last approach is agent migration,

476    ◾    Introduction to Programming Language

where a mobile code traverses from one node to another node, sending information back
to the originating node, based on privileges and authentication.

Mobile computing has many issues such as handling heterogeneity of a net-
work, efficiency issues of transmitting and interpreting the code, and security issues.
Heterogeneity problems have been handled by translating the programs in different lan-
guages to a common low-level instruction set that is executed using a virtual machine or
using JIT compilation. Two approaches are there: (1) JVM used in Java and (2) CLR used
in .Net platform of Microsoft. The issue of execution-efficiency has been handled by JIT
compilation. The safety issue is quite complex, because both mobile code and host proces-
sor can be malicious. Web-based programming uses either (1) a code-on-demand model
such as applet and web script languages and (2) the client-server model. In either case, the
requesting node (client) has to protect itself against malicious code or potential malicious
code embedded inside data. In order to protect against malicious code, multiple steps are
taken such as (1) ensuring that the mobile code originated from the actual authenticated
node; (2) restricting the mobile code to a limited access depending upon the privileges;
(3) accepting only the signed code; (4) verifying that the code is safe and does not try to
modify classloader or the security manager; and (5) isolating the potentially unsafe-code
using sandboxing. Sandboxing is a technique that restricts the access to the address space
of the safe code either by checking the addresses accessed by potentially unsafe-code or by
restricting the use of higher order bits in address mechanism.

HTML was the first web-based visualization language that used tags to format the
data. The tags corresponded to built-in library routines in the browser that are invoked
to render the formatted data in a user-friendly way. The browser is connected to CGI at
the server-end. CGI formats the retrieved data from the server to HTML format that is
displayed by the browser. However, HTML is limited by (1) the lack of support for user-
defined tags and (2) fixed format of attributes that cannot be easily updated. Styling sheet
language such as CSS and XSLT removed the limitation of fixed format of documents by
keeping the attributes associated with HTML tags in a separate file. The CSS file contain-
ing tag-attributes is easily modifiable by the user and can be used to transform the original
HTML and XML file using XSLT.

XML removed the restriction of rigid HTML tags by allowing user-defined tags. The
use of user-defined tags allowed a complex hierarchical structure to be represented as a flat
structure. XML became a language of choice for Internet-based information interchange.
Relational and nested databases are easily interfaced with XML format to transmit the
information to remote nodes. Objects in 3D can be modeled in XML using a combination
of structure-graph encoded in the XML document and the URI of the subobjects. However,
XML lacked the capability of computation-based interactions and event-based invocation.
XML programs are rather large, which can cause errors if the structure is not correctly
defined. DTD—document type definition—is used to describe the structure associated
with tags. DTD includes (1) the definition of an element that specifies the embedded sub-
elements, (2) attribute lists and their possible values, (3) entities and their definitions, and
(4) parameter definitions. A structure is valid if it follows the DTD. Parts of XML that
interfaces with web programming languages and comments is not controlled by DTD.

Web and Multimedia Programming Paradigms    ◾    477  

Many web-scripting languages like PhP, Javascript, C#, and ASP were developed to
interface with XML. XML was augmented to provide computation in two ways: (1) by
embedding the control abstractions within XML using XML tags and (2) by embedding
the web script using the <script …> </script> tag that called a function written into a
scripting language. There are many languages such as Javascript, PhP, ASP, and C# that
use this approach to embed computational capability in an XML file. The XML forms and
history are treated as objects, and web scripts can be called as methods of the objects. This
integration allows event-based programming, and methods related to mouse-movement
and mouse-click can be called through XML.

The implementation of web-based languages requires compilation to an intermediate
platform independent code to handle the heterogeneity problem. Java programs are com-
piled to JVM instruction set, and languages like C#, and Visual C++ are compiled to CIL.
Both these codes can be either interpreted or compiled at run time to native code using JIT
compiler. JVM is an object-oriented abstract instruction set for the interpretation of Java
programs. JVM is a zero address machine that makes code portable across all kinds of archi-
tectures. The disadvantage is that most of the computers are two-or three-address machines.
Instructions with more addresses are computationally more efficient. JVM supports instruc-
tions to load, store, compute, swap, conditional jump to an instruction, unconditional jump
to an instruction, jump to a subroutine, set up references to heap-objects, return values, and
call special methods such as initialization and destruction of objects. The major overhead
of JVM is loading and storing the values from the stack to local variables and heap. JIT
compiler rearranges the code at run time, identifies the segment of codes that are frequently
executed, and transforms them to the machine instructions of the native machines. JIT-
compiler has an overhead of dynamic compilation. To reduce this overhead, only frequently
executed and computationally intensive parts of the JVM code are JIT-compiled.

Multimedia rendering and web-based programming are closely interleaved. One of
the aspects of web-based programming languages is to retrieve multimedia content over
the web and render it at the client-end. Multimedia consists of a combination of multiple
media objects such as text sound, image, or video. A real-world scene consists of multiple
interacting objects, and the action of each object can be modeled as a synchronized group
of streams of different media. These media may be stored at one or more URLs.

A real-world scene is captured using sensors that are time-stamped for synchronization,
archived, and then transmitted over the Internet. The smallest unit of video rendering is
called a frame. A frame is a snapshot of the video, and 30 frames per second are needed to
give a perception of continuous motion. The packets are sent in a different order than the
rendering order to compensate for the extra time taken to transmit larger images. Owing
to traffic congestion and transmission order and different packets taking different routes,
the packets are reassembled at the client-end and are sorted on time-stamp order before
rendering. Lost packets are requested again or reconstructed by extrapolating adjacent
frames. The last step requires electronic devices to render different media. Owing to the
use of various electronic devices involved in the recording, transmission, and rendering,
multimedia production is never completely synchronized. If the rendering is not within a
threshold limit, then it causes perceptual distortion.

478    ◾    Introduction to Programming Language

Different media are archived and transmitted over the Internet using different formats.
Image formats require lot of compression. Formats also carry meta-information such as palette
of actual colors used in the frame, color-coding scheme, and the mapping between the index of
color used and the index of true colors. Mpeg video is sent using three types of frames: I-frame,
P-frame, and B-frame. I-frame contains complete spatial information, while P-frame and
B-frame contain only motion vector of displaced mosaics. Sound format contains the rate of
sampling, channels, resolution, and bytes that show the amplitude of the sampled waveforms.

Synchronization in multimedia is at multiple levels. There are three major
 synchroni zation levels: (1) synchronization because of causality of events; (2) interstream
 synchronization—synchronization between multiple media streams related to activity in
the same object at the same time; and (3) intrastream synchronization— synchronization
of frames within the same media stream. The synchronization because of causality of
events is application layer synchronization and expressed by the programmers in multi-
media programming languages. The synchronization is expressed by relating the start and
end of the streams using (1) delay mechanism and (2) aligning the start or the end of the
two streams using concurrency or sequential execution. A media stream can be repeated
multiple times using repeat-counts.

Multimedia programming languages synthesize complex 3D graphical objects pro-
grammatically using: (1) transformations on basic 3D objects such as cylinders, cones,
cubes, their combinations, and a library of already developed 3D objects or (2) use media
streams with synchronization to display actions in a synchronized manner.

Alice is an educational multimedia programming language that synthesizes multimedia
objects using a library of 3D objects, and it uses control abstractions along with action attri-
butes to model user-defined animation and interaction with other objects. Control abstrac-
tions supported by Alice are (1) loop for certain duration; (2) loop for a certain number of
times; (3) if-then-else statements; (4) performing multiple actions concurrently on one object
such as bird fluttering both its wings together; and (5) performing actions sequentially. New
methods can be built, and library methods can be modified to create new class definitions
that are saved for future use. Alice uses a graphical interface for program development.

SMIL is another XML-based programming language that uses multimedia streams for
demand-based multimedia rendering. XML embeds SMIL commands for SMIL-based
multimedia rendering. SMIL supports concurrent rendering of multimedia streams,
sequential rendering of multimedia streams, mutually exclusive rendering of multimedia
streams, looping a stream multiple times by duration and by count, event-based rendering,
and provides for synchronization between streams by using a delay mechanism. In addi-
tion it allows the binding of an identifier with every media stream to be utilized for refer-
ences during synchronization of media streams.

Javascript and C# are object-oriented event-based multimedia programming languages
that treat forms and images as objects to provide animation and render multimedia at the
same time. Both languages, especially C#, have extensive event-based programming fea-
tures such as the use of buttons, mouse actions, signals, and clicking on a specified region.
C# also has concurrent thread-based programming capability and supports a very rich
library for event-based programming.

Web and Multimedia Programming Paradigms    ◾    479  

12.8 ASSESSMENT
12.8.1 Concepts and Definitions

3D object modeling; Agent migration model; Ajax; Alice; applet; B-frame; bytecode; cas-
cading styling sheet; client; client-server model; code migration; code mobility; code-
on-demand model; code verification; CGI; common language interface; data migration;
data mobility; Document Type Definition (DTD); event; fault-isolation; heterogeneity;
homogenous; HTML; I-frame; interoperability; intrastream synchronization; inter-
stream synchronization; Java security; JVM; logical clock; malicious code; malicious
host; mobility; mosaic; motion vector; MPEG; multimedia; multimedia programming;
multimedia rendering; multimedia stream; multimedia synchronization; .NET pro-
gramming, object-graph; P-frame; remote evaluation; safe-interpreter; safety; sandbox-
ing; scene; server; SMIL; Soap; stream interval alignment; style sheet; web programming;
web scripting; web synchronization; World Wide Web; X3D; XAML; XHTML; XML;
XSL; XSLT; VRML.

12.8.2 Problem Solving

 1. Write an HTML program to publish your resume on the web using a styling sheet
and explain the use of various tags.

 2. Write an XML program to represent a table that has four legs and a flat top with a
sphere on top of the table at a specific location. Use identifiers for the leg definition
for the reuse.

 3. Write a DTD for an XML file that checks for 4 × 4 tables of integer values. The table
represents grades taken by four students, each taking at most four courses in a semes-
ter. Use your own tags.

 4. Write an Alice program that makes a person throw a ball up in the air.

 5. Write a SMIL program to render an interview of a person by a news announcer. The
announcer first introduces the person for 10 seconds. After the introduction, the
announcer asks a question, followed by the person’s answer. The announcer takes
less than 10 seconds to ask a question, and the person is given almost 60 seconds to
answer. The process is repeated for 20 minutes.

 6. Write a C# program to draw a rectangle and a square, and then color the square red.

 7. Embed a script: Javascript or PhP or C# in an XML program that draws a 3 × 3 matrix
and calls a function-based upon the event mouseover to color the table box, and then
leave the color permanently colored if the mouse is clicked.

12.8.3 Extended Response

 8. What is the need of virtual machines in web-based programming? Explain.

 9. What are the security issues with code migration? Explain.

480    ◾    Introduction to Programming Language

 10. Explain the issues with code and data migration in mobile computing. How are they
handled.

 11. What is the need for JIT compilers? Describe the salient features of JIT compilers.

 12. Explain the techniques using examples to integrate computing with XML-based
representations.

 13. Explain various techniques needed to render causality and synchronization in SMIL.

 14. Explain the different classes of instructions in JVM.

 15. Explain applets and how are they invoked from XML using an example.

 16. What is CGI, and how it is related to web browsing and Ajax? Explain using a figure.

 17. Discuss the features in SMIL that can be improved to allow for the declaration of
synthetic objects such as in Alice, and to allow for their animation.

 18. Read the Internet about sandboxing, and write how potentially unsafe codes are
 contained using sandboxing.

 19. Read the Internet about Java security model, and discuss.

 20. Read the Internet about PhP constructs, and compare them with Javascript constructs.

FURTHER READING
Bulterman, Dick, Jansen, Jack, Cesar, Pablo, Bulterman, Dick, Jansen, Jack, Cesar, Pablo, Mullender,

Sjoerd, Hyche, Eric, DeMeglio, Marisa, Quint, Julien, Kawamura, Hiroshi, Weck, Daniel, Pañeda,
Xabiel G., Melendi, David, Cruz-Lara, Samuel, Hanclik, Marcin, Zucker, Daniel F., and Michel,
Thierry. Synchronized Multimedia Integration Language (SMIL 3.0), W3C Recommendation.
December 2008. Available at http://www.w3.org/TR/2008/REC-SMIL3-20081201/

Conway, Matthew J. Alice: Easy-to-Learn 3D Scripting for Novices, Ph D. dissertation. Department of
Computer Science. Charlottesville, VA: University of Virginia, 1997. Available at http://www.
alice.org/publications/ConwayDissertation.PDF

Cramer, Timothy, Friedman, Richard, Miller, Terrence, Seberger, David, Wilson, Robert and
Wocczko, Mario. “Compiling Java just in time.” IEEE Micro. 17(3). May/June 1997. 36–43.

Flanagan, David. Javascript: The Definitive Guide (6th edition). Sebastopol, CA: O’Reilly & Associates
Inc. 2011.

Fuggetta, Alfonso, Picco, Gian P., and Vigna, Giovanni. “Understanding code mobility.” IEEE
Transactions of Software Engineering, (24)5. 1998. 1–21.

Gong, Li. “Java security: Present and near future.” IEEE Micro, 17(3). 1997. 14–19.
Guercio, A., Simoes, B., and Bansal, Arvind K. “Towards large scale voice activated dynamic and

interactive Internet based animation and modeling.” In Proceedings of the IASTED International
Conference on Software Engineering and Applications. 2004. 749–754.

Hitzler, Pascal, Krotzsch, Markus, and Rudolph, Sebastian. Foundations of Semantic Web Technologies.
BocaRaton, FL: Chapman and Hall/CRC Press. 2009.

Kagnas, Kari and Roning, Juha. “Using code mobility to create ubiquitous and active augmented real-
ity in mobile computing.” In Proceeding of the 5th Annual ACM/IEEE International Conference
on Mobile Computing and Networking, Seattle, WA. 1999. 48–58.

Krall, Andreas. “Efficient JavaVM just-in-time compilation.” In Proceedings of the International
Conference on Parallel Architectures and Compilation Techniques, Paris, France. 1998. 205–213.

Web and Multimedia Programming Paradigms    ◾    481  

Lindholm, Tim, Yellin, Frank, Bracha, Gillad, and Buckley, Alex. The JavaTM Virtual Machine
Specification, Java SE. 7th edition. Oracle America, Redwood City, CA. Available at http://docs.
oracle.com/javase/specs/jvms/se7/jvms7.pdf.

MacDonald, Matthew. Pro WPF 4.5 in C# 2012: Windows Presentation Foundation in .NET 4.5.
New York, NY: Apress. 2012.

Moore, Jonathan T. “Mobile code security techniques,” Technical Report MS-CIS-98-28. Computer
and Information Science Department, University of Pennsylvania. Pennsylvania, USA. 1998.

Roman, Gruia-Catalin, Picco, Gian P., and Murphy, Amy L. “Software engineering and mobility: A
roadmap.” The Future of Software Engineering. Ed. A. Finkelstein. New York, NY: ACM Press.
2000. 241–258.

Sikos, Leslie. Web Standards: Mastering HTML5, CSS3, and XML. New York, NY: Apress. 2011.
Simoes, B. and Bansal, Arvind K. “Interactive 3D dynamic object based movies.” In Proceedings of the

Fifth International Conference on Internet Computing. 2004. Vol. II. 708–714.
Suganuma, Toshio, yasue, Toshiaki, Kawahito, Motohiro, Komatsu, Hidekai, and Nkatani, Toshio.

“Design and evaluation of dynamic optimizations for a Java just-in-time compiler.” ACM
Transactions of Programming Languages and Systems, 27(4). July 2005. 732–785.

Tanenbaum, Andrew and Steen, Marten van. Distributed Systems: Principles and Paradigms. 2nd
 edition. Upper Saddle River, NJ: Prentice Hall. 2007.

Thorn, Tommy. “Programming languages for mobile computing.” ACM Computing Surveys, (29)3.
1997. 213–239.

Troelson, Andrew. Pro C# 5.0 and the .NET 4.5 Platform (6th edition). New York, NY: Apress. 2012.
Wang, Paul S. Dynamic Web Programming and HTML5. Boca Raton, FL: Chapman and Hall/CRC

Press. 2012.

483

C h a p t e r 13

Other Programming
Paradigms

BACKGROUND CONCEPTS
Abstract model of computation (Section 2.4); Concurrent programming (Chapter 8); Logic
programming (Chapter 10); Object-oriented programming (Chapter 11); Code and data
mobility (Section 12.1).

This chapter shows programming paradigms that are becoming increasingly popular
with the increased ubiquitous use of the networked computers in our day-to-day activ-
ity. Computers are no more limited to problem-solving mode; computers are becoming
more interactive and have a lot more sensors to sense and to react. The mobile codes are
becoming intelligent and purposeful. These mobile codes perform useful activities at the
client-end and can migrate from one node to another in a network searching for the appro-
priate information. With the availability of inexpensive processors, modern-day super-
computers are actually a complex cluster of processors, where a grand challenge problem
can be solved by decomposing a task into simpler subtasks and mapping the subtasks on
different parts of the cluster. In earlier times, the number of multiple processors was quite
limited, and the languages developed were limited to parallelizing the loops or distribut-
ing the data on multiple processors. Most of the parallelization was limited to exploiting
data parallelism, such as in Parallel Fortran and Parallel C for SIMD machines. With the
advent of thread-based programming and message passing based on asynchronous com-
munications, new language constructs for concurrent programming have been developed.
With the multiprocessor-core machines becoming available in PCs and the number of pro-
cessors in supercomputers becoming very large, there is a need to develop languages that
facilitate the development of large software for ubiquitous human interaction with mini-
mum effort and be suitable for easy management and evolution as the technology changes.

Programs that support continuous interaction with the real world need to recognize
events and react to them. Large-scale software needs modular object-oriented programming.
Programming languages are integrating multiple programming paradigms. Agent-based

484    ◾    Introduction to Programming Language

computing is an execution of mobile (possibly intelligent), autonomous, reactive objects
that perform computation in a heterogenous address space and return the result to the
originating node. X10 and Chapel are two evolving multiparadigm languages for mas-
sive parallel supercomputers and integrate imperative programming, object-oriented pro-
gramming in addition to concurrent programming exploiting both data parallelism and
task parallelism. In this chapter, we will study event based programming, agent based pro-
gramming, high productivity programming for massive parallel computers, and synchronous
programming. Synchronous languages have been used to model activities that require a
signal and causality between various actions in a synchronized manner. There are many
applications of synchronous languages such as large-scale integrated logical circuit design.

13.1 EVENT-BASED PROGRAMMING
Till now we have been studying programming styles where the control flow is decided by
the programmer either using a single thread or multiple threads of control. In a procedural
input-driven model, the interaction of a program is directed by a programmer in input-
driven mode; unless a procedure requests to interact and accept the input data, there is no
interaction with the outside world.

In reality, a program that interacts with the real world ubiquitously has to continuously
keep registering the events that occur in the real world, match with the desired events, and
activate corresponding methods (or functions) in response to the desired event. The events
in the real world are asynchronous and nondeterministic and can occur in unpredictable
order. A program should be able to capture the events and react to process the events. It is
a program’s choice whether to take an action or ignore the event based on the state of the
system. However, the initiator of the computation is the signal from an event-source and
not the control thread.

Compared to procedural programming that provides tight coupling between objects,
event-based systems provide loose coupling to various objects; the control is decentral-
ized and event based. An object can be activated only if an event occurs; no specific thread
controls the events. An event may start a cascade of events, and these events can be nonde-
terministic depending upon the state of the system.

An event is characterized by a set of identifying features and may involve time-intervals
and a region where action occurs. For example, raining or snowing on a specific day and
time is an event; an accident is an event; a meeting of two or more people is an event; and
a tsunami is an event. Multiple buttons on a graphical dashboard are a source of events,
and pressing any button is an event. In terms of computer interaction with the real world
and the user, events can be (1) computer-related graphical interaction such as mouse-based
interaction, electronic brush related actions, or touch-screen related actions; (2) events
related to completion of an I/O activity; (3) Internet-related action such as loading or exit-
ing a website; (4) discrete event simulations; (5) pattern recognition in images, sound video
and gesture; and (6) sensor-based applications such as smart homes or modern automo-
biles that react to the surrounding objects or conditions. As computers become even more
ubiquitous, multimedia and gestures will play a major role in interacting with computers,
and actions will be taken in response to pattern matching.

Other Programming Paradigms    ◾    485  

An event is characterized by multiple attributes: attributes could be Boolean, or they
could be multivalued, or they could be real-valued. Attributes can be color, time, and loca-
tion (x, y, and z coordinates). Given N attributes, N-dimensional space is defined. An event
is a relevant region or a point in this N-dimensional space.

13.1.1 Event Model

There are five components in event-based programming: (1) event-source, (2) event-signal,
(3) event-listener and dispatcher, (4) event-handler, and (5) event-object. Given an event,
the event has to recognized, the significance of the event has to be established, and depend-
ing upon whether the event is a desired event, an action can be taken. An event-source gen-
erates an event-signal. For example, when a mouse is clicked on a hyperlink or a check-box,
the mouse is the event-source. An event-listener keeps sensing the various emissions and
keeps dispatching the characteristics of the captured signal as an argument to back-end
software that activates a user-defined event-handling program to invoke an action based
on the state of the system. An event-handler will access the characteristics of the event-
object as an object-field. Handling an event becomes complex if the events needs to share
a common resource or consume information from a common resource. That forces the
events to be ordered. Events can be prioritized based on chronology or privileges given to
them based on the nature of the events.

The event-handlers are implemented using anonymous objects and private inner
classes. Anonymous objects are not associated with variables, and inner classes are
embedded inside a class. The user does not have direct access to private inner classes.
Event handling includes the notion of an event adapter. An event-adapter is an inter-
face with empty methods corresponding to events. An event-adapter connects the
event- listener to the event-handler. These methods are overridden by the user-defined
event-handlers. Event-adapters are very useful when there are similar methods com-
ing out of the same event-source. For example, mouse is an event-source, and it has
multiple similar events such as mouse-clicked, mouse-moved, mouse-exited, etc. After
a mouse event is fired, mouse handler embedded inside the mouse-adapter class uses
inheritance to use mouse-related methods, and uses override to define the correspond-
ing user-defined method.

A real-world system can be modeled using a finite state machine, where the system
can be in different states. The state of the system is altered based on an input signal or
occurrence of an event. There are different events associated with each state. Each state
is modeled as an object, and the event-handler takes care of events that perform the state
transition. The new state and the action taken by the event-handler depend on the state and
the event. For example, if a mouse is not within a region, then clicking the mouse will not
have any effect. However, if it is hovering over a hyperlink or an object, then clicking the
mouse will have an action of loading the web page or rendering the object. A schematic of
the event-based model is given in Figure 13.1.

Figure 13.1 states that the listener keeps listening to the event-source. Once the gen-
erated signal is captured, event-listener dispatches the event to the proper event-handler
through the event-adapter. Depending upon the current system state, an event-handler

486    ◾    Introduction to Programming Language

takes an appropriate action on the application object, and the system moves to a new state.
Depending upon the new state, more actions can be taken even without any external sig-
nal. In graphical user interface (GUI) applications, there may be more potential events.
However, an event is discarded unless there is a corresponding event-handler.

The dispatcher sends the arguments to the event-handler. The individual fields in the
event-specific argument can be accessed as <event-argument>.<field-name>. The event-
handler may choose to use or not use an argument.

13.1.2 Developing an Event-Based Program

Many languages including Java, C#, Scala, and Javascript support event-based program-
ming. These languages when interfaced with XML and HTML also support triggering of
events from web documents. In this section, we will study developing an event-based pro-
gram through a mouse interaction program written in C#.

An event-based programming needs (1) the definition of the events and (2) linking of
the events to the event-handler that is invoked when an event is captured. There are two
para meters in an event-handler: sender and event-arguments. A form is a collection of
such objects. An object is created in the form on which the event-handler acts based on
the event. An event can be associated with multiple event-handlers, and multiple event-
handlers may be associated with an application object. Event-handler captures the event
arguments and executes the method. Once the main program is run, it starts the event-
handlers and event-listener.

In visual studio, a canvas (form) is painted with multiple objects each linked to the cor-
responding event-handlers. Visual studio has a graphics editor to (1) place the objects in
a form, (2) create event-handler template, and (3) to automatically generate the main pro-
gram that invokes the listener and the event-handler. Visual studio automatically trans-
lates the visual placement of the objects (on the form) into the textual commands. There
are three parts of the event-based code created by visual studio: (1) main program that
starts the event-handler and listener, (2) textual creation of the form containing the objects
based on the graphical placements of the objects inside the forms, and (3) class definition
containing methods for each event-handler.

Event listener
+

dispatcherSignal

Signal/action

Interaction with
event-handler

Interaction
with state

Event source

Event adapter

Event handler 1

Event adapter

Event handler N

Action
State change

Application object

Action

System state

FIGURE 13.1 Schematic of event-based model.

Other Programming Paradigms    ◾    487  

Example 13.1

Let us understand event-based programming using a simple example given in
Figures 13.2 through 13.5. The example illustrates many features of event-based pro-
gramming such as (1) creation of application objects, (2) dynamic updates of object
attributes, (3) linking of events with application objects, (4) state transitions, (5) update
of other objects’ attribute in response to an event generated by a different source,
(6) events generated merely because of state transition, and (7) use of reset button.

The text boxes and the reset button are painted using visual studio form-painter. The
textbox has many attributes such as size, font, background color, foreground color, and visi-
bility. The background color of two boxes was initially set to ‘cyan’ using the method reset
that was invoked by the method form_load which is invoked when the form is loaded for
the first time. The RESET button also has similar attributes. The RESET button displays the
text “RESET” in bold. The textboxes are named b1 and b2, and the RESET button is named
“RESET” for use in the event-handlers. There are many mouse and text related events that
can be associated with textboxes b1 and b2. Some of the events are mouseClicked, keyPress,
keyUp, keyDown, and textChanged. The overall painted form is illustrated in Figure 13.2.

The textbox b1 is bound to two events: mouseClicked and textChanged. The correspond-
ing event-handlers in the program are b1_mouseClicked(object sender, mouseEventArgs e)
and b1_textChanged(object sender, mouseEventArgs e). The argument sender is a reference
type of the event-source, and the parameter ‘e’ is an argument that carries the mouse-
movement-related properties such the as x- and y-coordinates of the current position of
the mouse.

