INTRODUCTION 1O
PROGRANMMING
LANGUAGES

Arvind Kumar Bansal

CRC Press
Taylor & Francis Group
A CHAPMAN & HALL BOOK



INTRODUCTION 7o
PROGRAMMING
LANGUAGES

Arvind Kumar Bansal

Kent State University
Ohio, USA

CRC Press
Taylor & Francis Group

Boca Raton London New York

CRC Press is an imprint of the
Taylor & Francis Group, an informa business

A CHAPMAN & HALL BOOK



CRC Press

Taylor & Francis Group

6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2014 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Version Date: 20131104

International Standard Book Number-13: 978-1-4665-6515-9 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been
made to publish reliable data and information, but the author and publisher cannot assume responsibility for the valid-
ity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright
holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this
form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may
rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or uti-
lized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopy-
ing, microfilming, and recording, or in any information storage or retrieval system, without written permission from the
publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://
www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923,
978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For
organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for
identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com



This book is dedicated to my parents for all
their love and care, who, despite their limitations
and financial hardships, taught their children to dream.







Contents

Preface, xxi

Chapter Outlines, xxiii

Classroom Use of This Book, xxix

Acknowledgments, xxxi

About the Author, xxxiii

Glossary of Symbols, xxxv

CHAPTER 1 = Introduction 1
1.1 MULTITUDE OF PROBLEM DOMAINS 2
1.2 MOTIVATION 3
1.3 LEARNING OUTCOMES 4
1.4  PROGRAM AND COMPONENTS 5

1.4.1 Abstractions in Programs 6
1.4.2 Program Comprehension and Jumps 10
1.4.3 Execution of Programs 12
1.5 INTEROPERABILITY OF PROGRAMMING LANGUAGES 16
1.6 SOFTWARE DEVELOPMENT CYCLE 17
1.7 CRITERIA FOR A GOOD PROGRAMMING LANGUAGE 19
1.8 HISTORY OF PROGRAMMING PARADIGMS AND LANGUAGES 20
1.8.1 Imperative Programming Paradigm 20
1.8.2 Declarative Programming Paradigm 22
1.8.3  Object-Oriented Programming Paradigm 23
1.8.4 Concurrent Programming Paradigm 24
1.8.5 Visual Programming Paradigm 25
1.8.6 Multimedia Programming Paradigm 25
1.8.7 Web-Based Programming Paradigm 26



vi m Contents

1.8.8 Event-Based Programming Paradigm 26

1.8.9 Integration of Programming Paradigms 27

1.9 CLASSIFICATION OF LANGUAGES 27
1.9.1 Programming Paradigms-Based Classification 28

1.9.2 Implementation-Based Classification 28

1.9.3  Other Classifications 30

1.10 SUMMARY 30
1.11 ASSESSMENT 31
1.11.1 Concepts and Definitions 31

1.11.2 Problem Solving 31

1.11.3 Extended Response 32
FURTHER READING 33
CHapPTER 2 = Background and Fundamental Concepts 35
2.1 VON NEUMANN MACHINE 35
2.1.1 Address Mechanisms 36

2.2 DISCRETE STRUCTURES CONCEPTS 39
2.2.1 Set Operations 39

2.2.2 Boolean Logic and Predicate Calculus 42

2.2.3 Recursion 45

2.2.4 Finite State Machines 47

2.3 DATA STRUCTURE CONCEPTS 48
2.3.1 Sequences 48

2.3.2  Stacks and Queues 49

2.3.3 Reference Mechanisms 51

2.3.4 Recursive Data Structures 52

2.3.5 Trees 53

2.3.6  Graphs 54

2.3.7 Exhaustive Search 55

2.3.8 Mapping Data Structures in Linear Memory 59

2.3.9 Hash Tables 60

2.4 ABSTRACT CONCEPTS IN COMPUTATION 61
2.4.1 Mutable versus Immutable Variables 63

2.4.2 Bindings and Scope Rules 63

2.43 Types of Variables 65

2.44 Environment and Store 66



Contents ® vii

2.4.5 Functions and Procedures 67

2.4.6 Abstracting the Program Execution 68

2.4.7 Processes and Threads 70

2.4.8 Buffers 71

2.5 SUMMARY 72
2.6 ASSESSMENT 74
2.6.1 Concepts and Definitions 74

2.6.2 Problem Solving 75

2.6.3 Extended Response 76
FURTHER READING 76
CHaPTER 3 = Syntax and Semantics 77
3.1 INTRODUCTION TO SYNTAX AND SEMANTICS 77
3.2  GRAMMARS 79
3.2.1 Types of Grammars 80