Figures 13.3 through 13.5 together illustrate the code for the event-based program:
(1) Figure 13.3 shows the code for various event-handlers, (2) Figure 13.4 show the main pro-
gram, and (3) Figure 13.5 shows an object model of designed form. These codes are gener-
ated semi-automatically by the code generator in visual studio. Some of the redundant code

b1 b2

Textbox - b1 and b2
States – de�ned as attributes of b1 and b2

(1) Both boxes empty with cyan color
(2) b1: (X, green), b2: (empty, red)
(3) b1: (O, green), b2: (empty, red)
(4) b1: (X, green), b2: (X, yellow)
(5) b1: (O, green), b2: (X, yellow)
(6) b1: (X, green), b2: (O, yellow)
(7) b1: (O, green), b2: (O, yellow)
(8) b1: (X, green), b2: (X, red)
(9) b1: (O, green), b2: (X, red)

RESET

Painted form

Events
(1) Mouse-click on b1. Action: b1 toggles between ‘X’ and ‘O’, and b2 turns
 red
(2) Mouse-click on b2: Action: b2 toggles between ‘X’ and ‘O’, and b2 changes
 color to yellow
(3) Textchanged in b1: Action: b1 turns green
(4) Reset-click: Action: form is repainted and both textboxes are initialized
 to empty with cyan background color

FIGURE 13.2 Illustration of form and event.

488    ◾    Introduction to Programming Language

has been cleared up in this example, and some of the code for setting up attributes of text-
boxes and the reset button, and the form painting has been omitted for the sake of clarity.
The main program starts a new thread that creates the new form, as shown in Figure 13.4.
The object Form1 is created and initialized by the method initializeComponent that sets
up the attributes in the object model of the form, and paints the form on the window. Code
for painting and setting up the attributes of the textboxes and reset button has been omitted.

using System;
using System.Windows.Forms;

namespace CSharpEvents
{static class Program
 {[STAThread]
 static void Main()
 {Application.Run(new Form1());}
 }
}

FIGURE 13.4 Main program running a thread for new form-object.

 using System;
 using System.Drawing; // needed for color attribute and drawings
 using System.Windows.Forms; // needed for forms

 namespace CSharpEvents
 {public partial class Form1 : Form
 {int turn1 = 0; int turn2 = 0;
 public Form1()
 {InitializeComponent();}

 private void b1_MouseClicked(object sender, MouseEventArgs e)
 {if (turn1 % 2 == 0)
 {b1.Text = “X”; b2.BackColor = Color.Red;}
 else {b1.Text = “O”; b2.BackColor = Color.Red;}
 turn1++;
 }

 private void b1_TextChanged(object sender, EventArgs e)
 {b1.BackColor = Color.Green;}

 private void b2_Mouse_Clicked(object sender, MouseEventArgs e)
 {if (turn2 % 2 == 0)
 {b2.Text = “X”; b2.BackColor = Color.Yellow; turn2++;}
 else{b2.Text = “O”; b2.BackColor = Color.Yellow; turn2++;}
 }

 private void RESET_Clicked(object sender, EventArgs e)
 {reset();}

 private void Form1_Paint(object sender, PaintEventArgs e)
 {}

 private void Form1_Load(object sender, EventArgs e)
 {reset();}

 void reset()
 {turn1 = 0; turn2 = 0;
 b1.Text = “ “; b1.BackColor = Color.Cyan;
 b2.Text = “ “; b2.BackColor = Color.Cyan;
 invalidate();
 }
 }
 }

FIGURE 13.3 Illustration of event-handler definitions.

Other Programming Paradigms    ◾    489  

The arguments are event-specific. The textbox b2 is bound to b2_mouseClicked(object
sender, mouseEventArgs e). The event-handler for the reset button is reset_Clicked().
Figure 13.2 describes all the possible states of the form, the events, and the corresponding
actions. Briefly, when mouse is clicked on textbox b1, it toggles the text between ‘X’ and ‘O’,
and changes the color of the textbox b2 to ‘red’ as shown in the code of the event-handler b1_
MouseClicked. When the text changes, the state has changed too, and an event textChaged
is generated for the textbox b1. The event-handler b1_TextChanged changes the background
color of the textbox b1 to green using the statement b1.BackColor = Color.Green. The event-
handler b2.MouseClicked toggles the text between ‘X’ and ‘O’, and changes the background
color of the textbox to yellow. The event-handler RESET_Clicked calls the public method
reset that changes the background colors of textboxes to cyan and clears up the text.

The code in Figure 13.5 shows the creation of objects textbox b1, textbox b2, and reset-
button RESET, and declares them private. After the form is created and painted on the
screen, the specific event-handlers respond to the dispatch sent by the event-listener. The
textboxes b1, b2, and RESET-button are treated as the fields of the current form, and they
are initialized using the corresponding methods.

13.2 AGENT-BASED PROGRAMMING
With the ubiquity of the World Wide Web, code and data have become mobile. Applets
are executed on remote computers using the resources of the remote computers. However,
applets in Java are not autonomous and do not have the capability to sense the environ-
ment around them and react to the environment based on some plan. The concept of applet
has been extended to agents for agent-based programming. An agent is an autonomous,
 reactive, adaptive, and migratory object. Autonomy means that agent is self-contained and
does not need the remote system utilities to finish its essential task. Reactivity means that
an agent can sense the environment around it and change its action based on its response

namespace cSharpEvents
{partial class Form1
 {#region Windows Form Designer generated code
 private void InitializeComponent()
 {this.b1 = new System.Windows.Forms.TextBox();
 this.b2 = new System.Windows.Forms.TextBox();
 this.RESET = new System.Windows.Forms.Button();
 this.SuspendLayout();

 // Automatic setup of b1 and b2 and reset attributes
 ...
 // Automatic setup of form attributes and method to paint
 ...
 } #endregion
 private System.Windows.Forms.TextBox b1;
 private System.Windows.Forms.TextBox b2;
 private System.Windows.Forms.Button RESET;

 }
}

FIGURE 13.5 Schematic for object-model of designed form.

490    ◾    Introduction to Programming Language

inferred using the sensor information and its knowledge base. An agent can be adaptive
that means it can evolve its behavior based on the environment. An agent can migrate
from one information node to another node based on the goals of an agent. For example,
an agent that is looking for information about basketball history will be migrating to the
websites based on document analysis.

The role of an agent is to act as a representative of humans in the network of computers
by migrating from node to node and performing some task using resources of the remote
computer. An agent may act individually or in a group of communicating agents based
on the overall system design. The task can be as simple as gathering domain-specific data
from various web-nodes, or routing packets efficiently on web-node, or displaying some
advertisement to the customers. The agent-based programming is not limited to web-based
computing. An intelligent multiagent system (MAS), loaded on a loose network of proces-
sors, can be used to automatically derive a vehicle, autopilot a airplane, provide intelligence
to smart homes, or control an agile robot.

A MAS is a collection of agents that work together to complete a task. Multigent systems
can be either cooperating or competing. Cooperating agents are based on the division of
work and information exchange to complete a task. Competing agents are based on notion
of profit maximization in a limited resource environment. During profit maximization,
multiple agents take part, and they may cooperate or compete depending upon whether
they are meeting their goal of profit maximization.

Intelligent agents have their own knowledge library of plans and belief systems and form
their own goals. Beliefs are like facts to a particular agent. However, they are not univer-
sally verified truth. Beliefs of one agent may be different from the beliefs of another agent.
Based on their beliefs and logical rules, they can derive new beliefs that may not be univer-
sally consistent.

One of the popular models of an intelligent agent system is the Belief, Desire, and
Intention (BDI) system. In a BDI system, each agent has their beliefs and desires. Based on
the situation and resources they may commit to a desire, the desire becomes the intention.
Beliefs are updated as the agents interact with the world. Intelligent agent-based systems
have also been modeled using biological system to model artificial life forms. Distributed
intelligent agent systems have been developed based on the model of cell-based interaction.
Figure 13.6 shows a schematic of an intelligent agent.

The knowledge base includes plans, beliefs and itinerary. There are methods that collect
the environment information in an event-driven manner and pass on the information to

Knowledge base
including plans +
beliefs + itinerary

Desires Interpreter

Intention
Action

S

E
N
V
I
R
O
N
M
E
N
T

S

FIGURE 13.6 Schematic of an intelligent agent.

Other Programming Paradigms    ◾    491  

the interpreter. The interpreter derives new inference based on the knowledge base and
plans. It may commit to a course of action if a plan matches significantly with the envi-
ronmental context. In that case, desires may become intentions, and the intentions may be
carried out. Some of the action taken by an agent can be (1) sending a message to the origi-
nating web-node, (2) sending message to another agent, (3) deactivating itself, (4) archiving
new beliefs, and (5) cloning itself for the purpose of migration.

A programming language for agent-based systems has specialized constructs to create
an agent, modify a plan, clone an agent for migration to another node, pack and deactivate
itself from the current node, use the resources of the host computer to execute its plan,
interact with the environment and update its knowledge base, and adopt itself to modify
the plan and goal. An agent-based language should support object-oriented program-
ming for agent modeling as well as declarative programming for knowledge management.
AgentSpeak is such a language, which is built on top of the logic programming paradigm
to implement the BDI model of reasoning.

There are mainly two types of models: Java-based agent systems and BDI model-based
 systems. Many BDI-based agent systems are also implemented in Java. The rationale for
implementing agent-based languages in Java is their capability to handle heterogeneity of the
Internet using JVM. There are other models based on the integration of the object- oriented
paradigm and logic programming paradigms that do not utilize the BDI model. There are
many agent-based languages that have been developed in the last decade. Some of them are
distributed multiple agent reasoning systems (dMARS), AgentSpeak(L), AgentTalk, agent
programming language (3APL), Jade, Jack, JDM, Aglet (Agent + applet), Voyager, CLAIM,
KABUL, DALI, and ReSpecT, Telescript, and Agent Tcl (Tool Command Language).

13.2.1 Components of an Agent-Based System

An agent has a capability to perform actions autonomously. Since it migrates from one node
to another node, it has to have some itinerary. During migration, an agent clones its cur-
rent state, freezes the clone, encrypts the frozen state, and transmits to another node. Upon
receiving the frozen clone of an agent, the remote node acknowledges the receipt. Upon suc-
cessful transmission, the transmitting agent suspends itself or deactivates itself, as the case
may be. An agent may also be activated by a request from the originating node to the remote
host on which the agent migrates. The remote node buffers the agent until it is ready to be
activated, checks its identity with the originating node, and then activates the agent.

An agent system has following components: (1) agent manager, (2) remote node manager,
(3) security manager, (4) dispatch manager, (5) persistence manager, (6) event manager,
(7) queue manager, (8) global directory service, (9) service bridge, (10) interoperability
tools, and (11) agent libraries.

An agent manager is responsible for the creation of an agent, destruction of an agent,
providing interface between the agent and the host machine, and saving the state of an
agent before transfer so that the agent can be recovered later. A remote node manager
monitors the agents’ travels through the Internet, authenticates an agent in response to
the request by the remote node, and provides interface with other agent-related compo-
nents such as agent manager, security manager, queue manager, and persistence manager.

492    ◾    Introduction to Programming Language

A security manager is used to identify the users using the agent, authenticating incoming
agents, making sure that the agent does not have access to privileged file system or col-
laborates with other agents without permission, and authorizes the use of the dynami-
cally loaded Java classes. The dispatch manager is responsible for transmitting an agent to
the remote host. The dispatch manager uses agent transfer protocol (ATP), which provides
a machine independent protocol for agent transfer between nodes. An agent is uniquely
identified by (address of the originating machine, agent-id). To dispatch an agent, the
 dispatch manager in machine A sends a request to the remote machine B. After machine
B approves, the agent is dispatched with its unique identity to machine B and waits for a
receive-acknowledgment for a specific time. After machine B receives the agent, it sends
the status information about the agent.

The persistence manager saves the state of the agent periodically using checkpointing, so
that an agent can be recovered in case of an agent crashes or system crashes. Checkpointing
is a technique to store the frozen state of an executing program so that it can be recovered
later. An event manager is used to authenticate and distribute events. A queue manager
maintains (1) the queue for movement and transition of agents from one node to another
and (2) movement of messages between two or more agents to ensure that the message has
been received by the intended agents. A global directory service is needed to make sure that
all the managers and hosts involved can access the itinerary, position, and capabilities of
an agent. Different heterogenous machines have different data representation formats. The
purpose of the service bridge is to provide interoperability and interface between the het-
erogenous computers and the directory service, agent manager, persistence manager, and
security manager. The interoperability tools transform the data formats between the send-
ing machines to the destination machine. Java-based machines use Java-based API called
J-AAPI (Java Agents API), which is built on top of JVM and is free from interoperability
issues. The agent libraries are carried by an agent to enable its autonomous behavior.

13.2.1.1 Handling Plans and Beliefs
Each intelligent agent interacts with host machines and the world using its own knowledge
base. Because new knowledge is derived based on a limited sample size, the derived infor-
mation is a belief based on limited features extracted from the information. However, this
derived inference becomes part of the knowledge base of the intelligent agent and is used
for further inference.

A library of plans is stored as part of the knowledge base and directs the course of action
an agent has to take. A plan has following components: (1) triggering event, (2) precondi-
tions of plan that should be satisfied similar to guards in guarded programming languages,
(3) the actions to be performed if the precondition is satisfied, and (4) a set of actions if
the plan fails. A particular plan is activated only if the information collected by the agent
matches with the precondition of the plan. This is done by a triggering event. Once an
event is recognized, the corresponding plan takes an action, which could be (1) to commit
to the plan, (2) send a message to neighboring nodes, and (3) solve a goal. After the com-
mitment to a plan, the action part of the plan solves goals followed by some output data to
be sent to the originating node or another cooperating agent.

Other Programming Paradigms    ◾    493  

13.2.2 Agent Security

The security model for Java-based agents uses JVM-based security. All the safety issues
raised in applet security in Section 12.2.5 also apply to agent-based security. Actually
agents need more security, because agents migrate from one node to another node, trans-
mit the results back to the originating node, and collaborate with other agents. The prob-
lem of security is not only because of malicious code but also due to corruption of agents
caused by malicious host. There are four major safety concerns: (1) an agent becoming
malicious during transition, (2) malicious code affecting the host machine, (3) a malicious
agent affecting other agents, and (4) a malicious host affecting an agent.

Encryption and retransmission of a clean copy of an agent from the source node to
 destination node is used to handle corruption during transition. Protection against mali-
cious code affecting a host machine was discussed in Section 12.2.5. The host machine
gives each agent resource access according to its policy. Different types of agents com-
ing from different originating nodes may have different trust levels and priority levels.
Based on the backgrounds of agents, different policies are enforced on an agent. Based on
these policies an agent can take the following privileged operations, to different extents:
(1) obtain file information, (2) read and write in local files, (3) delete files, (4) connect to the
originating node, (5) load libraries, (6) open their own windows, (7) clone itself for migra-
tion, (8) deactivate itself, (9) dispatch a cloned agent, (10) retrieve a list of agents involved
in the same project or working locally on the same machine and the same project, and
(11) verify the environment for the suitability of its intentions.

Protection against malicious agents is done by ensuring that an agent can communicate
only with authenticated local agents residing on the host machine. If an agent is allowed
to communicate with an outside agent, then the outside agent should be authenticated by
the host where it is lying, and the remote host itself should have creditable authentication.

The last problem of malicious host affecting an agent is a real threat, because a host that
executes a code has complete access to the agent’s code and can easily integrate a malicious
code-segment without the knowledge of an agent. There are multiple approaches to par-
tially solve this problem as follows: (1) treating agent code as a blackbox and (2) agent code
checking periodically its code for (1) alteration of the code size; (2) addition of new classes
or methods; (3) using a proof code check where an agent produces the same result on test
data; and (4) deactivating the transmitted clone-agent in case of suspicion of a malicious
host. It is difficult to treat an agent as a blackbox completely because the remote host has to
ascertain that the code itself is not malicious.

13.2.3 Fault Tolerance in Multi-Agent Systems

One of the problems with MASs is that agents may crash because of (1) exceptions,
(2) process failure, (3) processor failure, or (4) communication problem. In such cases, the
overall MAS can become unstable, as other agents dependent on the crashed agent can-
not proceed. Some of the problem can be handled by checkpointing the agents. However,
checkpointing cannot be done frequently because of significant overhead of archiving the
data. That means all the information after the last checkpoint is lost upon an agent crash;
information loaded from the last checkpoint may not be consistent with other agents

494    ◾    Introduction to Programming Language

and may have missing beliefs and goals. To alleviate this problem, two approaches are
used: (1) keep the information after the last checkpoint in the knowledge base of other
agents without mixing with other knowledge bases and (2) keep a shadow agent for every
running agent.

In the first scheme, the knowledge base updates are transmitted to other agents piggy-
backed along with messages and are saved in a repository distributed among multiple
neighboring agents. Upon failure of an agent, a new agent is spawned, and the knowledge
base is built using the last checkpoint and incremental knowledge after the last checkpoint
kept in distributed repositories with neighbors. This scheme has communication overhead
of transmitting knowledge to neighboring agents.

In the second scheme, a shadow agent is kept preferably on another processor to protect
against the processor failure. The message is transmitted to both the active agent and the
shadow agent. The shadow agent updates the knowledge base and remains in hot state
except it does not send any message outside and does not interact with the environment
until the active agent crashes. After the active agent crashes, the shadow agent become an
active agent and informs all other neighboring agents to communicate directly. A new
shadow agent is created that has the same knowledge base as the currently active agent.
This scheme has significant overhead of duplication, as a processor entertains two agents
doing the same task: one active agent and one shadow agent. For large scale agent-based
systems, this overhead is quite significant.

13.3 HIGH PRODUCTIVITY MASSIVE PARALLEL PROGRAMMING
As the number of processors in modern-day computers is increasing, the inadequacies of
current uniprocessor-based languages for massive parallel processors are becoming obvi-
ous. When the multiprocessors were limited to a few hundred processors, limited exploita-
tion of task and data parallelism was complex but manageable. The existing uniprocessor
languages were extended to incorporate concurrency constructs such as multiple threads,
mutual exclusion using monitors and locks, and asynchronous message passing schemes.
Handling synchronizations using locks were quite low-level programming techniques that
made the development of large-scale concurrent programs difficult. Programmers are used
to a single thread of control flow and found it very difficult to correctly program using
multiple threads and low level constructs using locks; programmers make errors that are
difficult to bug especially in massive parallel computers running large software.

Currently, message passing interface (MPI) library is a standard middleware for message
passing between the processors with different address space. Message passing models
are suitable for distributed address space. However, they have significant overhead of
 message passing. In contrast, in recent years, languages based on partitioned global address
space (PGAS) model have been proposed that support local directly addressable memory
space as well as distributed global address space that can be asynchronously accessed. Many
 languages based on PGAS are evolving, as described in Sections 13.3.1 and 13.3.2.

Another aspect for large-scale software development is modularity and reuse. If we have to
develop large-scale software on massive parallel computers, then we have to use object-oriented
programming for modularity and reusability, support asynchronous computing, and support

Other Programming Paradigms    ◾    495  

constructs for transparent high-level mapping of a task to a part of a massive parallel computer.
Two new languages—Chapel being developed by Cray Computer and X10 being developed by
IBM—support this philosophy. The following subsections discuss PGAS, constructs to sup-
port massive parallel computation and object-oriented programming in these two languages.

13.3.1 Partitioned Global Address Space

Different massive parallel architectures support different types of address spaces such
as shared memory and distributed memory. Distributed memory-based systems use MPI
library to communicate between distributed address spaces and have communication over-
head. Shared memory address space uses the shared memory locations to communicate
between processors and has the overhead of synchronization to handle shared memory
locations. To overcome these limitations for massive parallel machines using clusters, the
PGAS memory model has been proposed. Global address space is the union of all the address
spaces addressable by the processors in the massive parallel computer. PGAS provides the
programmer-defined capability to partition the overall global address space to solve a
task. In PGAS, multiple processors keep working on different partitions. PGAS divides
the global address space into multiple partitions such that each partition can be accessed
locally by different pools of activities (threads). However, they can also access remote loca-
tions asynchronously when needed with some additional communication overhead.

In PGAS, there are four types of storage: (1) local-stack that is private to each activity,
(2) local heap that is shared by a group of activities working together in the same par-
tition, (3) shared global partition that can be accessed asynchronously by other threads
remotely using global pointers, and (4) immutable objects that can be copied to any parti-
tion. Languages use two types of pointers: (1) local pointers that access local partitions and
(2) global pointers that can access other partitions too.

Figure 13.7 gives a schematic of PGAS. Note that the PGAS is divided into multiple par-
titions. Each partition has resident pool of threads. Each thread has its own stack and local

Partitioned Global Address Space

Global
partition 1

Global
partition n

Local heap 1 Local heap n

read codeT

S
t
a
c
k

P
L
A
C
E

S
t
a
c
k

S
t
a
c
k

S
t
a
c
k

T T TT

Asynchronous data transfer

FIGURE 13.7 Schematic of PGAS memory model.

496    ◾    Introduction to Programming Language

heap and the partitioned global heap. In addition, it can access data from remote partitions
if needed using async operation, which spawns an activity to access the memory locations
in other partitions. However, accessing different partitions is computationally less efficient
than accessing a local partition. The pool of threads (activities in X10 terminology) and its
data in the associated portion are together called a place.

There are many evolving languages that use the PGAS model. Some of them are UPC
(Unified Parallel C), CAF (Coarray Fortran), Titanium—a Java-based language, X10 (an
object-oriented parallel language being developed by IBM) and Chapel (an object-oriented
parallel language being developed by Cray Inc.). These languages are evolving based on the
application demand.

13.3.2 Constructs for High-Productivity Computing

In this section, we discuss various concurrent and object-oriented abstractions used in
X10 and Chapel—two evolving languages that integrate the PGAS model, object-oriented
programming, and concurrency for high-productivity massive parallel computing. Both
these languages are being developed for large-scale software development on cluster-based
massive parallel computers. These languages support both data parallelism and task paral-
lelism in addition to object-oriented programming. Data parallelism is realized by distrib-
uting an array across different global partitions of PGAS and spawning multiple threads
working concurrently on different partitions simultaneously. Task parallelism is present,
because each partition may be involved in different activities.

13.3.2.1 Abstractions and Concurrent Constructs in X10
X10 uses the notion of activities instead of threads. A place can support multiple activities.
A place is a group of multiple activities that share a local heap and one of the partitions in
the global address space, as shown in Figure 13.7. An activity has its own local stack and
shares a local heap with other activities local to a place. An activity once spawned remains
in the same place and does not migrate to other places. An activity can communicate to
other activities in other partitioned space using async operation. X10 also supports immu-
table value classes that can be copied freely between different places.

X10 supports basic data types that use local storage. It also supports distributed arrays
that are allocated in partitioned global address space to exploit data and task parallelism.
An array can be logically divided into multiple regions, where a region is a set of indices.
Set operations like intersection, union and Cartesian product are permitted on regions to
generate new regions. Strings are allowed as immutable objects.

X10 supports asynchronous execution of a statement at a user-specified place using
the construct async(<place>) <statement>. The operation async has a local scope, which
means it cannot access remote partitions during the execution of statement S; a new
async operation should be spawned to access the remote locations. Asynchronous activi-
ties that return a value to the invoking activities are called future. X10 allow the result
returned by an invoked async operation to be used by other activities by storing the result
of an expression in a designated memory location. Other activities that want to consume
the result stored in the location are blocked until the value is available. This sharing

Other Programming Paradigms    ◾    497  

is done using an operation <shared-variable> ::= future (<place>) <expression> that
spawns another activity asynchronously in a place P, and the result is available in the
shared variable.

X10 supports the construct finish(<statements>) that states an activity waits until all
other activities are over. Concurrent coordination of activities is regulated by the instruc-
tion atomic <statements>; low-level use of locks is not available. The effect is to provide
mutual exclusion from other activities. X10 also supports conditional mutual exclusion
using the instruction when (<condition>) <statements>. The statements <statements> are
executed only when the conditions are satisfied. X10 supports the concept of clocks to sup-
port completion of more than one activity. If multiple activities are registered with a clock,
then the clock does not advance until all the asynchronous activities are completed. Clocks
are used to provide barriers until all the related activities are completed.

X10 uses the notion of objects and single-inheritance class. An object once created
remains locally in the same place of creation. Methods support polymorphism. Methods
can be public, private or protected. Methods could be static functions or instance methods—
parameterized code associated with an instance of the class. Methods in a subclass can
override the definition of methods in the parent class like other inheritance-based object-
oriented programming languages do.

13.3.2.2 Abstractions and Concurrent Constructs in Chapel
Like X10, Chapel is an object-oriented high-productivity, PGAS-based language that
 supports task and data parallelism in a cluster-based massive parallel computer. Chapel
uses a global view of an array instead of fragmented view of data taken by single program
multiple data (SPMD) model that exploits data parallelism. In the SPMD model, multiple
threads are spawned simultaneously that keep working on different portioned datasets of
a distributed array. In the global view model, a program starts with a single thread, and
new threads are spawned dynamically with the parallel language constructs written by
the programmer. Data is distributed using the programmer’s explicit actions instead of
automatic distribution, because high-performance problems need different data distribu-
tion for different classes of problems. Chapel’s philosophy is that an automated scheme
will not be able to analyze the code to identify the appropriate data-distribution scheme.
Chapel supports basic data types such as integers, floats, complex, Boolean, and strings.
Chapel also supports tuples as well as sequence for ordered collection of data. Chapel also
supports union types.

Chapel supports a variety of standard control flow statements such as forall-loop, for-
loop, if-then-else statement, and case-statement. Functions can be overloaded. Chapel has
a multithread execution model to exploit parallelism and provides high-level abstractions
for exploiting data parallelism and task parallelism. Like region in X10, Chapel has the
capability to define a set of array indices. The set of data elements corresponding to these
set of indices are called domains. Domain elements can be accessed and mutated in a data-
parallel manner. Chapel also supports data abstractions like sets, graphs, and associative
arrays using the concept of domain. A domain can have an infinite set such as a set of inte-
gers or a set of strings.

498    ◾    Introduction to Programming Language

Example 13.2

The example illustrates the use of infinite domains to map a hash table. Students is a
variable that is of the type string domain. Course is an array of strings indexed by the
elements in the Students domain. An element ‘Ted’ is added to the domain that maps
to the value “Programming Languages.”

var students: domain(string);
var course: [students] string;
students += “Ted”;
course(“Ted”) = “Programming Languages”;

Subdomains inherit an index set of the parent domain. Chapel allows two types of
subdomains: sparse subdomain and simple subdomain. The notion of domain combined
with global view can be used for data-parallel programming. For example, an assign-
ment statement A = B assigns the value of every element in the domain B to the corre-
sponding elements (elements matching the index value) in domain A. Parallel iteration
is supported using forall-loop that can iterate over domains, arrays, and other expres-
sions. Chapel supports task parallelism using cobegin-coend statements. The parallel
subtasks are coordinated with each other using synchronization variables that support
full/empty semantics: read is done when synchronized variable is in full state and write is
done when the synchronization variable is in empty state. Chapel also supports atomic
section like X10 does, instead of low-level lock mechanism.

Chapel supports the concept of locale, where a locale is a specific node in the clus-
ter of processing nodes. By declaring an array of locales, the programmer can specify
how much a part of the machine a program will take to execute. An iteration executes
in the locale that owns the corresponding index of a domain.

Chapel supports two types of classes: (1) traditional classes, as in typical object-
oriented programming and (2) value classes that act as records but can invoke
methods. Chapel does not insist on an object-oriented programming style. Instead
programmers can write block-structured programs. Chapel also supports generic
methods and functions to support polymorphism. Classes and methods may contain
type variables to support generic programming.

13.4 SYNCHRONOUS LANGUAGES
In early 1990s, a new class of language was developed to simulate the clock-based logical
circuitry. In a clock-based logical circuit, an action is taken synchronously after every clock
signal. The clock-tick is logical rather than physical. However, it can be associated with phys-
ical ticks. There is no delay in reaction to the clock-tick. Based on a pattern of clock-ticks,
a signal can be emitted, and computation can take place as a reaction to a logical combina-
tion of conditions set by emitted signal. Because the computation is based on synchronous
clock-tick, the actions are deterministic, and there is no race condition, provided the action
is taken instantaneously at the next clock-tick, after the input signal become available.

Other Programming Paradigms    ◾    499  

The major concept in synchronous language is that time advances in lockstep and
actions are taken immediately without delay, exploiting deterministic concurrency.
Emission of a signal sets another Boolean condition as true. A construct may wait for a
combination of one or more input signals that are connected through logical operators.
If all the signals are available, the required condition is true. At the next logical clock,
another construct waiting for the combination of conditions is executed. An action could
simply be an emission of a signal, abortion of an activity, or temporary suspension of some
activity. The program reacts instantaneously, so there is no reaction time. The concept
is general enough to be used for any system that uses logical clock-tick for synchroniza-
tion. One such example is multimedia languages, where inter-media synchronization uses
the notion of logical clocks. Intermedia synchronization using logical-clock and synchro-
nous programming has been proposed in an XML-based multimedia language TANDEM.
Some of the examples of synchronous languages are Estrel, Lustre, Signal, and Quartz.
Synchronous languages have been applied in the areas of VLSI design, signal-processing
applications, embedded system designs, avionics, life monitoring systems, and automatic
control applications. The following sections shows the synchronous constructs of Estrel.

13.4.1 Synchronous Constructs in Estrel

Estrel is an imperative synchronous concurrent language that uses synchronous steps to perform
parallel tasks. There are two important components: sensors and signals. A signal is broadcast to
all the processes and is received instantaneously by all the processes. Two types of information
are broadcast: values and signals. A value can also be transferred as part of a signal. A signal
may contain some value with it. For a signal S, the value is represented by the notation ‘?S.’ The
same signal may be emitted by various processes simultaneously. An event is a combination of
received signals for which the program is waiting. A sequence of events is called a history.

The basic programming unit is a module that has a declaration part and the code part.
Estrel is not a comprehensive language and supports only basic types like integers, Boolean,
arithmetic operators, and logical operators. Expressions are built using constants, signals,
sensor values, and function calls. Estrel supports basic control abstractions, such as assign-
ment statement, if-then-else statement, case-statement, loop-statement, function calls, and
parallel tasks in addition to special statements: (1) signal emission, (2) trap handling, (3) exit
from a trap, (4) checking for a signal before executing a statement, (5) watchdog statement
up to a given time-limit, and (6) await for a given signal combination. The abstract syntax
using EBNF for the some of the special statements, is as follows:

<signal-emission> :: emit <signal-name>(<expression>)
<signal-statement> :: present <signal> then <statement>
 else <statement>
<exit-trap> :: exit <trap>
<watchdog> :: do <statement> watching <signal-occurrence>
<await-signal> :: await <signal-occurrence>
<loop-each> :: loop <statement> each [<count>]
 <signal-occurrence>

500    ◾    Introduction to Programming Language

<every-loop> :: every <signal-occurrence> do <statement>
 end
<multiple-wait> :: await {case <signal-occurrence> do
 <statement>}* end
<signal-occurrence> :: [immediate] [<count>] <signal>

The first rule states that a signal-emission emits a signal that can be a valued signal, and
the value is given by evaluating the corresponding expression <expression>. The second rule
states that if a signal is present, then execute then-part, and otherwise execute the else-part.
The third rule states that the trap can be exited using an exit statement. The fourth rule
states that a specific statement is executed before exiting. However, if the signal occurs given
by <signal-occurrence> then exit without executing the statement. The fifth rule states to
suspend the execution until a signal occurs. The sixth rule states to execute the body of the
loop every time the corresponding signal occurs. The seventh rule is similar, and states to
execute the body of a loop statement every time a signal occurs; the eighth rule states that
different statements can be executed in response to different signals using a case-statement.
The last rule says that signal occurrence may be followed by (1) a reserve word immediate
that means immediately entertain the signal or (2) an integer count that means wait until the
signal has occurred as many times as given by the integer count before triggering an action.

Example 13.3

In this example, we show a simple example of synchronous language that emits a
signal every one second:

every 30 second do
 emit showPulseRate
end

The variables second and showPulseRate are signals: the signal second is being
received. After counting 30 such signals, the signal showPulseRate is being outputted.

13.5 SUMMARY
In this chapter we discussed four additional programming paradigms. These paradigms
are emerging: event-based programming, agents-based programming, high- productivity
massive parallel computing, and synchronous programming. Event-based programming
and agent-based programming have established applications and have proved their worth
in commercial applications; synchronous programming has found a niche in hardware
circuitry simulation and has recently been applied for synchronous multimedia program-
ming. High-productivity massive parallel computing is evolving and if proven, would make
the task of large-scale software development much easier on a plethora of massive paral-
lel architectures involving a large cluster of processors. All these technologies are needed
in the next decade, as massive parallel computers will be on our desktops, and without
programming language support, large-scale software development will be impossible.
Event-based programming is already being used in interactive programming involving

Other Programming Paradigms    ◾    501  

interaction with sensors and graphical objects connected to the computers. Similarly,
MAS-based programming is being used in many tasks including web-based programming
for intelligent control and assisting decision-making processes.

Event-based programming is based upon reactive responses to the events in the real
world rather than input to the procedural threads. An event-based system has following
components: (1) an event-listener and dispatcher that is invoked by the main program,
(2) a form constructor and painter that automatically generates the object-model code for
each object in the painted form, (3) an abstract interface called event-adapter that links
the event to the event-handler written by the programmer, (4) an event-handler written by
the programmer for every event that is being registered and needed by the program, and
(5) a main program that starts a thread to invoke event-listeners and event-handlers. The
main program invokes an initialization method to initialize the form where objects are
located and creates the corresponding objects associated with the events. An object may
be associated with multiple events. After some characteristics of an object are altered, the
state of the system changes. An event is caused either by an external signal or because of
the state change. The event-related attributes and information about the event-source are
transferred as parameters to the corresponding event-handler.

An event-handler is a regular method that takes an action based on the event-trigger. An
event-object such as textbox, button, or scroll-bar is like any other object, and its attributes
such as text, background color, foreground color, and text-font are accessed as <object-
name>.<attribute-name>. An event-handler can alter the attributes of any object in the
form using this model of <object-name>.<attribute-name>. Event-based programming
has found applications in many areas, including monitoring, graphical user interfaces,
game-playing, smart homes, sensor-based instrumentation, and web programming.

Agent-based programming takes the concept of code and data migration to another
level. In applets, there is limited amount of migration: code migrates to the client-end
and gets executed. Agent-based programming extends the concept of code mobility by
allowing the mobile-code to migrate to any subset of web-nodes (or nodes in a computer
network), get executed, and return the results back to the originating node. In addition,
agents are autonomous—knowing when and where to go and having desires and inten-
tions; reactive—respond to an event by performing some computation and taking some
action, and can be intelligent. A MAS is a network of agents that cooperate or compete to
achieve a goal. An agent contains an itinerary to go to various nodes in the network and
has a unique identification number that includes the information about the originating
node. An agent can clone itself and freeze its state for migration to another node, The clone
carries the code and data area such as heap and stack, and its own frozen state to another
node, where it is activated after proper authentication by the receiving node. In case of
loss during transmission, a cloned agent is retransmitted. There are many types of manag-
ers in an agent-based system to make sure that an agent is created, activated, dispatched,
received, and monitored appropriately. Some of the managers are agent manager, dispatch
manager, event manager, queue manager, and security manager.

The security and fault tolerance of an agent-based system is quite critical. In addition to
security issues involved in applets, an agent can also be corrupted by a malicious host and

502    ◾    Introduction to Programming Language

migrate to new node corrupting the following hosts. There is little protection against avoid-
ing corruption from a malicious host except to avoid known malicious hosts. In addition,
an agent can periodically perform some tests to make sure that it has not been corrupted.

The fault tolerance of an agent-based system is important, because crash of an agent may
destabilize the whole MAS. There are two approaches to provide fault tolerance: (1) keep
the altered knowledge after the last checkpoint distributed in a knowledge base of agents
in other nodes or (2) keep a hot shadow agent. In the first scheme, a new agent is created,
and the knowledge base is updated in a two-step process: (1) load the checkpointed knowl-
edge into the newly created knowledge base and (2) request for distributed knowledge after
the checkpoint from the neighbors. The second scheme keeps an extra agent in a ready
state that has all the knowledge as the active agent. However, it becomes active only after
the active agent crashes.

There are many agent-based languages that have been developed in the last decade.
Languages supporting intelligent agents are based on a popular model called BDI (Belief,
Desire and Intention). Languages supporting intelligent agents integrate logic program-
ming and object-oriented programming paradigms: the logic programming paradigm
provides the declarative knowledge base and the inference engine and object-oriented pro-
gramming provides the capability of agent encapsulation and facilitates agent migration.
Many of these languages are built on top of Java, because Java supports object-oriented
programming, multiple threads, code migration, virtual machine to provide homogene-
ity in heterogenous environment, and sufficient amount of security to objects. Some of
the historically popular languages and agent-based systems are AgentSpeak(L), AgentTalk,
Aglet, APL, dMARS, Jade, Jack, CLAIM, KABUL, and Odyssey.

Most of the languages in the past were designed for uniprocessor machines. Concurrent
programming was added to them when multiprocessors became a reality. However, con-
currency constructs, data parallelism, and task parallelism developed for multiprocessors
with few processors do not scale well because of heterogeneity of address spaces, and the
problem of transparently mapping the computations on the address space for efficient
computation without significant overhead of data movement. There has been limited effort
to make universal high-level constructs for efficient massive parallel computation with the
least overhead of data and code migration. Another problem is the lack of support for
large-scale software development paradigm on massive parallel computers.

Recently, many new languages are evolving that integrate concurrent programming
paradigms and object-oriented programming paradigm for large-scale high-productivity
software development on massive parallel clusters of processors. These languages are suc-
cessors of High Performance Fortran and UPC (Unified Parallel C). Chapel, Titanium,
and X10 are based on the notion of PGAS, where each partition can be assigned a thread
pool, and an array could be distributed across the partition to exploit both data parallelism
as well as task parallelism. Many different data and concurrency abstractions have been
developed in these languages.

X10 is a strongly typed language that has the concept of a set of data-elements in an
array; place—a combination of activities (threads) and data; clocks—a special value class
that advances after registered activities become inactive; async—asynchronously starting

Other Programming Paradigms    ◾    503  

an activity at a particular place; unconditional and conditional atomic actions—freezing
all other activities if the current atomic activity is executing; finish—activities waiting for
other activities to finish if they finish earlier; force—blocking an activity while evaluating
an expression requested by it; and future. In addition, X10 also offers some amount of load-
balancing using work-stealing by a group of processors from other processors.

Chapel is another high-productivity language for large-scale software development that
supports both object-oriented programming and multiple threads based on parallelism on
top of the PGAS memory model. It relies on higher level constructs such as atomic action
instead low-level locks for synchronization. For concurrent execution, it uses cobegin-
coend construct with synchronization variables. Chapel also uses a concept of domain
that is similar to region in X10 and allows a subset of a distributed array to be selected
for data-parallel computation. Using the notion of domain (possibly infinite), Chapel also
supports the notion of sets and associative arrays. Chapel also supports the declaration
locale and collection of locales to map the execution of a program to a region of the cluster.
Chapel allows iterators over the domain and arrays. Chapel uses two types of definition of
classes: traditional class and value class. Value classes act like records with the capability to
invoke methods. Chapel does not enforce an object-oriented format of programming, and
programmers can write programs using block structured programming.

Synchronous languages were developed to simulate the large-scale logical circuit and are
based on synchronized computation after every logical clock-tick. After a signal becomes
available, the next action is taken at the next clock-tick, and the computation is assumed to
be instantaneous. The languages have been used to model deterministic systems including
clock-based logical circuits.

13.6 ASSESSMENT

13.6.1 Concepts and Definitions

Activities; adaptation; agents; agent-certification; agent-communication; agent manager;
agent migration; agent mobility; agent security; agent state; agent transfer protocol; Aglet;
async; autonomous; BDI system; belief; blackboard; Chapel; checkpoint; clock; compe-
tition; cooperation; data partition; domain; Estrel; events; event-adapter; event-handler;
event-listener; event-manager; event-source; future; fault-tolerance; global partition; his-
tory; intention; interoperability; J-AAPI, locale; malicious agent; malicious host; MAS;
massive parallel; partition; persistence manager; PGAS; place; plan; profit maximization;
queue manager; place; reactive; region; remote administration manager; scalability; secu-
rity manager; shadow agent; signal; service bridge; subdomain; synchronous; trap; X10.

13.6.2 Problem Solving

 1. Extend the C# program in Example 13.1 for the game of Tic-Tac-Toe using Visual
Studio. A tic-tac-toe program has nine text areas and a reset button, and it toggles
between ‘O’ and ‘X’ when a mouse is clicked. You may have to keep a 3 × 3 matrix to
test the logic who won and which blocks are occupied, so that mouse-clicks on those
boxes can be ignored after they get a value.

504    ◾    Introduction to Programming Language

 2. Write an event-based interface in C# that converts the temperature given in centi-
grade to Fahrenheit.

 3. Write a C# program that highlights a textbox when the mouse moves over the textbox.

 4. Write a Javascript program that highlights a state when the mouse moves over the
state in a country’s map, and takes you to the state website when you click anywhere
in the state-area.

13.6.3 Extended Response

 5. Explain the difference between the procedural input model of programming and the
event-driven model of programming. Give an example from the real world, where
one would be preferred over the other.

 6. Explain the event-based model and its component using a figure connecting the
components.

 7. Explain the role of event-adapters in an event-driven model.

 8. Explain the difference between applets and agents. What safety issues are added in
agent-based models and why? Explain.

 9. Explain the different security issues in agent-based systems.

 10. Explain different schemes for providing fault tolerance in an agent-based system.

 11. Explain partitioned global address space and compare it with shared address mem-
ory space and distributed memory space.

 12. Explain the salient constructs in X10, and argue how these constructs are useful for
large-scale software development.

 13. Explain the difference between synchronous languages and other procedural
languages.

FURTHER READING
Bansal, Arvind K. “Incorporating fault tolerance in distributed agent based systems by simulating

biocomputing model of stress pathways.” SPIE Defense and Security Symposium, 6201. 2006.
62010801–62010810.

Bansal, Arvind K., Rammohanarao, Koganti, and Rao, Anjana. “A distributed storage scheme for rep-
licated beliefs to facilitate recovery in distributed system of cooperating agents.” In Proceedings
of the Fourth International AAAI Workshop on Agent Theory, Architecture, and Languages, LNAI
1365. Springer-Verlag. 1998. 77–92.

Benveniste, Albert, Caspi, Paul, Edwards, Stephen A., Halbvachs, Nicolas, Guernic, Paul Le, and
Simone, Robert De. “The synchronous languages 12 years later,” In Proceedings of the IEEE,
91(1). 2003. 69–83.

Berry, Gerard and Gonthier, Georges. “The synchronous programming language ESTEREL: Design,
semantics, implementation.” Science of Computer Programming, 19(2). 1992. 1–51.

Other Programming Paradigms    ◾    505  

Bordini, Rafael H., Braubach, Lars, Dastani, Mehdi, Seghrouchni, Amal El Fallah, Gomez-Sanz,
Jorge J., Leite, João, O’Hare, Gregory, Pokahr, Alexander, and Ricci, Alessandro. “A survey of
programming languages and platforms for multi-agent systems.” Informatica, 30. 2006. 33–44.

Chamberlain, Bradford L., Callahan, David, and Zima, Hans P. “Parallel programmability and chapel lan-
guage.” International Journal of High Performance Computing Applications, 21(3). 2007. 291–312.

Charles, Philippe, Grothoff, Christian, Saraswat, Vijay, Donawa, Christopher, Kielstra, Allan,
Ebcioglu, Kemal, Praun, Christoph von, and Sarkar, Vivek. “X10: An object-oriented approach
to non-uniform cluster computing.” In Proceedings of the 20th Annual ACM SIGPLAN
Conference on Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA
'05. 2005. 519–538.

d’Inverno, Mark, Kinny, David, Luck, Michael, and Wooldridge, Michael. “A formal specification
of dMARS.” In Singh, Rao and Wooldridge (eds.). Proceedings of the Fourth International
Workshop on Agent Theories, Architectures, and Languages: Lecture Notes in AI, 1365. Berlin,
Germany: Springer Verlag. 1998. 155–176.

Doyle, Barbara. C# Programming. 2nd edition. Course Technology—Cengage Learning. 2008.
Halbwachs, Nicolas. Synchronous Programming of Reactive Systems. Kluwer Academic Publishers.

Revised 1993. Available at http://www-verimag.imag.fr/~halbwach/newbook.pdf
Hansen, Stuart and Fossum, Timothy V. Event Based Programming. May 2010, Available at http://

ginger.cs.uwp .edu/staff/hansen/EventsWWW/Text/Events.pdf
Jo, Chang-Hyun and Arnold, Allen J. “An agent-based programming language: APL.” Proceedings of

the ACM Symposium on Applied Computing, Madrid, Spain, 2002. 27–31.
Lange, Danny B. and Oshima, Mitsuru. Programming and Deploying Java Mobile Agents with Aglets.

Boston, MA: Addision-Wesley. 1998.
Luck, Michael and d’Inverno, Mark. Understanding Agent Systems, Springer Series on Agent

Technology. 2nd edition. Berlin, Germany: Springer-Verlag. 2004.
Lusk, Ewing and Yelick, Katherine. “Languages for high-productivity computing: The DARPA HPCS

project.” Parallel Processing Letters, 17(1). 2007. 89–102.
Oppliger, Ina R. “Security issues related to mobile code and agent-based systems.” Computer

Communications, 22. 1999. 1165–1170.
Rao, Anand S. “AgentSpeak(L): BDI agents speak out in a logical computable language.” In W. Van

de Velde and J. W. Perram (eds.), Proceedings of the Seventh European Workshop on Modeling
Autonomous Agents in a Multi-Agent World, LNAI Volume 1038. Spring Verlag. 1996. 42–55.

Shoham, Yoav and Brown, Kevin L. Multi-Agent Systems: Algorithmic, Game-Theoretic, and Logical
Foundations. New York, NY: Cambridge University Press. 2009.

Starovic, Gradimir, Cahill, Vinny, and Tangney, Brendan. “An event based object model for distrib-
uted programming.” In Proceedings International Conference on Object-Oriented Information
Systems, Springer-Verlag, Berlin, Germany. 1995. 72–86.

Synder, Lawrence.“The design and development of ZPL.” In Proceedings of the Third ACM SIGPLAN
Conference on History of Programming Languages, HOPL III, San Diego, CA. 2007. 8-1–8-37.

Wong, David, Paciorek, Nick, and Moore, Denarius. “Java-based mobile agents.” Communications of
the ACM, 42(3). 1999. 92–102.

507

C h a p t e r 14

Scripting Languages

BACKGROUND CONCEPTS
Abstractions and information exchange (Chapter 4); Abstractions in functional programming
(Chapter 9); Logic programming (Chapter 10); Object-oriented programming (Chapter 11);
Operating system (Section 2.5); Web and multimedia programming (Chapter 12).

As operating systems grew, system tasks have become complex and need multiple files and
system utilities to complete the tasks. The tasks need a sequence of system commands. These
system commands work as an assembly line such that a command executes and generates
data that is picked by the following commands. Many commands may also be executed con-
currently or in a distributed manner using multiple threads. Many times, commands have
to handle a directory of files. Directories are collections of files. Processing complex tasks
requires variables to hold the file-names, directories, and file paths, and iteratively process
them. The files could be of different types such as text files, image files, data files, and sound
files. To process one class of files in a directory, there is a need to selectively filter the files
before taking an action. Many times, while executing a compilation command, a new file
has to be created automatically that has the same name but a different suffix. For example,
compiling a file myfile.c will generate compiled code in a file myfile.o. That means that there
is a need for text processing. Text processing is also needed to parse various switches associ-
ated with line-commands. Based on the switches, different system utilities may be called.
Again there is a need for conditional statements and text processing. A clear need for a
class of high-level languages has emerged that could (1) execute the operating system line-
commands, (2) invoke multiple system utilities, (3) integrate the execution files developed
in different languages, (4) perform pattern matching on text embedded inside a file to take
an action based on the presence or absence of specific text patterns, (5) work on a large col-
lection of files and directories, and (6) work over the web or remotely on various resources
such as remote-files and URLs. This class of languages is called scripting languages.

Scripting languages have their history in Awk (Aho, Weinberger, and Kernighan) and
Sed (Stream editor). Sed is an early UNIX command processing language to process data
files by looking for a pattern and substituting another pattern. It does not have variables

508    ◾    Introduction to Programming Language

to store any information and has only branch statements. Awk is a scripting language,
designed in 1970s by Aho, Weinberger, and Kernighan to invoke batch-processing jobs
involving UNIX pipes and shell-based programming for UNIX-like operating systems.
Later it was adopted for other operating systems. Awk commands include setting up a
variable, invoking a system utility, calling functions, text processing, and performing sim-
ple computations for searching text patterns. In the current form, it supports many data
abstractions such as associative arrays and control abstractions like if-then-else, while-
loop, for-loop, and function calls. In Awk, an action is taken based on some pattern match.
The main contribution of Awk was to parse the one line-command into words and take an
action based on pattern match. Later scripting language like Perl introduced more control
and data abstractions; however, regular languages provided library support and built-in
support to interface with system utilities and text processing to provide scripting capa-
bilities. In the current form, the gap between the capabilities of the languages for script
programming and regular languages has reduced significantly.

An interesting question is, What is the difference between scripting languages and
 regular programming languages? Can a regular programming language with string-
processing capabilities be extended to become a scripting language in addition to being a
regular programming language? The answer is ‘Yes.’ If a language can read a command as
a string; parse it to separate the switches and commands; and then, depending upon the
command can separate between system utilities or regular programming statements, then
it can become a scripting language. However, it should also have the capabilities to (1) call
system utilities; (2) perform complex text processing operations; (3) handle complex pat-
tern matching capabilities; and (4) preferably support first class objects—the capability to
build system commands as text and then convert them into system utilities and execute.
Figure 14.1 illustrates four major capabilities a scripting language should possess. Another
capability that can be added for modern scripting languages is the capability to spawn and
handle multiple threads and to interface with web programming for web scripting. PHP
and ASP (Active Server Pages—Microsoft-supported language), and Javascript are popular
scripting languages that support web scripting as well as other major features.

Executing code file of
multiple languages
including web language

Shell-based
programming

Command line
interpretation

Scripting
language

Executing system
utilities + data-

driven programs

FIGURE 14.1 Major capabilities of scripting languages.

Scripting Languages    ◾    509  

Most of the regular languages are stronger in data abstractions and control abstractions.
However, the basic requirement of the scripting languages is to handle collections of files
and directories, the use of iterative constructs and conditional statements to selectively
perform an operation on these system resources is crucial. The earlier scripting languages
were simpler and were generally built on top of the languages that supported system pro-
gramming. For example, Perl was built on top of C—a system programming language that
was used for the development of the UNIX operating system. Later many general purpose
control and data abstractions were added to Perl.

As demonstrated in this chapter, augmented with a text processing library, many popu-
lar implementations of Prolog are used as a scripting language. The author has developed
an extensive text processing library for Prolog and used Prolog for complex data-driven
programming and scripting to analyze microbial genomes. The multiparadigm languages
Ruby and Python are full-fledged languages. However, because of their extensive built-in
support for system utilities, shell-based programming, text processing, and pattern match-
ing, they are extensively used as scripting languages.

14.1 COMPONENTS OF SCRIPTING LANGUAGES
Scripting languages are glue languages that integrate the execution of (1) system utili-
ties including compilers, (2) command line interpretation, (3) shell-based programming,
(4) execution of codes written in multiple languages including web-based languages, and
(5) data-driven execution by invoking a system utility or a user-defined program based on a
data pattern in a data file. Figure 14.1 illustrates various components of a scripting language.

14.1.1 Shell-Based Programming

Many times we want to keep different activities of a program in different environments to
avoid the mix-up of environment variables and data. That is supported in a UNIX-based
operating systems using a concept known as shell. A shell is a closed environment that has
processes and environment variables. A shell is generally self-contained and does not share
its environment with other shells. A shell can spawn other shells to perform some com-
putation. However, a new shell does not update the environment of the parent shell unless
specifically requested. After the termination of the called shell, the control comes back to
the original directory of the invoking shell.