3.2.2 Representing Grammar Using Backus-Naur Form 81

3.2.3 Extended Backus-Naur Form (EBNF) 83

3.2.4 Attribute Grammar 85

3.2.5 Hyper-Rules and Meta-Definitions 87

3.2.6  Abstract Syntax 87

3.3 SYNTAX DIAGRAMS 89
3.3.1 Translating Syntax Rules to Syntax Diagrams 91

3.3.2 Translating Syntax Diagrams to Syntax Rules 94

3.4 VALIDATING SENTENCE STRUCTURE 95
3.4.1 Lexical Analysis 95

3.42 Parsing 98

3.4.3 Handling Grammar Ambiguities 100

3.44 Abstract Syntax Tree 102

3.4.5 Automated Parsing 103

3.5 SEMANTICS 104
3.5.1 Operational Semantics 104

3.5.2 Axiomatic Semantics 106

3.5.3 Denotational Semantics 108

3.5.4 Action Semantics 113

3.5.5 Other Models of Semantics 114

3.6  SUMMARY 115



viii m Contents

3.7 ASSESSMENT 116
3.7.1 Concepts and Definitions 116

3.7.2  Problem Solving 117

3.7.3 Extended Response 118
FURTHER READING 119
CHAPTER 4 = Abstractions in Programs and Information Exchange 121
4.1  DATA ABSTRACTIONS 122
4.1.1 Single Data Entities 124

4.1.2 Composite Data Entities 124

4.1.3 Collection of Data Entities 126

4.14 Extensible Data Entities 126

4.1.5 Ordering and Accessing Data Entities 127

4.1.6 Interconnected Data Entities 128

4.1.7 Persistence 128

4.1.8 Declarations and Environment Change 129

4.2 CONTROL ABSTRACTIONS 130
42.1 Assignment and Command Sequence 131

42.2 Conditional Statements 133

4.2.3 Iterative Constructs and Iterators 135

424 Block Structure 137

42.5 Program Units and Invocations 138

4.2.6 Modules 141

4.2.7 Objects and Classes 142

4.3 INFORMATION EXCHANGE 143
4.3.1 Mechanisms of Information Exchange 144

4.4  PARAMETER PASSING 145
4.4.1 Call-by-Value and Variations 147

4.4.2 Call-by-Reference and Variations 148

4.4.3 Call-by-Result 151

444 Call-by-Value-Result 151

445 Call-by-Name 153

44.6 Call-by-Need 155

4.4.7 Passing Subprograms as Parameters 156

4.4.8 Parameter Passing for Distributed Computing 156



Contents m ix

4.5 SIDE EFFECTS 157
4.5.1 Aliasing and Side Effects 158

4.5.2 Regulating Side Effects 160

4.5.3 A Comprehensive Example 160

4.6 EXCEPTION HANDLING 162
4.7 NONDETERMINISTIC COMPUTATION 164
471 Guarded Commands 166

4.7.2  Stepwise Program Construction 167

4.8 PROGRAMS AS DATA 168
4.8.1 Functions as First-Class Objects 168

4.8.2 Meta-Programming and Reflexivity 169

4.9 SOFTWARE REUSE 169
49.1 Interoperability Revisited 170

4.10 CASE STUDY 170
4.10.1 Data Abstraction in Programming Languages 171
4.10.2 Control Abstractions in Programming Languages 177
4.10.3 Information Exchange in Programming Languages 178

4.11 SUMMARY 179
4.12 ASSESSMENT 182
4.12.1 Concepts and Definitions 182
4.12.2 Problem Solving 182
4.12.3 Extended Response 183
FURTHER READING 184
CHaPTER 5 = Implementation Models for Imperative Languages 185
5.1  ABSTRACT COMPUTING MACHINE 187
5.2 TRANSLATING CONTROL ABSTRACTIONS 190
5.2.1 Translating Expressions 190