Shell-based programming uses data abstractions, control abstractions, operating system
resources, and invokes system utilities in sequential, concurrent, or pipelined order to per-
form a complex task. Shell-based programming is also known as command language, and it
has the properties of both programming language and user interface to the process-related
facilities of the underlying operating system. A pipelined execution of two commands C1
and C2 is denoted as “C1|C2,” and it means that C2 does not wait for C1 to terminate; C1
generates a stream of data, and C2 starts executing after some data is available. A command
also has directionality denoted by the symbol ‘>’ to show that the output of the execution of
command should be archived in a resource following the symbol ‘>.’ For example, a com-
mand dir > a will print out the name and attributes of the files in the current directory into
a file-named “a.” If the file “a” does not exist, then it is created. Otherwise, it is rewritten.

510    ◾    Introduction to Programming Language

Every operating system has its own shell-based programming system. There are differ-
ent types of shells with some variations in capabilities such as C shell, Bourne shell, Korn
shell, and Bourne-again shell (Bash). Windows operating systems use Windows Explorer
or DOS-like command windows to execute shells. There are two types of suffixes used in
Windows operating systems: .com (command file) and .bat (batch file). Windows invokes a
shell com.exe to execute a system utility. Lately, Windows has started developing “Windows
Powershell”—a new scripting language with variables and control abstractions.

14.1.2 Data-Driven Programming

An example of data-driven program would be a genome information file that contains
different types of information such as (1) a sequence of amino-acids in a protein, (2) infor-
mation about the pathways where protein is involved, (3) protein nomenclature and func-
tionality, and (4) sequence of nucleotides of a genome. Information is tagged with a specific
marker, and different data processing programs are invoked based on the identification
of different tags. Such data-driven computing also involves extensive text processing and
pattern-matching capabilities such that specific pattern of text may be identified.

14.1.3 Command Scripts

There are multiple system utilities in every operating system. If you are using a Windows
system and type help in a command window, then you will see bunch of supported operat-
ing system commands that are used to run complex system tasks in “.bat” files.

Example 14.1

Let us write a simple script file test.bat for Windows operating system.

echo OFF
date /T
time /T
echo “Hello Arvind”
dir /O
echo ON

The first command turns off the echo on the screen. However, because the echo is on
by default when this statement is executed, the first command ‘echo OFF’ will be shown
on the computer screen. The next command is date followed by a switch “/T.” The switch
tells the system to display just the date. The next command time also has the switch “/T”
just to show the time. The next command echo displays the message “Hello Arvind” on
the screen. The next command dir shows all the files in the current directory. The switch
“/O” forces the files to be displayed in sorted order, and the last statement turns the echo
on again so that everything typed on the keyboard is displayed again on the screen.

A command file like test.bat described above is executed in the directory where it is
located or by giving the pathname followed by filename. Here we can simply type “test” to

Scripting Languages    ◾    511  

run the script file, because Windows automatically puts the suffix “.bat” after test and runs
the script program in test.bat.

A command can either be given as a command line using a keyboard or a text line in
a script file. A scripting language should read the commands as a string, parse the string,
identify the commands, and execute the commands by calling the corresponding system
utilities. Many times system utilities need to repeat the same operation on a collection
of files. In such cases, the script file needs to use the variables and iterative loops. A vari-
able can be associated with data-objects such as filenames, directories, directory paths,
accumulators, logical conditions, device names, and index values. Most of the scripting
languages are dynamically typed and interpreted for the ease of programming.

14.1.4 Text and String Processing

Text and string processing is very important for scripting languages. Given a command,
the string has to be parsed. A command line can have many redundant white spaces such
as blanks, tabs, and end-of-line spaces. Many times these spaces have to be ignored, and
sometimes they become the proper delimiters. A command can have many white spaces
preceding a command or a switch or other arguments that have to be removed. In data-
driven programming, a pattern may have a prefix and postfix. Thus, the text-processing
capability should be able to splice the text to remove a given prefix and suffix.

A string is a sequence of characters, whereas a command is a list of words with white spaces
removed. Scripting languages should support functions to convert a sequence of characters into
a list of words. Many times the system utilities process a particular type of file such as an image
file. To extract all files of the same type, wildcard characters are needed such that “*.jpg” means
any file with a suffix “.jpg” in the file-names. Sometimes filenames specific to certain activities
may be identified by a substring embedded within file names. For example, “BookCover.jpg”
and “BookCover.gif” are two files that have a substring “BookCover.” There may also be cases
where multiple files have a different substring, whereas the prefix and postfix may be the same.

14.1.4.1 Pattern Matching and Data-Driven Computation
In data-driven computation, the text in data files may have to be skipped until a relevant
substring is identified. All these text-based operations must be supported by a scripting lan-
guage. This also includes quickly matching unique patterns in large files. The text pattern
could be matching a group of characters that may be separated by nonmatching characters.
Many scripting languages use different short cut patterns called regular expressions for match-
ing the substrings in a file. Efficient pattern matching and data-driven computing is becoming
important as the amount of data being gathered automatically is increasing; large amounts
of petabyte data is being collected in many projects such as weather analysis, galactic data
analysis, and the Human Genome Project. It is difficult to handle such large amounts of data.

14.2 ABSTRACTIONS IN SCRIPTING LANGUAGES
A scripting language needs to support data abstractions such as (1) basic data types like
integers and Booleans, (2) strings, (3) dynamic arrays or vectors, and possibly (4) recursive
data types such as linked lists. It should also support variables or the capability to simulate

512    ◾    Introduction to Programming Language

environment variables using hash tables, associative arrays, and blackboards: the variables
become the domain element and the value becomes the range element.

14.2.1 Control and Data Abstractions

The language should support iterative-loops as scripting languages perform repetitive
operations on collections of files and directories. The supported iterative loops include
for-loop and while-loop. Directories are tree structures, any mechanism to traverse the
tree such as recursive traversal can benefit scripting languages. However, not all scripting
languages support recursion. If-then-else statements, case-statements, function calls, and
mechanism to convert data to function are also supported by scripting languages. Examples
of the control abstractions are illustrated in Examples 14.3 and 14.4.

Most of the glue languages such as Perl support minimal data abstractions such as
arrays, scalar variables, and strings. Full-fledged languages like Python, Prolog, and Ruby
support other data-structures such as lists. They support extensive operations on strings in
addition to multiple pattern-matching operations.

14.2.2 Shell Variables

A variable reuses the associated value at different places in a program, and the value can
be updated in destructive programming. Most of the scripting languages support destruc-
tive update of variables. The values associated with variables in scripting languages include
file-names, path names, message strings, device names, and iteration count. Many times
variables are also used for substitution of a string at different places. The value of a variable
can be accessed using a prefix symbol specific to a shell being used followed by the variable
name. For example, the ‘$’ prefix is used in C-shell.

Example 14.2

The program given below shows a Windows script file (.bat suffix) that illustrates the
use of variables and concatenation. First the echo is turned off. In the second line,
the variable mydate is set of the output of the command “Date/T”. In the third line,
the variable user is set to the string “Arvind.” The fourth line displays the value of the
variable mydate. The command “Date/T” stored as a value to the variable mydate is
executed and the current date is displayed on the screen. The fifth line illustrates the
concatenation of two strings: “Hello” and the value of the variable user. The output
“Hello Arvind” is printed on the screen. The last line permanently turns on the echo
mode.

echo OFF
set mydate = Date /T
set user = Arvind
%mydate%
echo Hello%user%
echo ON

Scripting Languages    ◾    513  

The output of the above script is as follows:

Sat 10/20/2012
Hello Arvind

14.2.3 Type Conversions

Scripting languages such as Javascript and Perl use a very loose definition of type conver-
sion. Instead of showing error when two operands are mixed, they find a compatible type,
especially when one of the operands is a string, and convert the other operand into a string.
For example, a Javascript expression “abc” + 4 will yield “abc4”: the integer 4 is converted
into string “4,” and the operator ‘+’ is treated as a concatenation operation. However, the
expression 3 + 4 will return 7. Similarly, in Perl, the symbol ‘.’ is equivalent to concatenat-
ing two strings. For example, “CS”. (5 + 6) will add 5 and 6, convert the result 11 into a
string, and then concatenate two strings to derive a new string, “CS11.”

14.2.4 Regular Expressions and Pattern Matching

Pattern match is used to search for the files having some patterns in the file-names, or in
their attributes, or containing a specific text that matches some textual pattern. A regular
expression is a collection of alternative patterns such that the match of any pattern implies
a successful match. A pattern can be (1) an exact substring occurring anywhere is a text,
(2) multiple substrings separated by zero or more substrings that do not match, and (3) a
common suffix or prefix. For example, a command ‘dir *.pdf’ will return all the files in a
directory that have the suffix ‘.pdf.’ Similarly, the command ‘dir R?se.pdf’ will give all the files
with ‘.pdf’ suffix having a pattern R_se, where the second character could be any character.

A pattern may match (1) exactly n (n > 0) times in a text to be relevant, (2) at least
n times but not more than m times, (3) 0 or more times, (4) 1 or more times, or (5) 0 or 1
time. Matching 0 time means that a text stream does not contain the pattern at all. These
different matching criteria are represented differently in regular expressions.

In Perl, membership can be denoted using a square bracket; range using the hyphen sign;
and negation by the upward arrow sign ‘̂ .’ For example, [12a] means if the character matches
one of the three characters: 1, 2, or a. The representation [0–9] means characters may match
any digit from 0 to 9. Because there are special symbols like ‘[’or ‘-’ that are used in repre-
senting the set of characters to be matched, they are preceded by backslash if they are part of
the set of matching characters. For example [a–z\−] denotes a character set from a to z and
including the hyphen sign ‘-’. The character ‘.’ matches any character. Some of the characters
are used to denote frequently used regular expressions in Perl as given in Table 14.1.

14.2.5 Programming Example

This subsection deals with shell-based programming using the Windows operating sys-
tem. A similar approach can be taken with Linux or UNIX. This section illustrates the
use of various control abstractions and the use of variables using a simple Perl program
implemented in Windows operating system. Section 14.3.1 discusses various abstractions
in Perl and how they have been used in script-based programming.

514    ◾    Introduction to Programming Language

Example 14.3

Let us understand the integration of programming abstractions and system com-
mand using a simple example written in the language Perl. The example in Figure 14.2
illustrates the integration of control abstractions, array, file-system, system utilities,
and shell programming.

The program interactively deletes one file at a time from a given directory ‘C:\
Users\Arvind\Desktop\testdir.’ Note that the directory could be read interactively.
If a user types ‘1’ in response to the program interaction, the corresponding file is
deleted. Otherwise, it is retained.

There are three scalar variables: $dir, $curdir, and $file. There is an array variable @ file-
List. The variable $dir is bound to the directory from where the files have to be interactively
deleted. The directory associated with variable $dir is opened using the built-in library function
 opendir/2 that creates a stream DIR. All the elements in the directory are read using another

my $dir = ‘C:\Users\Arvind\Desktop\testdir’;
opendir(DIR,$dir) || die “Can’t open $dir : $!\n”;
my @files = readdir(DIR);
close(DIR);

$curdir = chdir(); # get the current directory
chdir $dir; # change the directory to my directory

foreach my $file(@files) # iterate through each file
{ print “Do you want to delete “, $file, “ :”;
 $answer = <STDIN>; # get the user response
 if ($answer == 1) {
 system “del $file” ; # delete the file
 print “\n > deleted “, $file, “\n”; # inform the user
 }
}
chdir $curdir; # get back the original directory
print “done \n” # inform the user

FIGURE 14.2 Illustration of capabilities of scripting language Perl.

TABLE 14.1 Character Meanings in Regular Expressions in Perl

Character Meaning Backslash Character Meaning

{n, m} At least n and at most m times \d [0..9]
{n,} At least n times \D Nondigit
{n} Exactly n times \f Form feed
* 0 or more times \n New line
+ One or more times \r Carriage return
? 0 or 1 time \s White space character
^ Matches prefix \S A nonwhite space character
$ Matches suffix \t Tab
\b Matches at word boundary \w Word character [0-9a-z A-z]
\B Matches nonword boundary \W Nonword character

Scripting Languages    ◾    515  

built-in function readdir/1. Note that the library functions opendir/2 and readdir/1 are part of
the built-in language library, and are not operating system utilities like del that delete a file by
invoking a system shell. After all the files are read into the array variable @fileList, the direc-
tory-stream DIR is closed using a library command close/1. The path of the current directory
is stored in the variable $curdir using a statement chdir() that returns the path of the current
directory. An iterator takes one file at a time in the variable $file, and processes it. Each time
the user is asked for permission to delete the file, and the file is deleted using a shell command
system (“del $file”) if the user types in ‘1’. Otherwise, the file is retained. Note that the print
statement can print multiple strings separated by a comma in the same line, and uses ‘\n’ to go
to the next line.

14.3 CASE STUDY
This section shows five major scripting languages and their characteristics that make them
suitable for scripting. The languages Perl and Ruby started as scripting languages, and added
more abstractions as they grew to make them richer. However, Prolog and Python are regular
programming languages that have extensive interface with system utilities, string and text
processing capability, and file and directory manipulation capability to provide support for
script programming. PHP is a language that grew out of Perl to support web-based program-
ming, and provides all the features of Perl. In addition it supports interface to XML, AJAX,
and supports the development of server side scripting. There are other languages like Lua and
Clojure that have been developed as scripting languages. All these languages are quite rich
and evolving. It is impossible to discuss all the programming features of these languages. We
will restrict our discussion to summarizing the features that enables script-based program-
ming, and discuss one running example that has been implemented in Python, Prolog, and
Ruby. We have already seen an example of Perl-based script programming in Figure 14.2.

14.3.1 Abstractions and Programming in Perl

Perl started as a project to develop control abstractions and textual pattern-matching capa-
bility for high-level system programming scripts. It has extensive pattern-matching sup-
port, and has been used in data-driven programming and system programming to handle
large-scale data, such as human genome and microbial genome analysis in addition to
writing high-level programs to develop system routines.

14.3.1.1 Data Abstractions in Perl
Perl supports literals including integers and floating point numbers, scalar variables,
array variables, list-like arrays, associative arrays, and strings. Strings could be both single
quoted or double quoted. Both Single and double quote strings are sequences of characters.
However, the meaning of backslash in single quoted string and double quoted string is dif-
ferent: in a single quoted string backslash is not a special character but just a backslash. In
a double quoted string, backslash is used as prefix for special characters: a single quote is
represented by a backslash followed by a single quote, and a backslash in a string is repre-
sented by a backslash followed by a backslash. A backslash followed by special characters is
used for next line, return, tab, bell, backspace, etc. For example, \n denotes next line, and \a

516    ◾    Introduction to Programming Language

denotes bell, and so on. The language supports arithmetic operators; logical operators; bit-
wise logical operators; and string operators such as concatenation denoted by ‘.,’ less than
denoted by ‘<,’ not equal denoted by ‘! = ,’ less than or equal to denoted by ‘ = <’ etc. The
operator ‘+’ is converted into concatenation operator if one of the arguments is a string and
the other is a number. A scalar variable has a prefix ‘$’ and an array variable has a prefix
‘@’ as illustrated in Figure 14.2. An associative array variable has a prefix ‘%’ followed by an
identifier. Each element of an associative array is a scalar variable.

14.3.1.2 Control Abstractions in Perl
Perl also supports multiple assignment statements like $x = $y = “Perl String, which means
to assign the string “Perl String” to both the variables $x and $y. An operator of the form
$x = $x <operator> <operand> can also be written as $x <operator> = <operand>. For
example, $x = $x * 4 is the same as $x * = 4. Similarly, $x = $mystring. = “jpeg” is the same
as assigning $mystring.jpeg to both the variables $mystring and $x. Perl also supports
autoincrement and autodecrement operations. For example, ++$x has the same meaning
as $x = $x + 1, and - $x has the same meaning as $x = $x – 1.

The array representation uses subrange mixed with discrete values. For example, $a = 4;
$b = 7; $c = “cs;” $d = ($a..$b, $c, 5) is equivalent to $d = (4, 5, 6, 7, “cs”, 5). Perl supports
a function call chop() that removes the last character from a string, and is used mainly to
remove the trailing white space such as blank, linefeed, and tab, from a string. Reading
from the standard input is denoted by <STDIN>, and writing into a standard output is
done using the statement print, as illustrated in Figure 14.2.

Perl supports insertion of elements at the end of an array using push operation, unshift
operation to insert at the beginning of an array, and using assignment operation. For
example, @myarray = (10, @myarray) will put 10 as the first element of the array, followed
by the rest of the elements. Similarly, @myarray = (@myarray, 20) will insert the integer
20 as the last element of an array. Assignment operations can also be used to take element
out of an array and to swap elements. For example, ($first, @rest) = (1, 2, 3) will assign the
value 1 to variable $first, and assign the array (2, 3) to the array variable @rest. The opera-
tion ($x, $y) = ($y, $x) will swap the value of the variables $x and $y. If a scalar variable is
assigned to an array, then it picks up the first element of an array. For example, $x = @y =
(a, b, c) will assign the value a to the scalar variable $x. Pop operation takes an element out
of the right side of an array, and shift operation takes an element from the left side of an
array. In addition, Perl supports other built-in functions such as reverse and sort.

Perl supports while-loop, for-loop, if-then-else statement, until-loop, and foreach state-
ment. An until-loop is similar to while-loop, except it checks for the negation of a condi-
tion to be true. The abstract syntax for the control abstractions are given below

<for-loop> ::= for (<initial-expr>; <final-expr>;
<increment-expr>) {block}

<iterate-statement> ::= foreach <scalar-variable>
(<array-variable>) {<block>}

<until-loop> ::= until <condition> {<block>}
<while-loop> ::= while <condition> {<block>}

Scripting Languages    ◾    517  

The use of regular expressions in Perl is defined in Subsection 14.2.4, and an example of
Perl script is described in Figure 14.2.

14.3.2 Abstractions in PHP

PHP is a general-purpose scripting language built on top of Perl that, in the current ver-
sion PHP 5, is used for writing web-server side script and stand-alone graphics programs.
PHP code can be freely mixed with XML and HTML code using a PHP tag of the form
‘<’ ?php <PHP-program> ‘?>’. PHP program can also be embedded in an XML or HTML
program using traditional script tag as ‘<’ script language = "php" ‘>’ <PHP-program>
‘</’ script ‘>’.

PHP, like other traditionally script languages, is dynamically typed: variable-types need
not be declared. As in Perl, PHP variables have a prefix of $. PHP supports basic data types
such as integers, floating point, Boolean, and nil. PHP supports many data-structures such
as dynamic arrays, hash tables, and lists. PHP also supports strings and string operations.

PHP 5 borrows lots of object-oriented programming style and use of reserve words from
C++. The objects are reference types, and are referenced through handles. Handles are
abstractions that contain the pointers, sizes, and other information to access the objects.
However, they do not allow direct manipulation of pointers. PHP supports private and
protected member variables and methods. It supports constructors and destructors like
C++ does. PHP supports abstract classes and interfaces. Dynamic arrays are treated as
objects, and an iterator can iterate through the elements of a dynamic array. Parameter
passing is call-by-value to copy the reference of the objects.

In terms of control abstractions, PHP supports if-then-else statements, case-statements,
while-loops, function calls, and for-loops. PHP supports web-based interaction through
the forms displayed at the client-end. PHP uses $_GET and $_POST functions to inter-
act with the user on the web. For example, a statement like $_GET(name) will get the
value for the name field. The same is true for $_POST. However, $_POST supports secure
transmission. PHP supports all arithmetic operators, logical operators, and comparison
operators. In addition, it supports array operators such as union, equality, identity, and
their negations. Union joins two arrays; equality returns true if key-value pairs of two
arrays match; identity also checks for the same order in addition to key-value pair equal-
ity. PHP supports extensive string operations including encryption, because the informa-
tion has to be transmitted over the web. The class of string operations is (1) traditional
string operations such concatenation, splitting, removing white characters, and length;
(2) input-output; (3) encryption and decryption; and (4) parsing and conversion to other
types.

PHP supports extensive functions related to dynamic array. An array is used as a hash-
table, as an ordered sequence from which elements can be taken out like a stack, elements
can be inserted at any location, specific elements and duplicates can be removed, array can
be sorted, and so on.

PHP supports extensive file-management; directory management; built-in file-transfer
to download and upload file from remote computers; XML interface utilities; and com-
pression utilities. PHP also can work with AJAX because of its capability to interface with

518    ◾    Introduction to Programming Language

HTML and XML. File management functions can be categorized as reading, writing, read-
ing attributes of a file, modifying attributes of a file, deleting files, creating a unique tempo-
rary file, etc. Directory management functions can be characterized as changing directory,
reading filenames from a directory, making a new directory, and identifying the path of
the current directory.

14.3.3 Abstractions and Programming in Python

Python is a regular programming language with a rich set of data and control abstrac-
tions. It supports imperative programming, functional programming, and object-oriented
programming. In addition it has elaborate string-processing and string-matching capa-
bility, capability to handle regular expressions, interface to operating system commands,
interface to socket-based programming for distributed computing and computing over the
Internet, and XML for web programming.

14.3.3.1 Data Abstractions in Python
Python supports basic data types such as integer, floating points, characters, and Boolean
values. It supports arrays, hash-tables, lists, tuples, and ranges. Range is an ordered set that
can be written in the form of lower bounds, upper bounds, and increments. The abstract
syntax for range is <range-definition> ::= range‘(‘ <lower-bound>, <upper-bound>,
[<increment-expression>] ‘)’. For example, range(3, 6) is equivalent to an ordered set (3, 4,
5, 6), and range(3, 13, 3) is equivalent to the ordered set (3, 6, 9, 12, 13). Python also sup-
ports sets. The abstract syntax for sets is <set-definition> ::= ‘{‘ {<member-element>}* ‘}’.
For example, an abstract syntax for dictionaries (hash-table) is <dictionary> ::= ‘{‘ {<key>:
<value>}* ‘}’. An abstract syntax for lists is <list> :: = ‘[‘{<member-element>}* ‘]’.

14.3.3.2 Control Abstractions in Python
Python supports almost all major control abstractions including an elaborate scheme of
iterators; multiple built-in list operations such as append, inserting an element, deleting
an element, finding out the first index of an element, stack-based operations by treat-
ing list as a stack, queue-based operations by treating a list as queue, sorting a list,
and reversing a list; set-based operations such as union, intersection, and difference;
 dictionary-based operations such as inserting a key: value pair, deleting an element given
by the key and, accessing the value associated with a key. The iterator can iterate on a set,
a list, or a range. It has a powerful comparison operation that compares two sequences
element by element and returns false upon first mismatch. For example, (10, 12, 14) <
(10, 11, 15) is false because 12 > 11; and (a, b) < (a, b, c) is true, because the first set has
only two elements that are the same as the first two elements of the right-hand side set,
and the third element is missing from the first set; the right-hand side set has an addi-
tional element.

14.3.3.3 Classes and Objects in Python
A class in Python is a set of simple statements or function definitions. Each identifier on
the left-hand side of a statement becomes an attribute of the class and can be accessed as

Scripting Languages    ◾    519  

an attribute of an instance of the class. The abstract syntax rules for a class definition in
Python is as follows:

<Class-definition> ::= class <identifier>[‘(‘<identifier>’)’] ‘:’
 [<InitMethod>] (‘pass’ | {<Statement>}*)
<InitMethod> ::= def _ init _ ’(‘self{<’,’Parameter>}*’)’:
 {<Statement>}*

The first identifier in the class definition is the class name and the second identifier within
the optional parenthesis is the name of the parent class. Parent class name is used for sub-
class definitions to inherit methods. The class name is separated by statements or method
definitions by a colon. Python has an optional “__init__” method that is executed as soon
as an instance of the class is created. Note the presence of double underscore ‘__’ before and
after “init”. There are many built-in attributes in class definition such as __doc__ that are
used for specific purposes to access attributes within a class.

Example 14.4

The definition given below can be tried using interactive Python. Note that
 syntax in Python is quite unforgiving. You should not forget (1) the symbol ‘:’
after the class name or the function name and (2) double underscore ‘__’ before
and after init.

class complex_number:
>>> def _init_(self, realValue, imaginaryValue):
... self.real = realValue
... self.imaginary = imaginaryValue
...
>>>

After defining the class, an instance is created. The initialization method _init_
is automatically executed, and a pair with two fields is created as show below:

c = complex_number(3.0, 4.0)

Here the field c.real has value 3.0 and the field c.imaginary has value 4.0. A
class with extensible field can also be created by using a null body in the class as
follows:

>>> class student:
... pass
>>>

Now we can create an object Mary, and then add on the fields to it as given below:

Mary = student();
Mary.major = “CS”
Mary.status = ‘junior’

520    ◾    Introduction to Programming Language

14.3.3.4 System and Internet-Based Utilities in Python
Python supports extensively built-in system utilities. Some classes of the system utilities are
(1) directory-related utilities such as renaming a directory, deleting a directory, changing the
path to a directory, changing protection level of a directory, etc.; (2) system call to invoke any
operating system utility; (3) file-related utilities such as renaming a file, deleting a file, chang-
ing ownership, and protection level of a file; (4) process-related utilities such as spawning a pro-
cess, process waiting for other processes, and process sleeping for a specified time; (5) various
environment-related utilities; (6) extensive string processing capabilities such as concatenate,
substring search, removing trailing and leading spaces, splitting strings at a specific substring
or a character; and (7) pattern matching using regular expressions. In addition, Python sup-
ports pickling. Pickling linearizes a data-structure into a string form that can be recovered by
unpickling. The pickling operation can be used for marshaling to transfer the information over
the Internet. Python also supports Internet-based operations such as sending mail and open-
ing a URL for reading the information, and interfaces to render multimedia streams.

Example 14.5

Figure 14.3 illustrates script-based programming using Python by translating the
Perl program in Figure 14.2. The program illustrates many concepts and syntax such
as (1) definition of functions; (2) text processing; (3) interface with system utilities;
(4) use of os (operating system) module and io (input-output) module; (5) use of con-
trol abstractions such as while-loop, iterator, if-then-else, and function call using
parameter passing; and (6) use of data abstractions such as lists, strings, and strings
as array of characters.

Module os provides three utilities: getcwd(), chdir/1, and system/1. The utility
os.getcwd() returns the current working directory, the utility os.chdir/1 changes
the current working directory, and the utility os.system/1 invokes a shell to exe-
cute operating system commands. Module io is responsible for built-in utilities
for input- output in Python and provides three utilities here: open/2, readline(),
and close(). The utility io.open() opens a file for reading, the utility close() closes
the given stream, and the utility readline() returns the next line in the currently
open file.

Every program file in Python is a module. There are two programs in this module:
readfile/1 and delete/0. The functional procedure readfile(tempfile) reads the names of
all the files in a directory, and returns a list of filenames in the given directory. The
procedure delete() deletes the needed files after interacting with the user. The global
variable mydir is used by both subprograms. The variable tempfile is local to delete(),
and has been passed as parameter to the subprogram readfile/1.