5.2.2 Translating Assignment Statement 190

5.2.3 Translating If-Then-Else Construct 191

5.2.4 Translating Case Statement 191

5.2.5 Translating Iterative Constructs 192

5.3 STATIC ALLOCATION 194
5.4 HYBRID ALLOCATION 197
5.4.1 Roles of Various Pointers 198

5.4.2 Calling Subprograms 199

5.4.3 Generating Data and Code Areas 200



x m Contents

5.5 IMPLEMENTING PARAMETER PASSING 205
5.5.1 Implementing Call-by-Value 205

5.5.2 Implementing Call-by-Reference 206

5.5.3 Implementing Call-by-Value-Result 207

5.6 LOW-LEVEL BEHAVIOR OF RECURSIVE PROCEDURES 209
5.7 IMPLEMENTING EXCEPTION HANDLER 210
5.8 SUMMARY 210
5.9 ASSESSMENT 212
5.9.1 Concepts and Definitions 212

5.9.2 Problem Solving 212

5.9.3 Extended Response 213
FURTHER READING 214
CHAPTER 6 = Dynamic Memory Management 215
6.1 HEAP ORGANIZATION 216
6.2 ALLOCATION OF DYNAMIC DATA OBJECTS 218
6.3 DEALLOCATION OF DYNAMIC DATA OBJECTS 219
6.4 FRAGMENTATION 220
6.5 GARBAGE COLLECTION—RECYCLING HEAP MEMORY 221
6.5.1 Garbage Collection Approaches 222

6.6 START-AND-STOP GARBAGE COLLECTION 223
6.6.1 Mark-and-Scan Algorithm 224

6.6.2 Copying Garbage Collection 225

6.6.3 Cheney’s Modified Copying Garbage Collection 228

6.6.4 Generational Garbage Collection 229

6.7 INCREMENTAL GARBAGE COLLECTION 231
6.7.1 Baker’s Algorithm 232

6.8 CONTINUOUS REFERENCE-COUNT GARBAGE COLLECTION 233
6.9 CONCURRENT GARBAGE COLLECTION 235
6.9.1 Concurrent Copying Garbage Collection 235

6.9.2 Concurrent Real-Time Garbage Collection 236

6.10 ISSUES IN GARBAGE COLLECTION 236

6.11 SUMMARY

237



Contents ®m xi

6.12 ASSESSMENT 239
6.12.1 Concepts and Definitions 239
6.12.2 Problem Solving 239
6.12.3 Conceptual Type 240

FURTHER READING 241

CHAPTER 7 = Type Theory 243

7.1 ADVANTAGES OF TYPE DECLARATION 244

7.2 NOTION OF TYPE 246
7.2.1 Basic Data Types 247

7.3 SET OPERATIONS AND STRUCTURED TYPES 248
7.3.1 Ordinal Types 248
7.3.2 Cartesian Product and Tuples 249
7.3.3  Finite Mapping and Arrays 249
7.3.4 Power Set and Set Constructs 250
7.3.5 Disjoint Union and Variant Record 250
7.3.6  Set Operations for Recursive Data Types 251

7.4  LIMITATIONS OF TYPE THEORY 252

7.5 POLYMORPHISM 254
7.5.1 Parametric Polymorphism 255
7.5.2  Inclusion Polymorphism and Subtypes 256
7.5.3  Overloading 257
7.5.4 Coercion 258

7.6 TYPE SYSTEM IN MODERN PROGRAMMING LANGUAGES 259
7.6.1  Universal Reference Type 260

7.7 TYPE EQUIVALENCE 261
7.7.1  Structure versus Name Equivalence 262

7.8 IMPLEMENTATION OF TYPES 263
7.8.1 Type Inference and Checking 266
7.8.2 Implementing Polymorphic Type Languages 267

7.9 CASE STUDY 268
7.9.1 Type System in Ada 268
7.9.2  Type System in C++ 269
7.9.3 Type System in Modula-3 269

7.10 SUMMARY

269



xii m Contents

7.11 ASSESSMENT 272
7.11.1 Concepts and Definitions 272
7.11.2 Problem Solving 272
7.11.3 Extended Response 273

FURTHER READING 274

CHapTER 8 = Concurrent Programming Paradigm 275

8.1  CONCURRENT EXECUTION AND ABSTRACTIONS 276
8.1.1 Race Conditions 277
8.1.2 Threads and Dependencies 278
8.1.3  Synchronization and Mutual Exclusion 279
8.1.4 Sequential Consistency 281

8.2 PROGRAM DEPENDENCY AND AUTOMATIC
PARALLELIZATION 282
8.2.1 Control Dependency 283
8.2.2 Data Dependency 285
8.2.3 Program-Dependency Graph 288
8.2.4 Parallelization Techniques 288
8.2.5 Granularity and Execution Efficiency 291
8.2.6 Program Slicing 293

8.3 TASK AND DATA PARALLELISM 295
8.3.1 Task Parallelism 296
8.3.2 Data Parallelism 299
8.3.3 Integrating Task and Data Parallelism 300

8.4 DISTRIBUTED COMPUTING 301
8.4.1 Executing Remote Procedures 301
8.4.2 Parameter Passing in Remote Procedure Calls 302

8.5 COMMUNICATING SEQUENTIAL PROCESSES 303
8.5.1 CSP Algebra 304
8.5.2 Communicating Sequential Process Language 306

8.6 MEMORY MODELS FOR CONCURRENCY 307
8.6.1 Memory Model of C++ 309

8.7 CONCURRENT PROGRAMMING CONSTRUCTS 309
8.7.1 Coroutines 309
8.7.2 Cobegin-Coend 310



Contents ® xiii

8.7.3 Fork-and-Join 310
8.7.4 Monitors 311
8.8 CASE STUDY 313
8.8.1 Concurrent Programming in Ada 313
8.8.2 Concurrent Programming in Java 314
8.8.3 Distributed Computing in Emerald 316
8.9 SUMMARY 316
8.10 ASSESSMENT 320
8.10.1 Concepts and Definitions 320
8.10.2 Problem Solving 320
8.10.3 Extended Response 321
FURTHER READING 322
CHAPTER 9 = Functional Programming Paradigm 325
9.1 EXPRESSIONS 327
9.2 EVALUATION OF A-EXPRESSIONS 328
9.2.1 Applicative-Order versus Normal-Order Reductions 329
9.3 FPS—FUNCTIONAL PROGRAMMING SYSTEMS 331
9.3.1 Kernel Functions 331
9.3.2 Functional-Forms for Constructing Complex Functions 333
9.3.3 Programming in FPS 335
9.3.4 Comparing A-Expressions and FPS 338
9.4 ABSTRACTIONS AND PROGRAMMING 338
9.4.1 Abstractions in Functional Programming Languages 338
9.4.2  Abstractions and Programming in the Lisp Family 340
9.4.3 Abstractions and Programming in Hope 343
9.44 Abstractions and Programming in Haskell 344
9.4.5 Abstractions and Functional Programming in Scala 347
9.4.6  Abstractions and Functional Programming in Ruby 350
9.5 IMPLEMENTATION MODELS FOR FUNCTIONAL
LANGUAGES 352
9.5.1 SECD Machine and Eager Evaluation 352
9.5.2  Graph-Reduction Strategies 353
9.5.3 Implementing Lazy Evaluation 355
9.6 INTEGRATION WITH OTHER PROGRAMMING
PARADIGMS 357
9.6.1 Concurrency in Functional Languages 357