The local variable fileover is initialized to false, and is set to true after the end- of-file
is reached. The variable filenames is initialized to an empty list, and keeps gathering
one file-name at a time in every iteration-cycle until the end-of-file is reached. The
variable filehandle is a handle to the stream corresponding to the file, and is used for
reading from the stream and closing the stream. Using while-loop, each file-name is

Scripting Languages    ◾    521  

read iteratively, because the variable tempfile contains only the filenames separated
by linefeed character ‘\n.’ After the end-of-file marker is reached, the utility readline()
returns an empty string, and the Boolean variable fileover is set to true to take the
control out of the while-loop.

The subprogram delete() has six local variables: tempfile, curdir, file, files, answer
and deletecommand. The names are intuitive. The variable tempfile stores the path of
the tempfile that is created by the system command os.system(“dir /B mydir > temp-
file”). The variable curdir stores the current directory. The variable files is the list of
file-names returned from the subprogram readfile. The variable file is a scalar vari-
able that picks up one file-name at a time from the list of file-names in variable files.
The variable answer collects the response from the user and stores a string that is an
indexible sequence of characters. The subscripted variable answer[0] denotes the first
character in the user-response. The variable deletecommand is bound to a command-
string to delete the required file.

The program is straightforward. First the current path is stored in the variable
curdir, and the command-string is bound to the variable command. Note that

import os # import module for operating system utilities
import io # import module for reading and writing in files
global mydir # declare variable mydir as global
mydir = “C:\\Users\\Arvind\\Desktop\\testdir” # assign value

def readfile(tempfile): # reads all filenames from tempfile
 fileover = False # used to get out of while-loop
 filenames = [] # initialize the list of file names
 filehandle = io.open(tempfile) # open a temporary file
 while (fileover == False): # repeat until end of file
 filename = filehandle.readline() # read one line
 if (filename == “”): fileover = True # end_of_file
 else: filenames.append(filename) # insert the filename

 else:
 filehandle.close() # close the file stream
 return filenames # return the list of filenames

def delete(): # deletes the files interactively
 tempfile = “C:\\Users\\Arvind\\Desktop\\temp001”
 curdir = os.getcwd() # get the current directory in curdir
 command = “dir /B “ + mydir + “ > “ + tempfile # make a command
 os.system(command) # collect all the filenames in a file
 os.chdir(mydir) # change directory to mydir
 files = readfile(tempfile) # assign the returned values
 for file in files: # iterate over the list of files
 answer = input(“Do you want to delete “ + file + “ :”) # get input
 if (answer[0] == “y”): # get the first letter of the string
 deletecommand = “del “ + file # concatenate del with file
 os.system(deletecommand) # delete the corresponding file
 print(“\n deleted file: “ + file + “\n”) # inform
 os.chdir(curdir) # change back to the old directory
 print(“done \n”) # inform user that task is done

FIGURE 14.3 Illustration of script programming using Python.

522    ◾    Introduction to Programming Language

 command-string is built like a string using multiple substrings, and the operator ‘+’
is used for concatenating the strings. The os utility os.system/1 takes the command-
string and invokes the system command ‘dir /B > tempfile’. The command puts all
the visible user-file-names in tempfile in the shortest version, without associated
 attributes. The file tempfile is passed to the subprogram readfile as a parameter. After
returning from the subprogram readfile/1, the iterator iterates over the list of files,
and each time the file-names bound to variable file is displayed to the user, and user
response is collected in the variable answer. If the first character of the response is
“y” then the file is deleted using the command deletecommand that is constructed as
a string as explained previously. After the list of file-names files is empty, the control
comes out of the iterator and the command os.chdir(curdir) changes the directory
back to the original directory.

14.3.4 Script Programming in Prolog

Prolog is a logic programming language. Different variations of Prolog have different built-
in capabilities and syntax to handle system utilities. Sicstus Prolog, Bin Prolog, and GNU
Prolog support system library for invoking shell for system routines; library for interfacing
with multithread-based programming; iteration capability; and socket-based program-
ming. Text and string processing have been developed using name/2 predicate, atom_
chars/2 predicate and list-processing utilities.

Different Prolog implementations support different libraries. Sicstus Prolog—one
popular commercial version of Prolog developed at the Swedish Institute of Computer
Science (SICS), supports extensive libraries for tree-based operations; graph-based opera-
tions; list-based operations; set-based operations; system utilities; process creation utilities
that spawn a process to execute operating system utilities; file and directory creation and
manipulation predicates such as file-delete, make-directory, absolute-file-name, remove
a directory, changing ownership, and protection of a files; heap (heap as used in data-
structures) operations; association list (hash-table)–based operations; dynamic array
operations; object-based operations; socket-based operations; thread-based operation;
dynamic generation of XML tags and documents for dynamic XML; interface to data-
bases; and interface to web-scripting languages like TCL. Prolog also supports predicates
that can build the predicates as a list of atoms, and then convert them into a predicate to
be executed.

Other popular Prolog implementations are GNU and SWI Prolog. GNU and SWI
Prolog also support extensive library systems. GNU Prolog has extensive built-in predicates
for system programming such as file and directory manipulation, invoking a system call
to invoke a shell that will execute underlying operating system utility. In addition, GNU
Prolog supports destructive and backtrackable assignment of global variables. A variable
can be assigned to any value, and a global array of objects can also be created. SWI Prolog
has interface with Internet programming and XML. All three popular versions are con-
tinuously evolving, and integrated with built-in database programming capability, and
capability to dynamically build predicate.

Scripting Languages    ◾    523  

Prolog’s script programming capability has been used in large-scale microbial genome
comparison by the author, which involves integration of system utilities, data-driven pro-
gramming, pattern matching, and string-processing capabilities.

Example 14.6

In the following program (see Figure 14.4), we use GNU Prolog to translate the Perl
Program given in Figure 14.2 to selectively delete files in a given directory. GNU
Prolog has many essential built-in system predicates to avoid the shell-based invoca-
tion of operating system utilities. There are four built-in predicates: directory_files/2,
working_directory/1, change_directory/1, and delete_file/1. The predicate directory_
files/2 creates a list of file-names of all the files in a directory without attributes; the
predicate working_directory/1 returns the current working directory; the predicate
change_directory/1 changes the current working directory to the desired directory,
and the directory delete_file/1 deletes the given file.

The predicate var/2 picks up the desired directory to be processed: the variable Dir
gets bound to the desired directory. The predicate directory_files/2 returns a list of all
the files in the variable FileList. The predicate working_directory/1 returns the cur-
rent working directory in the variable Curdir. The predicate change_directory/1 alters
the current working directory to the directory held in the variable Dir. The predicate
delete_files/1 interactively deletes the files held by the variable Filenames after inquir-
ing the user. After the necessary files are deleted, the directory is changed again to the
original directory using the predicate change_directory/1.

The procedure delete_files/1 deletes tail-recursively one file at a time in each cycle.
In each cycle, the predicate delete_one_file/1 is called with the next file. After the

:- var(mydir, ‘C:/Users/Arvind/Desktop/testdir’).

delete:-
 var(mydir, Dir), /* the required directory is in the variable Dir */
 directory_files(Dir, FileList), /* list of files are in the variable FileList */
 working_directory(CurDir), /* current directory in the variable CurDir */
 change_directory(Dir), /* go to the required directory */
 delete_files(FileList), /* delete interactively the required files */
 change_directory(Current). /* go back to the original directory */

delete_files(FileList) :-
 (FileList == []→ true /* exit the tail-recursion if FileList is empty */
 ; FileList = [MyFile|Fs], /* get the first file-name in the variable File */
 delete_one_file(MyFile), /* interactively delete that file */
 delete_files(Fs) /* invoke tail recursion for rest of the files /*
).

delete_one_file(FileName) :-
 format(“Do you want to delete: ~a ~n”, [FileName]), /* interact */
 read_atom(Answer), /* read the response */
 (Answer == y →
 delete_file(FileName), /* delete if the response is affirmative */
 format(“deleted file ~a ~n”, [FileName]) /* inform about deleted file */
 ; true /* otherwise exit */
).

FIGURE 14.4 An illustration of script writing in GNU Prolog syntax.

524    ◾    Introduction to Programming Language

predicate delete_one_file/1 is over, delete_files/1 is called tail-recursively with rest of
the files. The process is repeated until the list-of-files FileNames becomes empty.

The procedure delete_one_file/1 inquires the user using format/2 predicate for
confirmation to delete a file. Upon an affirmative answer the file is deleted using a
built-in system predicate delete_file/1; upon negative answer, no action is taken. No
action is shown with right-hand side as trivially ‘true.’

14.3.5 Script Programming in Ruby

As we have seen, Ruby is a full-fledged multiple paradigm programming language that
integrates functional and object-oriented programming. In addition, every data in Ruby
is an object. Ruby supports: (1) system calls using the built-in function system/1; (2) string
processing such as sub/2 to substitute a substring with another substring, chop() to remove
the last character, conversion of an object into string using a built-in function string/1;
(3) signals using a function trap/2; and (4) regular expression. In terms of data abstrac-
tions, Ruby supports arrays, hash-table of key-value pairs, global variables, strings, and
ranges. Ruby has an extensive support of range such as finding out minimum and maxi-
mum value, concatenating the ranges, and iterating through the elements in a range using
foreach-construct. In addition, we have seen that Ruby is a full-fledged object-oriented
language supporting derived class and inheritance.

Ruby has full support for various control abstractions such as if-then-else statements,
case-statements, while-loop, for-loop, until-loop, for-each iterators, function calls, and
parameter passing. Ruby also supports invocation of threads (fibers), mutual exclusion,
socket-based programming for remote procedure calls, and integration to web program-
ming languages. Using its string processing capability, Ruby can be used to dynamically
generate and modify XML programs.

In terms of regular expressions and text processing, Ruby supports: (1) matching of
any subexpression any number of times; (2) skipping white spaces; (3) finding beginning
and end of a string; (4) matching words and characters; (5) converting upper case into
lower case and vice-versa; (6) concatenating strings; and (7) identifying special characters
in input line such as end-of-line tabs, and end-of-file.

Ruby has extensive built-in library for handling files and directory. Ruby can: (1) read files
in a directory and return as an array; (2) change name of a file or a directory; (3) check owner-
ship and change reading and writing privileges of a directory; (4) create and delete a directory;
(5) check the path of a file or a directory; (6) navigate through the directories; (7) create tem-
porary files in a directory; and (8) inquire about the existence and status of files in a directory.

Owing to these properties, Ruby satisfies all the requirements of being a scripting lan-
guage. The example given in 14.2 has been translated to Ruby syntax in Example 14.7.

Example 14.7

The program in Figure 14.5 is a Ruby version of the script program given in Figure 14.2.
You can immediately see the integration of object-oriented programming, func-
tional programming, and powerful system utilities in Ruby. Each data-element is

Scripting Languages    ◾    525  

an object, and there are many built-in system predicates as part of Ruby. Ruby also
uses dynamic arrays to simulate many data-structures like stacks and queues, and
sequences on which iteration can be performed. We will discuss the integration of
imperative programming, object-oriented programming and functional program-
ming in Ruby.

The program’s logic is quite familiar by now. The program uses five built-in mod-
ules: Array, Dir, File, Kernel and String. The function new and methods each and
push belong to the Array module; the utilities open, close, chdir and pwd belong to
the Dir (directory) module; the utility delete belongs to the File module; the utilities
gets and puts belong to the Kernel module; and the operator ‘+’ and the method lstrip
belong to the String module. Note that the functions written in a module are writ-
ten as <module-name>.<function-name> as in Array.new, Dir.open, filenames.push;
and built-in methods for objects are written as <object-name>.<method-name>, as in
d.each, d.close, and filenames.each. The symbol ‘.’ is also used for the composition of
the functions. For example gets.lstrip is a composition of two functions: the function
gets receives the input string, and the function lstrip removes the white spaces from
the left end of the string.

The variable mydir is assigned the path of my directory. The variable dirstream
is associated with the stream after opening the required directory. The variable file-
names is a dynamic array that is assigned the names of all the files in the required
directory. The variable myfile is associated with the name of a file in the iterator. The
variable answer holds the user response.

First a new dynamic array filenames is created. All the files in the directory
referred in the variable mydir are read into the array filenames using an iterator,
the file-names are pushed in the dynamic array, and the stream dirstream is closed.
Another iterator takes one file at a time from the dynamic array filenames, and

def deletefile
 mydir = ‘C:\Users\Arvind\Desktop\testdir’
 fi lenames = Array.new # create a new array filenames
 dirstream = Dir.open(mydir) # open the directory
 dirstream.each {|x| filenames.push(x)} # Read all file-names
 dirstream.close # close the directory stream
 curdir = Dir.pwd # store the current directory name in curdir
 Dir.chdir(mydir) # change the directory to the desired directory
 filenames.each {|myfile| # for each file do
 puts “Do you want to delete “ + myfile + “:” # ask user
 answer = gets.lstrip[0] # get the first letter
 if (answer == “y”) # if the answer is yes
 File.delete(myfile) # delete the file
 pu ts “\n > deleted “+ myfile + “\n” # inform user
 end
 }
 Dir.chdir(curdir)
 puts “done”
end

FIGURE 14.5 An illustration of script writing in Ruby.

526    ◾    Introduction to Programming Language

utilizes a string concatenation operator to ask a query from the user. The answer
by the user is collected by the built-in method gets, the method lstrip removes the
preceding white spaces, and the index 0 gets the first character of the string. If the
character is “y”, then the file in question is deleted using File.delete command. The
program exits after the iterator has processed all the files. Note that each control
structure is terminated using the reserve-word ‘end’.

14.3.6 Other Scripting Languages

Many other languages such as Clojure, Lua, and Scala also support scripting. We studied
the example of five programming languages: Perl, PHP, Prolog, Python, and Ruby. The basic
criteria for scripting is the interface with operating system utilities; built-in support for those
utilities whose effect is not persistent after the system shell terminates; string and text pro-
cessing; pattern matching for text patterns using regular expressions, and a rich set of control
and data abstractions. As languages get richer by supporting multiple libraries, the difference
between scripting languages and regular languages will become less obvious. Interoperability
between languages also reduces the need for the development of specific languages.

In future, the complex tasks will also include multithread programming, distributed
computing, mobile computing, multimedia programming, web-based computing, and
event-based programming. Any language that can be extended to incorporate these pro-
gramming paradigms, either through the use of libraries or through the use/design phi-
losophies, will qualify for the extended definition of scripting languages.

14.4 SUMMARY
The origin of scripting languages is in solving complex software tasks that involve gluing of
one or more aspects of system programming; system utilities; shell based programming; data
driven programming; text and string processing, pattern matching; and control and data
abstractions of regular programming languages. Earlier scripting languages such as Perl
started as building up control and data abstractions on top of batch script files to provide
more flexibility. Recently, regular languages can interface with system libraries and text
processing libraries, and can be used as scripting languages. At the same time, traditional
scripting languages have kept improving. Perl that started with limited incorporation of
control and data abstraction on top of batch files has added object-oriented programming
in addition to a rich set of data and control abstractions reducing the gap between scripting
languages and regular programming languages.

Shells usually keep their environment different from each other, unless the results are
imported by a shell from other shell’s environment. A shell can invoke another shell.
However, there is no communication between the calling and the invoked shell. However,
results can be imported or written into a persistent object such as file or database to share
the information between two shells. Operating system utilities can be executed using a
‘execute’ call (or system call) in a scripting language that invokes a new shell; the current
thread is usually suspended, whereas the invoked shell is executing. There are many types
of shells such as Bourne shell, Korn shell, C-shell, tcsh—a variant of C-shell, and Bourne
Again Shell (Bash).

Scripting Languages    ◾    527  

Perl is a rich scripting language and supports all the features of a scripting language
including object-oriented programming for modular script development. The language
supports basic data types; dynamic arrays, where the elements can be accessed by giving
index (array feature), and elements can be accessed, retrieved, and inserted from either end
(list-like feature); associative arrays; and objects. The language supports standard control
abstractions available in regular programming languages such as if-then-else statement,
for-loop, while-loop, repeat-until, and iterators. Perl allows shell-based execution of the
system utilities by using the statement ‘exec’, and supports many system utilities as built-
in library functions such as opening a file, directory, reading a file, and directory. Perl has
an elaborate regular expression and text processing library. Integration of these features
makes Perl a powerful scripting language.

PHP is a web scripting language with capabilities of regular programming language. It
is built on top of Perl, and the latest revision PHP 5 supports object-oriented programming.
PHP supports multiple built-in system handling utilities such as file management utilities,
directory management utilities, networking utilities, data base interface, and XML interface.

Python is a full-fledged language that supports imperative and object-oriented pro-
gramming, regular expressions, string processing, interfaces to operating system com-
mands, Internet socket-based programming, web-based programming, and XML using
various modules. In terms of data abstractions, it supports basic data types, arrays, lists,
sets, ranges, maps (hash-table). In terms of control abstraction, it supports multiple assign-
ment, if-then-else, case-statement, for-loop, while-loop, iteration on range, lists and sets,
thread-based programming, and socket-based programming for remote procedure calls.
Thus Python qualifies as a powerful scripting language for complex system involving oper-
ating system, networks, and web-based programming.

Prolog is a declarative language with full large-scale programming capability. Many
Prolog variations such as GNU Prolog and Sicstus Prolog have capabilities to invoke system
commands using the system predicate system/1, and support many built-in system level
commands. Prolog supports string processing library that has been extended to process an
extensive text processing library. By integrating the capabilities of the system library, text
processing library, and shell programming to invoke system commands in the underlying
operating system, Prolog can be used for script-based programming.

Ruby is a multiparadigm programming language supporting full-fledged integration of
object-oriented programming, functional, and imperative programming paradigm. It is
easy to write and has extensive built-in capability to process system utilities, strings, pat-
tern matching using regular expressions, and shell-based programming using a built-in
function system/1. Thus Ruby has been used extensively for script programming.

There are many other languages such as Clojure, Lua, and Scala that are used for
scripting. The purpose of the scripting languages is to be able to transparently execute a
 complex task by gluing various subtasks. It can be achieved either by integrating multiple
 paradigms, developing libraries, providing interface with operating system utilities, and
the development of interoperability with languages having scripting capabilities. The
future of scripting will involve the integration of concurrency, distributed computing, web
programming, operating system utilities, networking utilities, remote control of processes,

528    ◾    Introduction to Programming Language

and event-based programming. The major advantages of high-level scripting languages
will be in better software maintenance and faster software development time. One of the
problems with interpreted scripting languages is the execution efficiency. Thus there is a
need to develop interfaces with other programming languages so that executable code in
other compiled languages can be called by the scripting languages for better efficiency.

14.5 ASSESSMENT

14.5.1 Concepts and Definitions

Awk; Bash; Bourne shell; C-shell; command language; glue language; Korn shell; pattern
matching; Perl; PHP; pickling; Prolog; Python; regular-expressions; Ruby; script file; Sed;
shell; shell programming; socket; string processing; system call; system utilities; text pro-
cessing; unpickling; web-scripting.

14.5.2 Problem Solving

 1. Read a Perl manual, and write a program to delete all the files that have a given pat-
tern in their file-names.

 2. Read a Ruby manual, and write a program to remove the occurrences of the words
given in a data file.

 3. Read GNU Prolog manual, write a program to find out directories that have files
before a specified date, and print out the list of directories.

 4. Read Python manual, and write a Python program that displays the list of all the text
files in a directory that contain a pattern of text in their content. The pattern can be
defined by the Table 14.1 or any other equivalent table you want to define.

 5. Write a Python program to compare two files, and show the position of first mis-
match given as a pair (line number, column number). Try it out on a text file that has
approximately 20 lines.

 6. Write a Ruby program that compresses all the files that are bigger than a specified
size in a directory with an option to compress them.

14.5.3 Extended Response

 7. Compare the features in Ruby and GNU Prolog for writing system scripts.

 8. Compare the regular expression features of Ruby and Perl.

 9. Describe various features of a script programming language, and give a real world
example of the features in solving complex task.

 10. Read the manuals and compare various built-in system utilities, directory utilities,
and file-utilities in Perl, Python, GNU Prolog, PHP and Ruby.

 11. Read Python manual, and discuss how the language can be used for Web-based pro-
gramming involving XML files.

Scripting Languages    ◾    529  

FURTHER READING
Bansal, Arvind K. and Bork, Peer. “Applying logic programming to derive novel functional

 information in microbial genomes.” In Proceedings of the First International Workshop
on Practical Aspects of Declarative Languages, San Antonio, TX. LNAI 1551. New York,
NY: Springer-Verlag. 1999. 274–289.

Bolsky, Morris I. and Korn, David G. The New Kornshell Command and Programming Language.
Englewood Cliffs, NJ: Prentice Hall. 1995.

Bourne, Stephen R. “Unix time-sharing system: The Unix shell.” The Bell Systems Technical
Journal, 57(6). 1978. Available at http://www.alcatel-lucent.com/bstj/vol57-1978/articles/
bstj57-6-1971.pdf

Diaz, Daniel. GNU Prolog: A Native Prolog Compiler with Constraint Solving over Finite Domains.
Version 1.4.1. Revised 2012. Available at available on http://gprolog.univ-paris1.fr/manual/
gprolog.pdf

Fogus, Michael and Houser, Chris. The Joy of Clojure. Manning Publications Company. Greenwich,
CT, USA. 2011.

Ierusalimschy, Roberto, de Figueiredo, Luiz H., and Celes, Waldemar. Lua Reference Manual.
Available at http://www.lua.org/manual/5.1/

Johnson, Mark J. A Concise Introduction to Programming in Python. Boca Raton, FL: Chapman and
Hall/CRC Press. 2011.

Korn, David G. “ksh: An extensible high level language.” In Proceedings of the USENIX Very High
Language Symposium, Santa Fe, New Mexico. Berkeley, CA: USENIX Association. 1994.
129–146.

Lewis, Mark C. Introduction to the Art of Programming Using Scala. Boca Raton, FL: Chapman and
Hall/CRC Press. 2012.

Lutz, Mark. Learning Python. 4th edition. Sebastopol, CA: O’Reilly & Associates. 2009.
Odersky, Martin, Spoon, Lex, and Venners, Bill. Programming in Scala. Mountain View, CA: Artima

Press. 2008.
Thomas, Dave, Fowler, Chad, and Hunts, Andy. Programming Ruby 1.9: The Pragmatic Programmer’s

Guide. 3rd edition. Frisco, TX: Pragmatic Bookshelf. 2009.
Wall, Larry, Christiansen, Tom, and Orwant, Jon. Programming Perl. 3rd edition. Sebastopol, CA:

O’Reilly & Associates Inc. 2000.

531

C h a p t e r 15

Conclusion and Future
of Programming Languages

This is the time to sum up the course and summarize what programming languages
are about. We can put all the evolution in programming languages and their imple-

mentation in perspective as the application and architecture grew with time. We would
also like to visualize the direction of the development of new programming languages.

15.1 EVOLUTION OF PROGRAMMING PARADIGMS AND LANGUAGES
Programming is about automating a process. A process is defined liberally as any complex
task in daily life. Programs are made of basic operations, repeated operations, and mak-
ing choices between actions based on evaluation of a condition. Actions are often grouped
together and associated with an identifier, so that group of actions can be invoked from
multiple locations. The instructions and data have been classified by their common prop-
erties. These classifications are called abstractions. We saw various data abstractions and
control abstractions. Data-abstractions are single entities, composite entities, aggregations
such as collection, aggregation that can be extended dynamically, and entities that can be
created dynamically. Control abstractions are classified as assignment statement, sequence
of statements, blocks of statements with some common functionality, and functions—
blocks of statement bound to an identifier that can exchange information through the use
of parameters.

There are multiple aspects of associating values with an identifier; and their interaction
with memory location. How the identifier is mapped to values separates an imperative pro-
gramming from declarative programming. If an identifier is mapped to a memory location,
and memory location is mapped to a value, then it becomes an imperative programming
paradigm, where the value of a variable is dynamically destroyed and updated. The
destructive update causes loss of history, and it cannot be recovered if the future sequence
of statements does not yield a solution. However, it allows reusability of memory locations,
which is a huge advantage from the implementation viewpoint because of the smaller size

532    ◾    Introduction to Programming Language

of address space required by large software. However, assign-once property of declarative
programming reduces side-effects and allows backtracking to recover the past and search
alternate search space for solutions. The disadvantage of declarative programming without
mutable data-entities is the excessive use of address space because of the memory explo-
sion for repeated actions. Although part of it can be handled using smart compilers that
identify memory locations that can be reused, a recent trend is to allow mutable variables
and data-structures along with immutable data-structures like lists and strings.

We saw that languages and programming paradigms kept evolving with the evolution
of architecture and better understanding of advantages and disadvantages of other para-
digms. After debating the advantages of one paradigm over the other paradigms, pro-
grammers and language scientists have embraced good features of other languages and
paradigms by (1) developing meta-interfaces that allowed code written in one language to
be executed in another language, (2) developing virtual machines such that all languages
could be translated to common virtual machine, (3) borrowing abstractions in one para-
digm and language constructs in one language to other paradigms and languages, and
(4) performing deeper integration of paradigms to develop multiparadigm languages. The
problem with the deeper integration is the lack of (1) appropriate high-level constructs that
will facilitate deeper-level integration and (2) the lack of efficient compilers. This prob-
lem of lack of efficient compilers persisted in declarative languages for quite some time,
and later the problem of efficient compilation was also there for web programming and
multimedia languages. In recent years, the same problem is there with high-productivity
languages for massive parallel computing.

One of the controversial issues in programming languages has been the use of static
typing. Although the use of typing makes it cumbersome for programmers to track differ-
ent type of variables in their minds, especially for large-scale software development, there
are many advantages of types that help in making program execution easily maintainable,
robust, and efficient. The basis of types has been the sets and set-based operations as sets
can easily provide classification based on membership of data elements and the well-defined
operations associated with sets. Earlier the notion of types was quite fixed; the functions
were tightly coupled to concrete types of data elements. Later, this restriction was relaxed
by the introduction of type variables in generic functions. By instantiating the type vari-
ables at run time to concrete types using parameter passing, the same generic functions can
be used for different types of data-entities. Implementation of polymorphic languages has
additional overhead of translation. However, the advantages have been well accepted.

As the software complexity grew, the number of identifiers—variables, constants,
 function names, etc—and the number of statements in software also grew from a few
thousand to a few millions of lines. Libraries of code have to be managed and reused for
better software maintenance. This gave rise to the notion of modularity and regulating
visibility of the identifiers. Visibility of declared entities were controlled using many tech-
niques: (1) providing the scope rule with block, function, and procedures; (2) using module
boundaries; (3) using the object boundaries; and (4) using the class boundaries. The idea
is to avoid name conflict during the development of large programs. Modularity was also
needed to restrict the software library only to the part needed to solve a problem.

Conclusion and Future of Programming Languages    ◾    533  

Many distributed computing languages such as Emerald use flat structure of objects for
the ease of object-migration, and to avoid mishaps caused by altered inherited methods
stored in the library. However, inheritance also became a powerful means for the use of
off-the-shelf libraries and was invariably used in object-oriented programming languages.
By grouping data with the methods working on them, information hiding and modular
programming became easier, because the scope of the functions was also limited to data-
entities within a class definition. This feature of limiting the scope and visibility of both
code and data also provided the capability of objects to be mobile. The notion of inheri-
tance has some bottleneck in mobility, because all the class definitions up to the base class
have to be transferred to the remote node. However, class library and the packages have
made the software development incremental and facilitated software reuse.

The development of architecture and multiple processors being placed either in hardly
coupled or loosely coupled configurations started the development of language constructs
that will support multiple subtasks concurrently. There were two ways to exploit parallel-
ism: distribute the data on multiple processors or spawn multiple concurrent threads of
activities.

Lot of sequential programs had already been developed, and it is very difficult to develop
large scale thread-based concurrent programs because of the issues of deadlocks and rac-
ing conditions due to potentially incorrect placement of locks on shared resources. A
major effort was started to exploit automatic parallelization of programs to handle the
 above-mentioned two problems. Most noteworthy was the effort to develop parallelizing
compilers for Fortran programs. Automatic parallelization efforts led to exploring various
types of dependencies because of the data-flow and control-flow. The dependencies cause
the program statements to execute in a sequential order. If the dependency is because of
data-flow, then it is called data-dependency, and if it is because of control-flow, it is called
control-dependency. A dependency graph shows the partial order of execution of the state-
ments that would be executed with sequentiality embedded because of dependencies. The
sequentiality caused by control-dependency can be partially removed by unrolling the
loops or by concurrently executing all the possibilities of conditional statements in antici-
pation, and picking up one that matches with the successful conditional execution. The
basic idea in data-dependency is to maintain the sequential consistency. Sequential con-
sistency means that the results returned by the concurrent execution should be the same
as returned by sequential machines. One of the problems of automatic parallelization is
that the packing (serialization) and unpacking (deserialization) cost of transmitting data-
entities between processor. This overhead needs to be minimized. Otherwise, gain achieved
by concurrent execution is overshadowed by the overhead of packing-unpacking cost. This
asks for exploitation of coarse-grain concurrency rather than fine-grain concurrency.

Concurrency-based constructs are based on (1) spawning multiple threads that may
interact with each other, (2) multiple noninteracting activities in a task, or (3) asynchro-
nous actions and messages. When multiple threads share variables, sequentiality is intro-
duced. It can be handled using low-level locks or atomic actions. However, the use of locks
is a low-level construct, causes sequentiality overhead if not done optimally, and can cause
deadlocks if not done properly. If the subtasks are not interacting, they can be handled

534    ◾    Introduction to Programming Language

using cobegin–coend pairs. Multimedia programming languages such as SMIL use this
construct to render the media streams concurrently using <par> - </par> construct.

Declarative programming paradigms—functional programming and logic program-
ming paradigm—evolved because of the need of removing the intertwining of control
with logic in the programs by pushing control in the language’s implementation engine.
The idea was to make the program just logic + abstraction, which would improve com-
prehension and reduce the code size, thus improving the software maintenance. However,
declarative programming paradigm developers got caught into maintaining the purity of
the notion of variables to be immutable assign-once, and they used dynamic allocation
of objects in the heap. Assign-once property caused inefficiency in the execution of pro-
gram by increasing the overhead of memory allocation, reducing the reusability of mem-
ory locations, and replacing more easily comprehended iterative constructs by recursive
programming. This change in programming style made the earlier versions of declarative
languages quite different and inefficient from traditional programming style apart, and
their use remained limited to niche domains such as artificial intelligence. However, many
important constructs and concepts came out of declarative programming style that were
later embraced by new-generation languages, especially multiparadigm languages. Some
of these concepts are (1) use of iterators, where how the objects were accessed from the
aggregate data-entity is invisible to the programmer; (2) the notion of first-class objects,
where functions could be dynamically created as data and passed as parameters; (3) devel-
opment of efficient dynamic memory management techniques; (4) polymorphism that
was implicit in many declarative languages, and was declared explicitly in ML for the first
time. The programming language ML and its contemporary language Hope illustrated
the power of polymorphic declaration. Later, dynamic memory-management techniques
and polymorphism were applied in the multiparadigm languages and object-oriented lan-
guages successfully.

In the 1990s, as the Internet started growing and became ubiquitous, code and data-
mobility became a reality and became a necessity for resource sharing over the web. More
and more multimedia was transmitted over the Internet, and with the development of
massive storage technology, large-scale multimedia archival and rendering on a computer
became a reality. This gave rise to the growth of the web and multimedia-based technol-
ogy where code and data including multimedia could migrate. At the same time, desk-
top and laptop technology also saw tremendous growth. To enhance user-friendliness,
graphical interfaces were developed. With the growth of graphical interface, the visual
programming paradigm and event-based programming paradigm were developed. Visual
programming paradigm uses icons to represent a complex object. Visual drag-and-drop
technique along with mouse motion and mouse-clicking has been used to access utilities
easily compared to the use of commands. The use of signal-based programming has given
rise to a new programming style called event-based programming.

In an event-based programming, there is an event-source that keeps generating signals.
The application program creates an event-listener that dispatches events to an event-handler.
The event-handler, written by a programmer, performs an action based on the state of the sys-
tem and the event-signal. Many times, just the change in state is sufficient to initiate an action.

Conclusion and Future of Programming Languages    ◾    535  

The state of the system may change in response to an action taken by the event-handler. Event-
based programming is preferred over procedural input-based programming for interaction
with the real world because every event is registered, and action is taken as a direct response to
an asynchronous event. Many languages support event-based programming. Java, Javascript,
and C# are some popular languages for the development of event-based programming.

HTML is the first popular web-programming language. It has the capability of visualiza-
tion, formatting data using fixed tags, client-server interaction through the use of forms, and
hyperlinks to jump to other websites. XML extended HTML by incorporating user-defined
tags that allowed flat representation of complex structure. For example, complex images
and database can be written using flat structure of XML. Thus, XML became an interface
language to transfer data between different heterogenous applications. XML has also been
used to translate high-level domain specific web-based languages such as MathML and
ChemML, and for transmitting movies and video clips. By embedding the event-triggers
in XML and calling script written in event-based languages, web-programming and event-
based programming have been integrated. By allowing scripting language programs to be
called by XML, XML enjoys computational capability.

With the ubiquity of the Internet, code and data-mobility resulted into migration of
objects from one node to another node. This concept was further extended to integrating
event-sensing reactive autonomous objects that could migrate from node to node. These
objects are called agents, and a new style of agent-based programming has been developed
around the concept of data and code mobility. Many agent-based programming languages
have been developed on top of Java language. By incorporating knowledge bases and intel-
ligent reasoning, intelligent agents can use their own knowledge-base to infer the situation
and take an autonomous action. Many intelligent agent languages have been developed
around the BDI (belief, desire and intention) model. Beliefs and desires are also part of
knowledge bases, and each agent’s knowledge base has a library of plans that guide the
agent to react in case of a sensed value and the context. Many intelligent agent-based lan-
guages integrate logic programming paradigm for the knowledge bases and object- oriented
programming paradigm for object mobility.

After living with different paradigms separately for such a long time, language scientists
and programmers have started realizing that a single paradigm is not sufficient for large-scale
programming. Multiple-programming paradigms are being integrated into modern-day lan-
guages either as add-on libraries or by developing a hybrid paradigm such as integration of
functional programming and object-oriented programming in Ruby and Scala or integration
of narrowing and unification in the languages integrating functional and logic programming.

As the packing of multiple processors within a computer increased, it became clear that
languages developed for uniprocessors are unsuitable for large-scale cluster of computers
because of many reasons: (1) the languages used low-level constructs for exploiting con-
currency, (2) there was significant overhead of the code and data migration in distributed
memory models, (3) there was no support for reusability and software maintainability.
This led to the new memory models and new abstractions for high-productivity massive
parallel languages that could easily map on massive parallel computers based on cluster-
based configuration.

536    ◾    Introduction to Programming Language

Recently many languages have been proposed for high-productivity massive parallel
computing. These languages support different constructs that specify a region of cluster
where computation takes place, distributing a collection of data item on different regions
of cluster for better data-parallelism, and dividing global memory space into multiple par-
titions to exploit both data-parallelism and task parallelism. A new memory model PGAS
(partitioned global address space) has been used by these languages that supports local
computations as well as the capability to asynchronously spawned remote computation.
However, whether the mapping of the data-structures should be user-defined or automati-
cally done by the compiler is still a controversial issue. Most of the programmers are not
experts in understanding what would be the best way to map a solution, and they do not
understand the intricate relationship between data representation and its effect on effi-
cient program execution. This controversy may continue for quite some time. Some of the
new languages such as X10 and Chapel are efforts in this direction. Both these languages
integrate object-oriented programming for large-scale reusable software development and
support constructs that facilitate mapping arrays on PGAS to exploit parallelism. The evo-
lution will keep growing in this direction as more supercomputers become part of global
networks. Consequently, web programming and event-based programming will also be
integrated with such languages.

With this pace of technological development, we will have current-day supercomputers on
our desktops somewhere in the next decade. Without the development of high- productivity
languages that are easy to program and maintain, large-scale software development will
not be possible. The major issues in the development of high productivity languages are (1)
mapping programs automatically to different regions of cluster of computers for efficient
execution of programs, (2) developing user-friendly techniques for program development
so that programmers do not have a conception-disconnect with the use of new constructs,
and (3) reducing the communication overhead of code and data transfer between various
processors and memory in any architecture used for supercomputers. At present there are
different topologies of interconnection of processors in supercomputers, and there is no
standardization. Besides, different classes of problems are better suited for certain class of
architectures. Thus, the idea of coming up with a universal high-productivity language for
massive parallel computers is quite a challenging task.

15.2 EVOLUTION OF IMPLEMENTATION MODELS AND COMPILERS
Now we turn our attention to the evolution of the implementation models and the devel-
opment of efficient compilers that supported the efficient execution of these languages.
Without such development, many important classes of languages will die. After all, our
aim is to execute the software efficiently, as the purpose of any software development is to
efficiently solve a real world problem.

With the change in the language paradigms, compiler and implementation technology
also evolved. This evolution facilitated the development of future languages as language
designers realized the possibility of efficient implementation of various adopted con-
structs from other programming paradigms. The growth in hardware and architecture
has also played a major role in the efficient implementation of compilers and execution of

Conclusion and Future of Programming Languages    ◾    537  

low-level code. The compiler technology and the implementation engines of today would not
have been conceivable with hardware available two decades ago.

The first implementation was static allocation of memory, which has the advantages
of direct memory access. However, it lacked memory reuse and dynamic allocation of
memory. This restriction limited the development of the programming constructs that
supported recursive programming and the use of recursive data-structures and dynamic
objects. Stack-based allocation quickly followed, which allowed recursive procedure and
memory reuse: the whole frame of a procedure could be reclaimed after the called pro-
cedure terminated. For the recursive data-structure and dynamic objects, there was still
no concept of dynamic memory management. However, many languages used operating
 system–allocated memory in a heap that was not recycled. C was such a language that was
very popular in the late 1970s. Around the same time, dynamic memory management and
the garbage collection idea was developed for functional programming languages such as
Lisp. The concept of dynamic memory management revolutionized (1) the development of
data-abstractions that could be extended at run time; (2) the concept of dynamic alloca-
tion and reclaim of memory allocation of objects in a heap; and (3) the implementation of
polymorphism, because objects could be created and kept in the heap. As garbage collec-
tion techniques improved, the overhead of dynamic memory management reduced. The
implementation model of object-oriented programming used extensively the concept of
heap and extended the concept of object for runtime access of the code area using the refer-
ences from the objects. Many languages—such as C++, Java, and C#; functional program-
ming languages; logic programming languages; dynamically typed languages, including
multiple web programming languages; and multiple paradigm languages, such as Ruby
and Scala—heavily use the concept of heap and dynamic memory management. Logic and
functional programming languages used more than one stack for the implementation of
the concept. Prolog uses a trail-stack to backtrack in case the exploration of search fails
in a branch. The development of low-level abstract machines for functional and logic pro-
gramming languages improved their execution efficiency significantly to make them main-
stream languages instead of fancy prototype languages during 1980s.

The development of the distributed computing paradigm started the concept of seri-
alization and deserialization and interplay of operating systems to connect to remote
ports for communication with remote processes. With the development of technology to
transparently connect to remote ports, a whole new development of web-based languages
became possible: hyperlink-based visualization became possible. Event-based program-
ming started the concept of event-handler instead of sequential thread of execution in pro-
cedural languages. Web-based programming showed the importance of virtual machines
to handle the problem of heterogeneity. The use of just-in-time compiler improved the
execution efficiency lost because of zero address virtual machines.

Owing to this improvement in implementation models, we have many truly multipara-
digm languages that integrate multiple paradigms such as functional and object-oriented
languages, the concept of mutable and immutable objects, and the integration of unification
(concept first proposed for logic programming) with narrowing (concept first proposed
with functional programming). Polymorphism and object-oriented programming have

538    ◾    Introduction to Programming Language

become accepted features in most of the modern-day languages and are being extended to
new multiparadigm languages for massive parallel supercomputers. C# integrates event-
based programming, object-oriented programming, multithread-based programming,
imperative programming, and web-based programming.

15.3 CONSTRUCT DESIGN AND COMPREHENSION
One of the important concepts in language development is to design concepts that are
comprehensible and easy to use. Another issue is to communicate the meaning of these
constructs to the programmers for formal design of compilers and to explain the mean-
ing to the programmers. In the procedure-oriented model for a uniprocessor machine,
the control flow was straightforward, except for the unconditional jump statements. To
explain procedural languages constructs, three formal notions of semantics—operational,
axiomatic, and denotational semantics—were developed. Although these semantics are
reasonably well defined for imperative uniprocessor programming languages based on
state transitions, they were not good for (1) explaining concurrency constructs, (2) con-
structs in object-oriented languages, (3) event-based programming languages, and (4)
domain-specific languages that are dependent on state transition of the system. Later
behavioral semantics was introduced for state transition of the systems. However, they are
still evolving.

15.4 FUTURE DEVELOPMENT OF PROGRAMMING LANGUAGES
Supercomputers currently are in the range of petascale computing (1015 operations per
 second), and the laptop computations are in gigascale computing (109 operations per
 second). The massive supercomputers of today are being built using clusters of computers.
As the technology evolves, and today’s laptops move to terascale computing and mas-
sive parallel supercomputers move to exascale computing, the need for concurrent
 multithreaded computation will be felt more. Number of spawned threads and their man-
agement will become a serious issue. However, as our experience shows, humans are not
good in programming low-level programming constructs, as they cannot comprehend
enhanced complexity caused by low-level instructions. Thus new high-level concurrency
constructs that automatically handle low-level locks, and mapping of computations on
processors have to be devised. Program and data segments will be mapped to graphs, and
these graphs will be automatically mapped to different regions of clusters of processors.

For large-scale software development, object-oriented programming will be integrated
with graph-based concurrent programming. However, as the supercomputers come to
desktop and laptops, the languages will need to acquire interactive capability provided by
event-based programming and web programming in addition to current effort to integrate
object-oriented programming and concurrent programming. More and more languages
will have a multiparadigm approach. We already see this direction in languages such as
C#, Java, Ruby, and Scala, and to a limited extent on massive parallel computing languages,
such as X10 and Chapel. Table 15.1 shows the characteristics of various programming
paradigms, and Figure 15.1 illustrates a possible paradigm distribution from high-end
 computing to more interactive low-end commercial computing.

Conclusion and Future of Programming Languages    ◾    539  

At the supercomputing end, there is more need to develop large-scale software for
 input-driven computation. At the personal computing end, there is a need for interaction,
web sharing of resources, and graphic visualization. Because parallel computers will be in
both the supercomputing end and at the personal computing end in the future, concurrent
programming will be a needed paradigm in languages. Future commercial languages will
integrate all of the above programming paradigms with more emphasis on the integration
of event driven, web programming, object-oriented, and concurrent programming para-
digms. The languages will support both mutable and immutable objects, and will support
a declarative programming paradigm mixed with traditional imperative programming
constructs. The trend has already started with multiprogramming paradigms, such as in
C#, F#, Ruby, and Scala.

Figure 15.1 shows that as the time progresses, supercomputing language constructs will
be further augmented with event driven and web programming paradigms, and the super-
computing languages and construct will transform to commercial computing languages.
The supercomputing speed will keep changing.

Already effort has started on the development of languages for “exascale” computing.
The language designers envision a graph of tasks to be modeled in a language supported
by PGAS. The language will support component reuse, and components will use XML-like

TABLE 15.1 Useful Characteristics of Popular Programming Paradigms

Paradigms Characteristics
Procedure-driven imperative Memory reuse, input driven
Class inheritance/object oriented Code reusability, code-migration, large-scale software development
Concurrency Efficient execution, multiple interacting subtasks
Event driven Interaction, reactive systems
Web programming and multimedia Better perception and resource sharing
Declarative languages Better comprehensibility, free from low-level control
Agent based Autonomous, intelligence, and reactive

Speed

Supercomputing languages
1. Procedural
2. Imperative
3. Object oriented
4. PGAS model
5. Concurrency

Commercial languages

Time

1. Input drievn
2. Web programming
3. Multimedia
4. Event driven
5. Concurrency
6. Object oriented

FIGURE 15.1 Future paradigm-integration with time.

540    ◾    Introduction to Programming Language

component description at low levels to handle heterogeneity. It will support asynchronous
iteration and multilevel parallelism.

One effort that has been tried for many years is the development of a more-algorithmic
language, where low-level data-abstractions and constructs will be hidden from the pro-
grammer. Programmers will specify high-level constructs and data-abstractions that would
be automatically translated to low-level constructs by using program translators that will
use off-the-shelf libraries of software. As the software complexity increases, such high-level
specification and the use of already developed libraries will progressively increase.

Another effort is to model a domain using state diagrams and to develop languages with
instructions that perform a specific transition from one state to another. For example, we
can have a language for automated automobile control or for automaton control. Already
there are many domain-specific languages. One of the advantages of domain-specific
 language is that experts in the domain can program in this language.

FURTHER READING
Barnett, Mike, Rustan, K., Leino, M., and Schulte, Wolfram. “The Spec# programming system: An

overview.” Lecture Notes in Computer Science. Springer-Verlag, 3362. 2005. 49–69.
Deursen, Arie van and Klint, Paul. “Domain specific language design require feature specification.”

Journal of Computing and Information Technology—CIT 10, 1. 2002. 1–17.
Mernik, Marjan, Heering, Jan, and Sloan, Anthony M. “When and how to develop domain-specific

languages.” ACM Computing Surveys, 4(37). 2005. 316–344.
Roman, Gruia-Catalin, Pico, Gian P., and Murphy, Amy L. “Software engineering and mobility: A

roadmap.” In The Future of Software Engineering. Editor: A. Finkelstein. New York, NY: ACM
Press. 2000. pp. 241–258.

Sheard, Tim. “Languages of the future.” In Proceedings of the ACM Conference on Object-Oriented
Programming Systems, Languages and Applications - OOPSLA 2004, Vancouver, BC, Canada.
New York, NY: ACM Press. 2004. 116–119.

541

a p p e n d i x i

Supported Paradigms
in Languages

CT—concurrent thread of task based; CP—data-parallelism; CD—distributed;

CS—synchronous concurrency; E—event based; F—functional; I—imperative;

L—logic; M—multimedia; OI—object-oriented with class inheritance;

OF—object oriented with flat objects; V—visual; W—web.

Note: Some of the languages have no clear standardized version. Some of the dates are
approximate, based upon latest compiler development.

Language Revision Paradigms

Algol W 1996 I
ALICE 2000 I, E, M, V, educational multimedia language
Ada 2012 I, CT, OI

C 1999 I, CT (library), CP (variations)
C++ 2011 I, CT (library), OI, V (variations)
C# 2010 I, E, CT, M, OI, V, W (with .NET)
Chapel Evolving I, CP, OI (for massive parallel computing)
Claire 2009 I, F, L, OI, W
Clojure 2011 F, CT, scripting language
COBOL 2002 I, OI, business programming language
ECLiPSe 1997 L, constraint logic programming language
Emerald 1994 I, CD, OF, distributed computing language
Estrel 1991 I, CS, synchronous hardware modeling language
F# 2005 I, F, OI, E, V, W
FORTRAN 2008 I, OI, CP (variations such as HPF)

(Continued)

542    ◾    Appendix I

Language Revision Paradigms
Haskell 2010 F, CT

Java Continuous I, E, OI, CT, M, V, W,
Javascript 1995 I, E, OF, W, web scripting language
Lisp family 1994 I (limited), F (main), OI (variations),

C (limited)
Lua 2006 I, F, O, CT, W (game-scripting language)
ML 1998 I (limited support), F (main)
Modula-3 1991 I, OI, CT

Oz/Mozart 2007 I, F, L, OI, CT

Perl Various I, F (limited), OI, scripting language
PhP 2004 I, OI, W, web scripting language
Prolog Various L, OI (library), V (variations), CT (variations)
Python Continuous I, F, OI, regular language use for scripting
Ruby 2012 I, F, OI, integrated multiparadigm
Scala/EScala 2012 I, F, OI, CT, integrated multiparadigm
SMIL 2008 I, M, W (for web computing)
VRML/X3D 1996/2005 I, M, W, 3D modeling languages
X10 Evolving I, CP, OI, for massive parallel computing
XML/HTML based Various M, V, W, for web-based computing

543

a p p e n d i x ii

Data Abstractions Summary

 1. Mutable data entity

 2. Immutable data entity

 3. Independent explicit pointers/reference

 4. Extra precision basic types

 5. Strings

 6. Arrays/indexed sequences

 7. Hash table/maps/key-value table

 8. Named tuples/record/struct

 9. Ordinal type

 10. Sets

 11. Recursive data types/lists

 12. Universal polymorphism/subtype

 13. Objects

 14. Class and inheritance (single or multiple inheritance)

 15. Modules/package/namespace

■—built-in/built-in library; A—aliases used as references; Δ—limited; D— dynamically
typed; L—through library; M—media objects; R—reference instead of pointer; ρ—range,
S—simulated by other data structure; V—variations of the language support; X—absent

544    ◾    Appendix II

Languages 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

ALICE ■ X X X ■ ■ X X X X ■ X M ■ X
Ada 2005 ■ Δ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■
C ■ X ■ ■ ■ ■ X ■ ■ S ■ X X X ■
C++ ■ X ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■
C# ■ X ■ Δ ■ ■ ■ ■ ■ S ■ ■ ■ ■ W
Chapel ■ X X ■ ■ ■ ■ ■ ■ ■ X ■ ■ ■ ■
Claire ■ ■ X X ■ ■ X ■ ρ ■ ■ ■ ■ ■ ■
Clojure L ■ R L ■ ■ ■ ■ ρ ■ ■ ■ ■ ■ ■
ECLiPSe X ■ ■ D ■ ■ ■ ■ S ■ ■ ■ ■ ■ ■
Emerald ■ ■ X X ■ ■ X ■ ■ ■ ■ ■ ■ X ■
Estrel ■ X X X X X X X X X X X X X ■
F# ■ ■ R ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■
Fortran 2008 ■ X ■ ■ ■ ■ X X ■ X ■ ■ ■ ■ ■
Haskell X ■ X ■ ■ ■ S ■ ■ ■ ■ ■ ■ ■ ■
Java ■ X R ■ ■ ■ ■ X ■ ■ S ■ ■ ■ ■
Javascript ■ Δ X D ■ ■ ■ X S X X X ■ X X
Lisp ■ ■ X D ■ ■ ■ S V S ■ ■ V V X
Lua ■ ■ X X ■ ■ ■ X S S ■ V ■ S ■
ML ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ X X ■
Modula-3 ■ X ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■
Perl ■ X L L ■ ■ ■ S ■ S S ■ ■ ■ ■
PhP ■ X X X ■ ■ ■ X X X X L ■ ■ ■
Python ■ ■ A ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■
Ruby ■ ■ R D ■ ■ ■ X ρ ■ ρ ■ ■ ■ ■
Scala ■ ■ X ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■
SMIL ■ X X X ■ X X X X X X X M X ■
X10 ■ ■ X ■ ■ ■ X ■ X L ■ ■ ■ ■ ■

545

a p p e n d i x iii

Control Abstractions Summary

 1. Destructive assignment

 2. Multiple/parallel assignment

 3. If-then-else

 4. Case/switch statement

 5. For loop/definite iteration

 6. While-loop/indefinite loop

 7. Do-while (repeat-until) loop

 8. Iterators

 9. Functions/subprograms

 10. Guards

 11. Exception handling

 12. User-defined threads/tasks

 13. Monitors/mutual exclusion using locks/protected objects/synchronized methods

 14. Other concurrency constructs

 15. Distributed computing

■—built-in support; C—cluster-based computing; D—general loop and exit;
L— interfaced with library; LT—temporal loop; M—external message passing library like
PVM or MPI; N—not part of current specification; R—simulated using tail-recursion;
S—can be simulated using existing constructs; T—as a trait; U—until-loop; V— language
variations support; W—web programming support; X—not supported in standards

546    ◾    Appendix III

Language

Control Abstractions

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

ALICE ■ X ■ X ■ ■ X X ■ X X ■ X ■ X
Ada ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ V
C ■ X ■ ■ ■ ■ ■ X ■ X X L L V M
C++ ■ ■ ■ ■ ■ ■ ■ ■ ■ X ■ L L X X
C# ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■
Chapel ■ X ■ ■ ■ ■ ■ ■ ■ X N ■ ■ ■ C
Claire ■ X ■ ■ ■ ■ U ■ ■ X ■ X X ■ X
Clojure ■ ■ ■ ■ ■ ■ X ■ ■ X ■ ■ ■ ■ ■
ECLiPse ■ ■ ■ X ■ R R ■ ■ X Δ Δ ■ X ■
Emerald ■ X ■ X ■ ■ D X ■ X X ■ ■ X ■
Estrel ■ X ■ ■ ■ ■ ■ X ■ X ■ X X ■ X
F# 3.0 ■ X ■ ■ ■ ■ ■ ■ X ■ ■ ■ ■ W
Fortran 2008 ■ X ■ ■ D D D X ■ X Δ V V ■ M
Haskell X X ■ ■ ■ S S S ■ ■ ■ ■ ■ ■ ■
Java ■ Δ ■ ■ ■ ■ ■ ■ ■ X ■ ■ ■ X ■
Javascript ■ ■ ■ ■ ■ ■ ■ ■ ■ X ■ X X X W
Lisp ■ ■ ■ ■ ■ ■ ■ ■ ■ X ■ X X ■ X
Lua ■ ■ ■ X ■ ■ ■ ■ ■ X ■ L L ■ W
ML ■ ■ ■ ■ S ■ X ■ ■ V ■ ■ ■ ■ ■
Modula-3 ■ X ■ ■ ■ ■ ■ X ■ X ■ ■ ■ X ■
Perl ■ ■ ■ ■ ■ ■ ■ ■ ■ X ■ ■ X ■ V
PhP ■ ■ ■ ■ ■ ■ ■ ■ ■ X ■ X X X W
Python ■ ■ ■ ■ ■ ■ X ■ ■ X ■ ■ ■ X ■
Ruby ■ ■ ■ ■ ■ ■ U ■ ■ X ■ ■ ■ X ■
Scala ■ ■ ■ ■ ■ ■ X T ■ ■ ■ ■ ■ ■ W
SMIL ■ X X X ■ X X X X X X X X ■ W
X10 ■ X ■ ■ ■ ■ ■ X ■ L ■ ■ ■ ■ C

547

a p p e n d i x iV

Websites for Languages

Language Websites

Alice http://www.alice.org/
Ada http://www.sigada.org/education/ and http://www.ada-auth.org/arm.html
C Multiple available on the Internet
C++ Multiple available on the Internet including Microsoft Visual Studio
C# Multiple available on the Internet including Microsoft Visual Studio
Chapel http://chapel.cray.com/
Claire http://www.claire-language.com/
Clojure http://clojure.org/
ECLiPSe http://www.eclipseclp.org/
Emerald http://www.emeraldprogramminglanguage.org
Esterel http://www-sop.inria.fr/meije/esterel/esterel-eng.html
F# http://research.microsoft.com/en-us/um/cambridge/projects/fsharp/

http://msdn.microsoft.com/en-us/library/dd233154.aspx
FORTRAN http://j3-fortran.org/
Haskell http://www.haskell.org
Java http://www.java.com and

http://www.oracle.com/us/technologies/java/overview/index.html
Javascript http://msdn.microsoft.com/en-us/library/ie/d1et7k7c(v = vs.94).aspx
Lisp Multiple including GNU Lisp site
Lua http://www.lua.org
ML http://www.smlnj.org
Modula-3 http://www.modula3.org
Perl Multiple available on the Internet
PhP http://www.php.net/
Prolog http://www.sics.se/software; http://www.gprolog.org; http://www.swi-Prolog.org
Python http://www.python.org/
Ruby http://www.ruby-lang.org
Scala http://www.scala-lang.org
SMIL http://www.w3.org/AudioVideo/ and

http://www.w3.org/TR/2008/REC-SMIL3-20081201/
X10 http://x10-lang.org/

549

a p p e n d i x V

Principle of Locality

A program executes within a small subset of the local environment during a small time
interval. This currently active part of the local environment is called locality. The principle
of locality states that a program will use the same locality in the near future. The local-
ity changes with the control flow: (1) processes different parts of a large data structure,
(2) moves to different parts of a large program, or (3) calls another subprogram.

Principle of locality is important for the efficient execution and better space utilization of
the executing programs, because modern operating systems execute multiple processes—
active part of the program at the same time—and allocate a limited amount of RAM to
each active process. Owing to the space limitation in the RAM, only a small part of the
program is brought into the active memory, and this active memory needs to be managed
continuously to avoid inactive memory blocks of a large data structure. As the locality of
execution changes, new parts of the data space are brought into allocated user space, caus-
ing overhead of bringing information from slower secondary storage devices such as hard
disks.

551

a p p e n d i x Vi

Virtual Memory and
Page-Faults

A programmer writes a program in a logical space assuming that all the data space and
code space are contiguous. However, in reality, at low level, program and data are stored
in RAM and hard disks: the active part of a program is stored in RAM, while the remain-
ing parts of the program and data files are stored in the hard disk. There are two memory
spaces: the logically contiguous programmer’s view of the memory space called virtual
memory, and the interspersed physical memory space, where actual program and data
are stored. Virtual memory is mapped into physical memory by the operating system.
A memory block could be either variable-sized or fixed-sized, depending upon the operat-
ing system support. Variable-sized blocks are called segments, and have the size of a called
subprogram. Fixed-sized blocks are called pages.

A page (or segment) is brought from secondary storage to RAM if the address being
accessed by the RAM in virtual memory is missing from the RAM. The process of bring-
ing missing pages from hard disks to the RAM is called page-fault, and has significant
data transfer overhead. As the number of page-faults increases, the actual CPU utiliza-
tion decreases. The process scheduler brings more processes to improve the CPU utili-
zation. The execution of more processes causes more page-faults and even lesser CPU
utilization. Eventually, the CPU stops doing any useful work. This phenomenon is called
thrashing, and it must be avoided.

553

a p p e n d i x Vii

Program Correctness
and Completeness

A program is correct if the set of the generated solutions is a subset of all possible solutions
available for the problem. A program is complete if the set of all possible solutions to the
problem is included in the set of generated solutions. There is a possibility of incorrect solu-
tion in a program that cares only for the completeness of the program. Similarly, there is a
possibility of a program being incomplete if the program tries only correct solutions. We
have to look for both correctness and completeness of solutions when we write a program.

In real life, it is difficult to write a large software that is both correct and complete. Most
of the large programs are neither correct nor complete. A software has many logical errors
called software bugs. The number of these bugs increases significantly with the increase in
the size of a software.

There are multiple ways to remove software bugs: (1) the programmer goes through the
logic over and over again, (2) the programmer runs the program with different input data
samples using debuggers to locate and fix the bugs every time the program does not return
the desired output value, and (3) using automated program analysis tools to derive pro-
gram correctness. Techniques 1 and 2 are quite common. However, technique 3 is uncom-
mon for large software due to the involved computational complexity it requires.

555

a p p e n d i x Viii

Complexity of Algorithms

During the translation of higher-level constructs to lower-level intermediate code and
during the execution of programs, the issue of program efficiency has to be addressed.
Efficiency of programs is affected by many factors such as: (1) layout of data structures;
(2) frequency of retrieval of data stored in hard disk; (3) the absence of efficient algorithms;
and (4) data transfer overhead, especially when employing multiple processors to solve a
complex task.

One way to study execution efficiency is to examine whether underlying algorithms
work efficiently as the size of input data is increased. For example, in a linear complexity
algorithm, execution time increases proportionately to the increase in the input data size.
An algorithm has quadratic complexity if the time taken to execute a program increases
by a factor of O(m2) if the size of input data is increased by a factor of m. In cubic algo-
rithms, execution time increases by O(m3) when the size of input data is incremented by m
times. Beyond cubic algorithms, algorithms do not scale well to large data size, and quickly
become too slow to execute. Such algorithms, where the power coefficients are limited by a
constant as the upper bound, are called polynomial algorithms, and in practice the power-
coefficient-value > 4 are not considered good solutions. The classes of efficient algorithms
are constant complexity, log(log(N)) complexity, log(N) complexity, and linear complexity
(O(N)), since the rate of increase of execution time is less than or equal to increase in the
input data size. Some of the examples of log(N) complexity are binary-search algorithms,
and examples of constant time algorithms are hashing techniques.

An interesting class of algorithms are exponential algorithms, where the time increases
exponentially with the increase in the input data size. As the input data size is increased,
exponential algorithms quickly reach a level where execution time is too large to exe-
cute on any existing computer. If we do not know whether a given problem has a known
polynomial complexity solution and a class of such NP problems can be transformed
to this problem, then the problem is called NP-complete (nondeterministically polyno-
mially complete). In the implementation of programming languages, we want to avoid

556    ◾    Appendix VIII

NP-complete problems, since their currently known implementations are inefficient.
Currently, NP-complete algorithms use approximation, heuristics (intelligent guessing
based on mathematical functions or known solutions in the past), and restricting the
inputs and parameters to improve the execution efficiency of the algorithms.

The issue of execution-time efficiency is quite complex and cannot be just modeled by
the study of algorithmic complexity. There are other issues to consider: (1) the overhead of
fetching data from hard drives into RAM, (2) the use of the principle of locality, (3) bus
congestions, and (4) the overhead of data transfers. These issues are discussed in a course
of Operating Systems.

557

Additional References

Abrahams, David and Gurtvoy, Alesky, C++ Template Metaprogramming: Concepts, Tools, and
Techniques from Boost and Beyond, Addison-Wesley/Pearson Education, Stoughton, MA, 2009.

ACM Computing Surveys: Special Issue on Programming Language Paradigms, 21(3), 1989.
Ada 2012 Language Reference Manual, ISO/IEC 8652:2007(E) edition 3, 2012, available at http://

www.ada-auth.org/standards/ada12.html. Accessed on October 5, 2013.
Agesen, Ole and Hölzle, Urs, “Type Feedback vs. Concrete Type Inference: A Comparison of

Optimizing Techniques for Object Oriented Languages,” in Proceedings of the Tenth ACM
SIGPLAN Conference on Object-oriented Programming Systems, Languages, and Applications,
1995, pp. 91–107.

Allen, Randy and Kennedy, Ken, Optimizing Compilers for Modern Architectures: A Dependence
Based Approach, Morgan-Kaufman/Academic Press, San Francisco, CA, 2002.

American National Standard Institute, Information Technology—Programming Languages—C, ANSI
X3.9899, 2011, available at http://www.iso.org. Accessed on October 10, 2013.

American National Standard Institute, Information Technology—Programming Languages—LISP,
ISO/IEC 9899, 2011, http://webstore.ansi.org/RecordDetail.aspx?sku=ANSI+INCITS+226–
1994+(R2004), last accessed on October 10, 2013.

Andrews, Gregory R., “Paradigms for process interaction in distributed programs,” ACM Computing
Surveys, 23(1), 1991, 49–90.

Andrews, Gregory R. and Schneider, Fred B., “Concepts and notations of concurrent programming,”
ACM Computing Surveys, 15(1), 1983, 3–43.

Appel, Andrew W., Modern Compiler Implementation in Java, 2nd edition, Cambridge University
Press, Cambridge, UK, 2004.

Appel, Andrew W., “Semantics Directed Code Generation,” in Proceedings of the 12th POPL
Conference, New Orleans, LA, 1985, pp. 315–324.

Armstrong, Joe, “History of Erlang,” in HOPL III: Proceedings of the Third ACM SIGPLAN Conference
on History of Programming Languages, San Diego, CA, 2007, pp. 6-1–6-26.

Arnold, Ken, Gosling, James, and Homes, David, The Java Programming Language, 4th edition,
Addison-Wesley Professional/Pearson, Stoughton, MA, 2005.

Atkins, Margaret S., “Mutual recursion in Algol 60 using restricted compilers,” Communications of
the ACM, 16(1), 1973, 47–48.

Atkinson, Malcolm P. and Buneman, O. Peter, “Types and persistence in database programming
 languages,” ACM Computing Surveys, 19(2), 1987, 105–190.

Attiya, Haggit, Guerraoui, Rachid, Handler, Danny, and Kouznetsov, Peter, “Synchronizing without
Locks is Inherently Expensive,” in Proceedings of the Twenty-Fifth Annual ACM Symposium on
Principles of Distributed Computing, Denver, CO, 2006, pp. 300–307.

Aycock, John, “A brief history of just-in-time,” ACM Computing Surveys, 35(2), 2003, 97–113.
Bacon, David F. and Sweeney, Peter F., “Fast Static Analysis of C++ Virtual Function Calls,” in

Proceedings of the Eleventh ACM SIGPLAN Conference on Object-oriented Programming,
Systems, Languages and Applications, Portland, OR, 1996, pp. 324–341.

558    ◾    Additional References

Baden, Scott, “Berkeley FP User’s Manual,” in Ultrix-32 Supplementary Documents, Volume II
(revised), Digital Equipment Corporation, Merrimack, New Haven, CT, 1984, pp. 2.359–2.391.

Banerjee, Utpal, “Dependence Analysis,” Volume 3 of Loop Transformations for Restructuring
Compilers, Kluwer Academic Publishers, Norwell, MA, 1997.

Bansal, Arvind K. and Uddin, Sharif, “Multimodal Triggers for Automated Filtering and Reactivity
based on WWW Content,” in Proceedings of the IASTED International Conference of Internet
and Multimedia Systems and Applications, Las Vegas, NV, 2004, pp. 311–316.

Baxter, William and Bauer, Henry R. III, “The Program Dependence Graph and Vectorization,”
in Proceedings of the 16th ACM SIGPLAN-SIGACT symposium on Principles of programming
 languages, Austin, TX, 1989, pp. 1–11.

Bays, Carter, “A comparison of next-fit, first-fit and best-fit,” Communications of the ACM, 20(3),
1977, 191–192.

Beech, David, “A structural view of PL/I,” ACM Computing Surveys, 2(1), 1970, 33–64.
Bishop, Judy, “The effect of data abstraction on loop programming techniques,” IEEE Transactions of

Software Engineering, 16(4), 1990, pp. 389–402.
Black, Andrew P., Hutchinson, Norman C., Jul, Eric, and Levy Henry M., “The development of

the Emerald programming language,” in HOPL III: Proceedings of the Third ACM SIGPLAN
Conference on History of Programming Languages, New York, NY, 2007, pp. 11-1–11-51.

Black, Andrew, Hutchinson, Norman, Jul, Eric, Levy, Henry and Carter, Larry, “Distribution and
abstract types in Emerald,” IEEE Transactions on Software Engineering, SE-13(1), 1987, 65–76.

Boehm, Hans-Jurgen and Adve, Sarita V., “Foundations of the C++ Concurrency Memory
Model,” in Proceedings of the SIGPLAN Conference on Programming Language Design and
Implementation, Tucson, AZ, 2008, pp. 68–78.

Borning, Alan H. and Ingalls, Daniel H. H., “Multiple Inheritance in Smalltalk-80,” in Proceedings of the
AAAI-82: The National Conference on Artificial Intelligence, Pittsburgh, PA, 1982, pp. 234–237.

Brown, Deryck F. Moura, Harmono and Watt, David A., “ACTRESS: An Action Semantics
Directed Compiler Generator,” in Proceedings of the 4th International Conference on Compiler
Construction, Paderborn, Germany, LNCS 641, Springer Verlag, Berlin Heidelberg, Germany,
1992, pp. 95–109.

Buckley, Gael N. and Silbershatz, Avi, “An effective implementation for the generalized input-output
construct of CSP,” ACM Transactions of Programming Languages, 5(2), 1983, 223–235.

Budd, Timothy A., Multiparadigm Programming in Leda, Addison-Wesley Longman/Pearson,
Reading, MA, 1995.

Buhr, Peter A. and Harji, Ashif S., “Implicit-signal monitors,” ACM Transactions on Programming
Languages and Systems, 27(6), 2005, 1270–1343.

Calliss, Frank W., “A comparison of module constructs in programming languages,” ACM SIGPLAN
Notices, 26(1), 1991, 38–46.

Cardelli, Luca, “The Functional Abstract Machine,” Technical Report TR - 107, AT&T Bell Labs, 1983.
Cardelli, Luca, “A language with distributed scope,” ACM Transaction of Computing Systems, 8(1),

1995, 27–59.
Caromel, Denis and Henrio, Ludovic, A Theory of Distributed Objects: Asynchrony-Mobility-Groups–

Components, Springer Verlag, Berlin Heidelberg, Germany, 2005.
Caseau, Yves and Laburthe, François, Introduction to Claire Programming Language, available at

http://www.dcs.gla.ac.uk/~pat/cp4/claire/Claire_3.2.pdf. Accessed on October 5, 2013.
Chamberlain, Bradford L., Deitz, Steven J., and Navaroo, Angles, “User - defined Parallel Zippered

Iterators in Chapel,” in Proceedings PGAS 2011: Fifth Conference on Partitioned Global Address
Space Programming Models, Galveston Island, TX, 2011, available at http://pgas11.rice.edu/
papers/ChamberlainEtAl-Chapel-Iterators-PGAS11.pdf. Accessed on October 5, 2013.

Chandi, Kanianthra M. and Mishra, Jaydev, “The drinking philosopher’s problem,” ACM Trans-
actions on Programming Languages and Systems, 6(4), 1984, 632–646.

Additional References    ◾    559

Chen, Kai, Porter, Joseph, Sztipanovits, Janos, and Neema, Sandeep, “Compositional specification
of behavioral semantics for domain-specific modeling languages,” International Journal of
Semantic Computing, 3(1), 2009, 31–56.

Church, Alonzo, “The Calculi of Lambda Conversion,” Annals of Mathematical Studies 6, Princeton
University Press, Princeton, NJ, 1941.

Clay, Sharon R. and Wilhelms, Jane, “Put: language-based interactive manipulation of objects,” IEEE
Computer Graphics and Applications, 2(16), 1996, 31–39.

Cohen, Jacques, “Garbage collection of the linked data structures,” ACM Computing Surveys, 13(3),
1981, 341–367.

Cook, Robert P. and LeBlanc, Thoms J., “A symbol table abstraction to implement languages with
explicit scope control,” IEEE Transactions of Software Engineering, SE-9(1), 1983, 8–12.

Cooper, Eric C. and Morriset, J. Gregory, “Adding Threads to Standard ML,” Technical Report
CMU-CS-90-186, Department of Computer Science, Carnegie Mellon University, Pittsburg, PA,
1990.

Courtois, Pierre-Jacques, Heymans, F., and Parnas, David L., “Concurrent control with “readers” and
“writers,” Communications of the ACM, 14(10), 1971, 667–668.

Cunningham, H. Conrad and Church, James C., “Multiparadigm programming in SCALA, Tutorial
Presentation,” Journal of Computing Sciences in Colleges, 24(5), 2009, 99–100.

Dahl, Ole-Johan, Dijkstra, Edsger W., and Hoare, Charles A. R., Structured Programming, Academic
Press, London, UK, 1972.

Dann, Wanda P., Cooper, Stephen, and Pausch, Randy, Learning to Program with ALICE, 3rd edition,
Pearson/Prentice Hall, Boston, MA, 2012.

Danvy, Olivier and Filinski, Andrzej, “Abstracting Control,” in Proceedings of the 1990 ACM conference
on LISP and functional programming, Nice, France, 1990.

Demers, F. N. and Malenfant, J., “Reflection in Logic, Functional and Object-Oriented Program-
ming: A Short Comparative Study,” in Proceedings of the IJCAI’95 Workshop on Reflection and
Metalevel Architectures and their Applications in AI, Montréal, Québec, Canada, 1995, pp. 29–38.

DeRemer, Franklin R., “Simple LR(K) grammars,” Communications of the ACM, 14(7), 1971, 453–460.
Dershem, Herbert L. and Jipping, Michael J., Programming Languages: Structures and Models, 2nd

 edition, PWS Publishing Company, Boston, MA, 1995.
Dice, Dave, Shalev, Ori, and Shavit, Nir, “Transactional Locking II,” in Proceedings of the Twentieth

International Conference on Distributed Computing, 2006, Rhodes Island, Greece, pp. 194–208.
Dijkstra, Edsger W., “Guarded commands, nondeterminacy, and formal derivation of programs,”

Communication of the ACM, 18(8), 1975, 453–457.
Dolby, Julian, “Automatic Inline Allocation of Objects,” in Proceedings of the SIGPLAN’97 Conference

on Programming Language Design and Implementation, Las Vegas, NV, 1997, pp. 7–17.
Emmerich, Wolfgang, Mascolo, Cecilia, and Finkelstein, Anthony, “Implementing Incremental

Code Migration with XML,” in Proceedings of the 22nd International Conference on Software
Engineering (ICSE2000), Limerick, Ireland, 2000, pp. 397–406.

Feuer, Alan R. and Gehani, Narain, editors, Comparing and Assessing Programming Languages: Ada,
C, Pascal, Prentice Hall Software Series, Prentice Hall, Englewood Cliffs, NJ, 1984.

Finkel, Raphael A., Advanced Programming Language Design, Addison-Wesley, Menlo Park, CA,
1996.

Flanagan, David and Yukihiro Matsumoto, The Ruby Programming Language, O’Reilly Media,
Sebastopol, CA, 2008.

Friedman, Daniel P., Wand, Mitchell, and Haynes, Christopher T., Essentials of Programming
Languages, 3rd edition, MIT Press, Cambridge, MA, 2008.

Frigo, Matteo, Leiserson, Charles E., and Randall, Keith H., “The Implementation of the Cilk-5
Multithreaded Language,” in Proceedings of the International Conference on Language Design
and Implementation, 1998, Montreal, Canada, pp. 212–223.

560    ◾    Additional References

Furr, Michael, Jong-hoon (David), Foster, Jeffrey S., and Hicks, Michael, “The Ruby Intermediate
Language,” in Proceedings of the 5th Symposium on Dynamic languages, Orlando, FL, 2009,
pp. 89–98.

Gagnon, Etienne M. and Hendren, Laurie J., “SableVM: A Research Framework for the Efficient
Execution of Java Bytecode,” in Proceedings of the Java Virtual Machine Research and Technology
Symposium, Monterey, CA, 2001, pp. 27–40.

Gasiunas, Vaidas, Satabin, Lucas, Mezini, Mira, Núñez, Angel, and Noyé, Jacques, “EScala: Modular
Event - Driven Object Interactions in Scala,” in Proceedings of the Tenth International Conference
on Aspect - Oriented Software Development, Porto de Galinhas, Brazil, 2011, pp. 227–240.

Gehani Narain H. and Roome, W. D., The Concurrent C Programming Language, Silicon Press, 1989.
Geist, Al, Beguelin, Adam, Dongarra, Jack, Jiang, Weicheng, Mancheck, Robert, and Sunderam,

Vidyalingam S., PVM: Parallel Virtual Machine: A User’s Guide and Tutorial for Networked
Parallel Computing, MIT Press, Cambridge, MA, 1994.

Gharachorloo, Kourosh, Adve, Sarita V., Gupta, Anoop, Hennessy, John L., and Hill, Mark D.,
“Programming for different memory consistency models,” Journal of Parallel and Distributed
Computing, 15(4), 1992, 399–407.

Ghezzi, Carlo and Jazayerri, Mehdi, Programming Language Concepts, 2nd edition, John Wiley &
Sons, New York, NY, 1987.

Goldberg, Adele and Robson, David, Smalltalk-80: The Language, Addison-Wesley, Reading, MA, 1989.
Goldstein, Seth C., Schauser, Klaus E., and Culler, David E., “Lazy threads: implementing a fast

 parallel call,” Journal of Parallel Distributed Computing, 37(1), 1996, 5–20.
Goodenough, John B., “Exception handling: issues and a proposed notation,” Communication of the

ACM, 18(12), 1975, 683–696.
Gosling, James, Joy, Bill, Steel, Guy, Bracha, Gilad, and Buckley, Alex, The Java™ Language Specification,

Java SE 7 Edition, Oracle America Inc., Redwood City, CA, available at http://docs.oracle.com/
javase/specs/jls/se7/jls7.pdf. Accessed on October 20, 2013.

Graham, Paul, ANSI Common-Lisp, Prentice Hall, Englewood, NJ, 1996.
Griswold, Ralph E., Poage, J. F., Polonsky, I. P., The SNOBOL4 Programming Language, 2nd edition,

Prentice Hall, Englewood, NJ, 1971.
Grove, David, DeFouw, Greg, Dean, Jefffrey, and Chambers, Craig, “Call Graph Construction

in Object-oriented Languages,” in Proceedings of the Twelfth ACM SIGPLAN Conference
on Object-oriented Programming Systems, Languages and Applications, Atlanta, GA, 1997,
pp. 108–124.

Guercio, Angela and Bansal, Arvind K., “TANDEM—Transmitting Asynchronous Non Deterministic
and Deterministic Events in Multimedia Systems over the Internet,” in Proceedings of the Inter-
national Conference on Distributed Multimedia Systems, San Francisco, CA, 2004, pp. 57–62.

Guercio, Angela and Bansal, Arvind K., “Towards a Formal Semantics for Distributed Multimedia
Computing,” International Conference on Distributed Multimedia Systems, Redwood City, CA,
2007, pp. 81–86.

Guercio, Angela, Bansal, Arvind K., and Arndt, Timothy, “Language constructs and synchroniza-
tion in reactive multimedia systems,” International Transaction on Computers and Software
Engineering, 1(1), 2007, 52–59.

Gunter, Carl A., Semantics of Programming Languages: Structures and Techniques, The MIT Press,
Cambridge, MA, 1992.

Gupta, Rajiv, “The Fuzzy Barrier: A mechanism for High Speed Synchronization of Processors,” in
Proceedings of the Third ASPLOS, Boston, MA, 1989, pp. 54–63.

Guttag, John V., “Abstract Data Types and the Development of Data Structures,” Communication of
the ACM, 20(6), 1977, 396–404.

Haller, Phillip and Odersky, Martin, “Scala actors: unifying thread-based and event-based program-
ming,” Theoretical Computer Science, 410, 2006, 202–220.

Additional References    ◾    561

Hansen, Per Brinch, “Distributed processes: a concurrent programming concept,” Communications
of the ACM, 21(11), 1978, 934–941.

Hejsberg, Anders, Torgersen, Mats, Wiltamuth, Scott, and Golde, Peter, C# Programming Language,
4th edition, Addison-Wesley, Westford, MA, 2010.

Hennessey, John L., and Patterson, David A., Computer Architecture: A Quantitative Approach, 4th
edition, Morgan Kaufmann, San Francisco, CA, 2007.

Herlihy, Maurice P., “Wait-free synchronization,” ACM Transaction of Programming Languages and
Systems, 13(1), 1991, 124–149.

Herlihy, Maurice, Luchangco, Victor, and Moir, Mark, “Flexible Framework for Implementing
Software Transactional Memory,” in Proceedings 21th Annual ACM SIGPLAN Conference
on Object-oriented Programming, Systems, Languages, and Applications, Portland, OR, 2006,
pp. 253–262.

Herlihy, Maurice P. and Moss, Elliot B., “Transactional Memory: Architectural support for Lock-
free Data Structures,” in Proceedings of the 20th Annual International Symposium on Computer
Architecture, San Diego, CA, 1993, pp. 289–300.

Ho, Wilson W. and Olsson, Ronald A., “An approach to genuine dynamic linking,” Software Practice
and Experience, 21(4), 1991, 375–390.

Hoare, Charles A. R., “Hints on Programming Language Design,” in Essays in Computer Science,
edited by Cliff B. Jones, Prentice Hall, Upper Saddle River, NJ, 1989, pp. 193–216.

Hoare, Charles A. R., “Monitors: an operating system structuring concept,” Communications of the
ACM, 17(10), 1974, 549–557.

Hoare, Charles A. R., “Recursive data structures,” International Journal of Computer and Information
Sciences, 4, 1975, 105–132.

Hogen, Guido and Loogen, Rita, “Efficient Organization of Control Structures in Distributed
Implementation,” in Distributed Implementation, Compiler Construction, LNCS 786, Springer
Verlag, Berlin, Germany, 1994, pp. 98–112.

Hogger, Christopher J., “Essentials of Logic Programming, Oxford Science Publications, Oxford, UK,
1991.

Hopcroft, John E., Motwani, Rajeev, and Ullman, Jeffrey D., Introduction to Automata Theory,
Languages, and Computation, 3rd edition, Pearson/Addison-Wesley Longman Publishing Co.,
Inc. Boston, MA, 2008.

Horowitz, Ellis, Programming Languages: A Grand Tour, 3rd edition, Computer Software Engineering
Series, Computer Science Press, Rockville, MD, 1987.

Horowitz, Susan, Reps, Thomas, and Binkley, David, “Interprocedural slicing using dependence
graphs,” ACM Transactions of Programming Languages and Systems, 12(1), 1990, 26–60.

Ierusalimschy, Roberto, de Figueiredo, Luiz Henrique, and Celes, Waldemar, ‘The Evolution of Lua,”
in Proceedings of the Third ACM SIGPLAN Conference on History of Programming Languages,
HOPL III, San Diego, CA, 2007, pp. 2-1–2-26.

Ingerman, Peter J., “Thunks: A way of compiling procedure statements with some comments on
procedure declarations,” Communications of the ACM, 4(1), 1961, 55–58.

ISO/IEC 9899:2011 Information technology—Programming languages—C,” available on http://
www.iso.org/iso/home/store/catalogue_ics/catalogue_detail_ics.htm?csnumber=57853.
Accessed on October 10, 2013.

Jafffar, Joxan and Maher, Michael J., “Constraint logic programing: a survey,” Journal of Logic
Programming, 20, 1994, 503–581.

Jang, Myeong-Wuk, Ahmed, Amr, and Agha, Gul, “Efficient Agent Communication in Multiagent
System,” LNCS 3390, edited by R. Choren et al., Springer Verlag, Berlin Heidelberg, Germany,
2005, pp. 236–253.

Jones, Neil D., Semantics Directed Compiler Generation, LNCS 94, Springer Verlag, Berlin, Germany,
1980.

562    ◾    Additional References

Jul, Eric, Levy, Henry M., Hutchinson, Norm, and Black, Andrew, “Fine-grained mobility in the
emerald system,” ACM Transactions Computer System, 6(1), 1988, 109–133.

Kay, Alan, “The Early History of Smalltalk,” in Proceedings ACM History of Programming Languages
Conference II, SIGPLAN Notices, 28(3), 1993, 67–95.

Keene, Sonya E., Object-oriented Programming in Common Lisp: A Programmer’s Guide to CLOS,
Addison-Wesley, Reading, MA, 1989.

Kennedy, Andrew and Syme, Don, “Design and Implementation of Generics for the .NET Common
Language Runtime,” in Proceedings of the SIGPLAN Conference on Design and Implementation,
Snowbird, UT, 2001, pp. 1–12.

Kernighan, Brian W. and Ritchie, Dennis M., The C Programming Language, 2nd edition, Prentice
Hall, Englewood Cliffs, NJ, 1988.

King, Peter, Schmitz, Patrick, and Thompson, Simon, “Behavioral Reactivity and Real Time
Programming in XML: Functional Programming Meets SMIL Animation,” in Proceedings of
ACM Document Engineering, Milwaukee, WI, 2004, pp. 57–66.

Kishon, Amir S., Hudak, Paul, and Consel, Charles, “Monitoring Semantics: A Formal Framework
for Specifying, Implementing and Reasoning about Execution Monitors,” in Proceedings of
International Conference on Programming Language Design and Implementation, ACM Sigplan
Notices, 26(6), 1991, 338–352.

Knuth, Donald E., Morris, James H. and Pratt, Vaughan R., “Fast pattern matching in strings,” SIAM
Journal of Computing, 6(2), 1977, 323–350.

Kogan, Alex and Petrank, Erez, “A Methodology for Creating Fast Wait-Free Data Structures,”
in Proceedings of the 17th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, New Orleans, LA, 2012, 141–150.

Kowalski, Robert, “The early history of logic programming,” Communications of the ACM, 31(1),
1988, 38–43.

Lamport, Leslie, “Time, clocks, and the ordering of the events in a distributed system,” Communica-
tions of the ACM, 21(7), 1978, 558–565.

Larus, James and Kozyrakis, Christos, “Transactional memory,” Communications of the ACM, 51(7),
2008, 80–88.

Lerdorf, Rasmos and tatroe, Kevin, Programming PhP, O’Reilly & Associates, Sebastopol, CA, 2002.
Li, Kai and Hudak, Paul, “Memory coherence in shared virtual memory systems,” ACM Transactions

on Computer Systems, 7(4), 1989, 321–359.
Liskov, Barbara and Scheifler, R., “Guardians and actions: linguistic support for robust distributed

systems,” ACM Transaction on Programming Language and Systems, 5(3), 1983, 381–404.
Lomet, David B., “Making pointers safe in system programming languages,” IEEE Transactions of

Software Engineering, SE-11(1), 1985, 87–96.
Louden, Kenneth C., Programming Languages: Principles and Practice, 2nd edition, PWS-Kent, 2003.
Luck, Michael, Ashri, Ronald, and D’Inverno, Mark, Agent Based Software Development, Artech

House, Norwood, MA, 2004.
Luckam, David C. and Polak, Wolfgang, “Ada exception handling: an axiomatic approach,” ACM

Transactions on Programming Languages and Systems, 2(2), 1980, 225–233.
Marlow, Simon, Parallel and Concurrent Programming in Haskell, 2012, available at http:// community

.haskell.org/~simonmar/par-tutorial.pdf. Accessed on October 20, 2013.
Mascolo, Cecilia, Picco, Gian P., and Roman, Gruia-Catalin, “A Fine-Grained Model for Code

Mobility,” in Proceedings of 7th European Software Engineering Conference (ESEC/FSE 99),
edited by O. Nierstrasz and M. Lemoine, Toulouse, France, 1999, pp. 39–56.

Meyer, Bertrand, Touch of Class—Learning to Program Well with Objects and Contracts, Springer-
Verlag, New York, NY, 2009.

Miller, George A. and Johnson-Laird, Phillip N., Language and Perception, Harvard University Press,
Cambridge, MA, 1976.

Additional References    ◾    563

Milner, Robin, Tofte, Mads, Harper, Robert, and MacQueen, David, The Definition of Standard ML–
Revised, MIT Press, Cambridge, MA, 1997.

Milojicic, Dejan S., Douglis, Fred, Paindaveine, Yves, Wheeler, Richard, and Zhou, Songnian,
“Process migration,” ACM Computing Surveys, 32(3), 2000, 241–299.

Mitchell, John C., Concepts in Programming Languages, Cambridge Press, Cambridge, UK, 2002.
Mohr, Eric, Kranz, David A., and Halstead, Robert H. Jr., “Lazy task creation: A technique for

increasing the granularity of parallel programs,” IEEE Transactions on Parallel and Distributed
Systems, 2(3), 1991, 264–280.

Moss, Chris, Prolog++: The Power of Object-oriented and Logic Programming, Addison-Wesley,
Wokingham, England, 1994.

Najork, Mark, “Obiq-3D Tutorial and Reference Manual,” Research Report 129, Digital Equipment
Corporation, Systems Research Center, Palo Alto, CA, 1994.

Naur, Peter, “Revised report on the algorithmic language algol 60,” Communication of the ACM, 6(1),
1963, 1–13.

Neamtiu, Lulian, Foster, Jeffrey S., and Hicks, Michael, “Understanding source code evolution using
abstract syntax tree matching,” ACM SIGSOFT Software Engineering Notes, 30(4), 2005, 1–5.

Nyygard Kristen, and Dahl, Ole-Johan, “The Development of the Simula Languages,” in Proceedings
of the History of Programing Languages, ACM SIGPLAN NOTICES, 13(8), 1978, 439–493.

Odersky, Martin, Altherr, Philippe, Cremet, Vincent, Dragos, Iulian, Dubochet, Gilles, Emir,
Burak, McDirmid, Sean, Micheloud, Stéphane, Mihaylov, Nikolay, Schinz, Michel et al., “An
Overview of Scala Programming Language,” Technical Report LAMP-REPORT-2006-001, École
Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland, 2006, available at http://
www.scala-lang.org/docu/files/ScalaOverview.pdf. Accessed on October 20, 2013.

Oppliger, Rolf, “Privacy Enhancing Technologies for the World Wide Web,” Computer communica-
tions, 28, Elsevier, 2005, 1191–1197.

Pagan, Frank G., A Practical Guide to ALGOL 68, John Wiley & Sons, London, UK, 1976.
Pagan, Frank G., Semantics of Programming Languages: A Panoramic Primer, Prentice Hall, Englewood

Cliff, NJ, 1981.
Parr, Terrence J. and Quong, Russell W., “ANTLR: A predicated-LL(K) parser generator,” Software

Practice and Experience, 25(7), 1995, 789–810.
Pausch, Randy, Burnette, Tommy, Capeheart, A.C., Conway, Matthew, Cosgrove, Dennis, DeLine,

Rob, Durbin, Jim, Gossweiler, Rich, Koga, Shuichi, and White, Jeff, “Alice: rapid prototyping
system for virtual reality,” IEEE Computer Graphics and Applications, 15(3), 1995, 8–11.

Peyton Jones, Simon L., Implementation of Functional Programming Languages, Prentice Hall, Exeter,
UK, 1987.

Peyton Jones, Simon L. and Singh, Satnam, “A Tutorial on Parallel and Concurrent Programming
in Haskell,” in Proceedings of the 6th International Conference on Advanced Functional
Programming, Springer Verlag, Berlin Heidelberg, Germany, 2009, pp. 267–305.

Pierce, Benjamin C., Types and Programming Languages, MIT Press, Cambridge, MA, 2002.
Plainfossé, David and Shapiro, Marc, “A Survey of Distributed Garbage Collection Techniques,”

in Proceedings of the International Workshop on Memory Management, LNCS 986, Springer
Verlag, 1995, London, UK, pp. 211–249.

Pohl, Ira, C++ distilled: A Concise ANSI/ISO Reference and Style Guide, Addison-Wesley, Reading,
MA, 1996.

Pozrikidis, Constantine, XML in Scientific Computing, Chapman and Hall/CRC Press, Boca Raton,
FL, 2012.

Pratt, Terrence W. and Zelkowitz, Marvin V., Programming Languages: Design and Implementation,
4th edition, Prentice Hall, Upper Saddle River, NJ, 2001.

Programming Languages—Ruby, IPA Ruby Standardization WG Draft, 2010, available at http://
www.ipa.go.jp/files/000011432.pdf, Accessed on October 20, 2013.

564    ◾    Additional References

Rajwar, Ravi, Herlihy, Maurice, and Lai, Konrad, “Virtualizing Transactional Memory,” in Proceedings
of the 32nd International Symposium on Computer Architecture, 2005, Madison, WI, pp. 494–505.

Ramesh, S., “A New Efficient Implementation of CSP with Output Guards,” in Proceedings of the
Seventh International Conference on Distributed Computing Systems, Berlin, Germany, 1987,
pp. 266–273.

Rao, Anand S. and Georgeff, Michael, “BDI Agents: From Theory to Practice,” in Proceedings of the
First International Conference on Multi-Agent Systems, San Francisco, CA, 1995, pp. 312–319.

Reiser, Martin and Wirth, Niklaus, Programming in Oberon—Steps Beyond Pascal and Modula,
Addison Wesley, Kent, UK, 1992.

Ritchie, Dennis M., “The development of C language,” ACM History of Programming Language
Conference II, SIGPLAN Notices, 28(3), 1993, 201–208.

Robinson, John A., “A machine-oriented logic based on the resolution principle,” Journal of the ACM,
12(1), 1965, 23–41.

Rojemo, N., Garbage Collection and Memory Efficiency in Lazy Functional Languages, Ph.D. thesis,
Department of Computing Science, Chalmers University, Gothenburg, Sweden, 1995.

Roy, Peter V., Haridi, Seif, Brand, Per, Smolka, Gert, Mehl, Michael, and Scheidhauer, Ralf, “Mobile
objects in distributed Oz,” ACM Transactions on Programming Languages and Systems, 19(5),
1997, 804–851.

Ruby, Sam, Thomas, Dave, and Hansson, David H., Agile Web Development with Ruby 4, 3rd edition,
The Pragmmatic Bookshelf, Frisco, TX, 2013.

Rustan, K., Leino, M., and Nelson, Greg, “Data abstractions and information hiding,” ACM Trans-
actions of Programming Languages and Systems, 24(5), 2002, 491–533.

Rutishauser, Heinz, Description of ALGOL 60, Springer Verlag, New York, NY, 1967.
Sammet, Jean E., “The early history of COBOL,” ACM History of Programming Language Con ference,

SIGPLAN Notices, 13(8), 1978, 121–161.
Schoinas, Ioannis, Falsafi, Babak, Lebeck, Alvin R., Reinhardt, Steven K., Larus, James R., and

Wood, David A., “Fine-grain Access Control for Distributed Shared Memory,” in Proceedings
of the Sixth International Conference on Architectural Support for Programming Languages and
Operating Systems, San Jose, CA, 1994, pp. 297–306.

Schwartz, Jacob T., Dewar, Robert B. K., Dubinsky, Ed, and Schonberg, Edmond, Programming with
Sets: An Introduction to SETL, Springer Verlag, New York, NY, 1986.

Scott, Dana and Strachey, Christopher, “Towards a Mathematical Semantics for Computer Lan-
guage,” in Proceedings of Symposium on Computers and Automata, Polytechnic Institute of
Brooklyn Press, 1971, Brooklyn, NY, pp. 19–46.

Scott, Michael, Programming Language Pragmatics, 3rd edition, Morgan Kaufman, Burlington, MA,
2009.

Sebesta, Robert W., Concepts of Programming Languages, 10th edition, Pearson/Addison Wesley,
Upper Saddle River, NJ, 2011.

Sethi, Ravi, Programming Languages; Concepts and Constructs, 2nd edition, Addison-Wesley,
Redwood City, CA, 1996.

Shapiro, Ehud Y., “The family of concurrent logic programming languages,” ACM Computing Surveys,
21(3), 1989, 413–510.

Siek, Jeremy G. and Lumsdaine, Andrew, “A language for generic programming in the large,” Journal
Science of Computer Programming, 76(5), 2011, 423–465.

Sites, Richard L., “Algol W Reference Manual,” Technical Report STAN-CS-71-230, Computer Science
Department, Stanford University, Stanford, CA, 1972.

Skillicorn, David B. and Talia, Domenico, “Models and languages for parallel computation,” ACM
Computing Surveys, 30(2), 1998, 123–169.

Smith, Brian C., “Reflection and Semantics in a Procedural Language,” Technical Report 272,
Laboratory for Computer Science, MIT, Cambridge, Massachusetts, 1982.

Additional References    ◾    565

Smith, Brian C., “Reflection and Semantics in Lisp,” in Proceedings of the 14th Annual ACM
Symposium on Principles of Programming Languages, 1984, Munich, Germany, pp. 23–35.

Soares, Luiz Fernando G., Rodrigues, Rogério Ferreira, Cerqueira, Renato, and Barbosa, Simone
Diniz Junqueira, “Variable Handling in Time-Based XML Declarative Languages,” in Proceedings
of the 2009 ACM Symposium on Applied Computing, Honolulu, Hi, 2009, pp. 1821–1828.

Sommerville, Ian, Software Engineering, 9th edition, Pearson/Addison-Wesley Upper Saddle River,
NJ, 2010.

Sperber, Michael, Dybvig R. Kent, Flatt, Matthew, Straaten, Anton V., Findler, Robby, and Matthews,
Jacob, Revised report on algorithmic language scheme, Journal of Functional Programming,
19(S1), 2009, 1–301.

Srinivasan, Raj, “RPC: Remote Procedure Call Protocol Specification Version 2,” Internet Request for
Comments 1831, 1995, available at http://www.rfc-archive.org/getrfc.php?rfc=1831. Accessed
on October 5, 2013.

Stansifer, Ryan, The Study of Programming Languages, Prentice Hall, Engelwood Cliff, NJ, 1995.
Steele, Guy L. Jr., Common LISP—The Language, 2nd edition, Digital Press, Waltham, MA, 1990.
Steele, Guy L. Jr. and Gabriel, R. P., “The evolution of LISP,” ACM History of Programing Languages

Conference II, SIGPLAN Notices, 28(3), 1993, 231–270.
Stevenson, Dorothy E., Programming Language Fundamentals by Example, Auerbach Publications, 2006.
Strachey, Chris, “Fundamental Concepts in Programming Languages,” Higher-Order and Symbolic

Computation, 13, 2000, 11–49.
Strom, Robert E., Bacon, David F., Goldberg, Arthur P., Lowry, Andy, Yellin, Daniel M., and Yemini,

Shaula A., Hermes: A Language for Distributed Computing, Prentice Hall, Englewood Cliff, NJ,
1991.

Stroustrup, Bjarne, The C++ Programming Language, 3rd edition, Addison-Wesley, Reading, MA,
1997.

Sunderam, Vidyalingam S., “PVM: A framework for parallel distributed computing,” Concurrency—
Practice and Experience, 2(4), 1990, 315–339.

Syme, Don, Battocchi, Keith, Fisher, Jomo, Hale, Michael, Hu, Jack, Hoban, Luke, Liu, Tao, Lomov,
Dmitry, Margetson, James, McNamara, Brian, Pamer, Joe, Orwick, Penny, Quirk, Daniel,
Smith, Chris, Taveggia, Matteo, Malayeri, Donna, Chae, Wonseok, Matsveyeu, Uladzimir, and
Atkinson, Lincoln, The F# 3.0 Language Specification, available at http://research.microsoft
.com/en-us/um/cambridge/projects/fsharp/manual/spec.pdf. Accessed on October 20, 2013.

Tanenbaum, Andrew S., Structured Computer Organization, 5th edition, Pearson Prentice Hall,
Englewood Cliff, NJ, 2005.

Taubenfeld, Gadi, Synchronization Algorithms and Concurrent Programming, Pearson/Prentice Hall,
Upper Saddle River, NJ, 2006.

Tennet, Robert D., Principles of Programming Languages, Prentice Hall, Englewood Cliffs, NJ, 1981.
Thomas, Dave, Fowler, Chad, and Hunt, Andy, Programming Ruby: The Pragmatic Programmers’

Guide, 2nd edition, Pragmatic Bookshelf, Frisco, TX, 2005.
Tilevich, Eli and Smaragdakis, Yannis, “Portable and Efficient Distributed Threads for Java,” in

Proceedings of the ACM/IFIP/USENIX Middleware Conference, Springer Verlag, New York, NY,
2004, pp. 478–492.

Tucker, Allen B. and Noonan, Robert E., Programming Languages: Principles and Paradigms, 2nd
 edition, McGraw Hill, New York, NY, 2007.

Turner, David A., “Miranda: A non-strict Functional Language with Polymorphic Types,” in
Proceedings IFIP International Conference on Functional Programming Languages and Computer
Architecture, LNCS 201, Springer Verlag, Berlin, Germany, 1985, pp. 1–16.

W3C World Wide Web Consortium. Synchronized Multimedia Integration Language–SMIL 3.0
Specification, W3C Candidate Recommendation, 2008, available at http://www.w3.org/TR/
SMIL3/. Accessed on October 5, 2013.

566    ◾    Additional References

Wadler, Philip L., “The Essence of Functional Programming,” in Proceedings of the 19th Annual ACM
Symposium on Principles of Programming Languages, Albuquerque, NM, 1992, pp. 1–14.

Wampler, Dean and Payne, Alex, Programming Scala, O’Reilly Media, Sebastopol, CA, 2009.
Wang, Cheng, Wu, Youfeng, Borin, Edson, Hu, Shiliang, Liu, Wei, Sager, Dave, Ngai, Tin-fook, and

Fang, Jesse, “Dynamic Parallelization of Single—Threaded Binary Programs using Speculative
Slicing,” in Proceedings International Conference on Supercomputing, Yorktown Heights, NY,
2009, pp. 158–168.

Watt, David A., Programming Language Design Concept, John Wiley & Sons, West Sussex, UK, 2004.
Weber, Adam B., Modern Programming Languages: A Practical Introduction, Franklin, Beedle &

Associates Inc., WilsonVille, OR, 2003.
Wirth, Niklaus, Algorithm + data Structure = Programs, Prentice Hall, Englewood Cliffs, NJ, 1976.
Wirth, Niklaus, “Modula: A language for modular multi-programming,” Software Practice and

Experience, 7, 3–35.
Wirth, Niklaus, Programming in Modula-2, 3rd edition, Springer Verlag, Berlin Heidelberg,

Germany, 1985.
Wolfe, Michael, High Performance Compilers for Parallel Computing, Addison Wesley, Boston, MA,

1996.
World Wide Web Consortium, Extensible Style Sheet (XSL) Version 1.1, 2006, available at www
 .w3.org/TR/xsl. Accessed on October 5, 2013.
World Wide Web Consortium, Simple Object Access Protocol (SOAP) 1.1, 2000, available at http://

www.w3.org/TR/2000/NOTE-SOAP-20000508/. Accessed on October 5, 2013.
World Wide Web Consortium, XML Current Status, available at http://www.w3.org/XML/. Accessed

on October 5, 2013.
World Wide Web Consortium, XML Path Language (XPath), Version 2.0, 2007, available at www
 .w3.org/TR/xpath20/. Accessed on October 20, 2013.
World Wide Web Consortium, XSL Transformations (XSLT), Version 2.0, 2007, available at www
 .w3.org/TR/xslt20/. Accessed on October 5, 2013.
Wu, Daniel, Agarwal, Divyakant, and Amar El Abdali, “StratOSphere: Mobile Processing of Distri-

b uted Objects in Java,” in Proceedings of the 4th annual ACM/IEEE international conference on
Mobile computing and networking, 1998, Dallas, TX, pp. 121–132.

Zhou, Neng-Fa, “Parameter passing and control stack management in prolog revisited,” ACM
Transactions of Programming Languages and Systems, 18(6), 1996, 752–779.

Zibin, Yoav and Gil, Joseph, “Two-Dimensional Bi-Directional Object Layout.”in Proceedings of
the European Conference on Object-oriented Programming, edited by L. Cardelli, LNCS 2743,
Springer Verlag, Berlin Heidelberg, Germany, 2003, pp. 329–350.

K16083

IN
T

R
O

D
U

C
T

IO
N

 T
O

P
R

O
G

R
A

M
M

IN
G

 LA
N

G
U

A
G

E
S

B
an

sal

Using the different syntax of multiple programming languages, such as C++,
Java, PHP, and Python, for the same abstraction often confuses those new to
the field. Introduction to Programming Languages separates programming
language concepts from the restraints of multiple language syntax by discussing
the concepts at an abstract level.

To make the book self-contained, the author introduces the necessary concepts
of data structures and discrete structures from the perspective of programming
language theory. The text covers classical topics, such as imperative, object-
oriented, logic, and functional programming, as well as newer topics, including
dependency analysis, communicating sequential processes, concurrent
programming constructs, web and multimedia programming, and models for
mobile computing. Along with problems and further reading in each chapter, the
book includes in-depth examples and case studies using various languages that
help you understand syntax in practical contexts.

Features
• Explains the principles of programming language design and implementation
• Introduces programming language concepts at an abstract level, freeing

them from the restraints of multiple language syntax
• Illustrates the concepts using many examples from modern languages, such

as Java, C++, C#, Ada 2012, Ruby, Perl, Python, Scala, and Haskell
• Describes implementation models of various paradigms, including

imperative, functional, logic, and object-oriented programming
• Covers up-to-date topics in concurrent programming, web-based

programming, distributed computing, and other areas highly relevant in
today’s computing world

• Gives insight into low-level implementation behavior

Computer Science

K16083_Cover.indd 1 11/4/13 11:05 AM

	Front Cover
	Contents
	Preface
	Chapter Outlines
	Classroom Use of This Book
	Acknowledgments
	About the Author
	Glossary of Symbols
	Chapter 1. Introduction
	Chapter 2. Background and Fundamental Concepts
	Chapter 3. Syntax and Semantics
	Chapter 4. Abstractions in Programs and Information Exchange
	Chapter 5. Implementation Models for Imperative Languages
	Chapter 6. Dynamic Memory Management
	Chapter 7. Type Theory
	Chapter 8. Concurrent Programming Paradigm
	Chapter 9. Functional Programming Paradigm
	Chapter 10. Logic Programming Paradigm
	Chapter 11. Object-Oriented Programming Paradigm
	Chapter 12. Web and Multimedia Programming Paradigms
	Chapter 13. Other Programming Paradigms
	Chapter 14. Scripting Languages
	Chapter 15. Conclusion and Future of Programming Languages
	Appendix I. Supported Paradigms in Languages
	Appendix II. Data Abstractions Summary
	Appendix III. Control Abstractions Summary
	Appendix IV. Websites for Languages
	Appendix V. Principle of Locality
	Appendix VI. Virtual Memory andPage-Faults
	Appendix VII. Program Correctness and Completeness
	Appendix VIII. Complexity of Algorithms
	Additional References
	Back Cover