xiv ® Contents

9.7  SUMMARY 358
9.8 ASSESSMENT 362
9.8.1 Concepts and Definitions 362
9.8.2 Problem Solving 362
9.8.3 Conceptual Type 363
FURTHER READING 364
CHaPTER 10 = Logic Programming Paradigm 365
10.1 LOGIC PROGRAMMING FUNDAMENTALS 366
10.1.1 Facts and Rules 366
10.1.2 Forward and Backward Reasoning Systems 368
10.1.3 Data Representation 368
10.1.4 Unification—Bidirectional Information Flow 369
10.1.5 Representing Logic Programs 372
10.1.6 Properties of Logic Programs 373
10.2 ABSTRACT IMPLEMENTATION MODEL 374
10.2.1 Query Reduction 374
10.2.2 Mapping Query Reduction to AND-OR Tree 376
10.2.3 Backtracking 377
10.2.4 Warren Abstract Machine 379
10.2.5 Program Analysis 380
10.3 PROGRAMMING USING PROLOG 380
10.3.1 Cuts—Programmer-Directed Efficiency 382
10.3.2 Programming with Sets 383
10.3.3 Nondeterministic Programming 384
10.3.4 Abstractions and Meta-Programming 385
10.3.5 Limitations of Prolog 389
10.4 EXTENDING LOGIC PROGRAMMING PARADIGM 389
10.4.1 Temporal Logic Programming 390
10.4.2 Constraint Logic Programming 390
10.4.3 Inductive Logic Programming 392
10.4.4 Higher-Order Logic Programming 393
10.5 INTEGRATION WITH OTHER PARADIGMS 394
10.5.1 Integration with Functional Programming 394
10.5.2 Integration with Object-Oriented
Programming 396
10.5.3 Concurrent Logic Programming 396



Contents m xv

10.6 SUMMARY 397
10.7 ASSESSMENT 399
10.7.1 Concepts and Definitions 399
10.7.2 Problem Solving 399
10.7.3 Extended Response 401
FURTHER READING 401
CHaPTER 11 = Object-Oriented Programming Paradigm 403
11.1 CLASSES AND OBJECTS 405
11.1.1 Object—An Instance of a Class 406
11.2 CLASS-HIERARCHY AND INHERITANCE 408
11.2.1 Subclasses 408
11.2.2 Virtual Methods 409
11.2.3 Multiple-Inheritance 411
11.3 VISIBILITY AND INFORMATION EXCHANGE 412
11.3.1 Visibility of Member Entities 412
11.3.2 Encapsulation 413
11.3.3 Information Exchange 413
11.4 POLYMORPHISM AND TYPE CONVERSION 414
11.4.1 Parametric Polymorphism and Generic
Templates 414
11.4.2 Casting 415
11.4.3 Subclass versus Subtyping 416
11.5 CASE STUDIES 417
11.5.1 Abstractions and Programming in C++ 417
11.5.2 Abstractions and Programming in Java 419
11.5.3 Abstractions and Programming in Scala 420
11.5.4 Abstractions and Programming in Ruby 422
11.6 IMPLEMENTATION OF OBJECT-ORIENTED LANGUAGES 424
11.6.1 Storage Allocation and Deallocation 425
11.6.2 Implementing Casting 428
11.6.3 Implementing Multiple-Inheritance 429
11.6.4 Implementing Virtual Entities and Methods 429
11.6.5 Overhead Issues and Optimizations 431

11.6.6 Run-Time Behavior

431



xvi m Contents

11.7 DISTRIBUTED OBJECT-ORIENTED MODELS 433
11.7.1 Distributed Objects in Emerald 433
11.7.2 Distributed Objects in Java 434
11.7.3 Remote Method Invocation 434
11.7.4 RMI-Based Programming 435

11.8 SUMMARY 436

11.9 ASSESSMENT 438
11.9.1 Concepts and Definitions 438
11.9.2 Problem-Solving 438
11.9.3 Extended Response 439

FURTHER READING 440

CHAPTER 12 = Web and Multimedia Programming Paradigms 441

12.1 CODE AND DATA MOBILITY 442
12.1.1 Issues in Mobile Computing 443

12.2 WEB-BASED PROGRAMMING 445
12.2.1 HTML 446
12.2.2 XML as Middleware Interface Language 448
12.2.3 Web Scripting 453
12.2.4 Applets 455
12.2.5 Security in Web Programming 457

12.3 VIRTUAL MACHINES AND RUN-TIME INTERFACE 458
12.3.1 Java Virtual Machine 459
12.3.2 Just-in-Time Compilation 461

12.4 COMPONENTS OF MULTIMEDIA SYSTEMS 462
12.4.1 Representation and Transmission 463
12.4.2 Perceptual Distortion 465
12.4.3 Synchronization in Multimedia 466

12.5 MULTIMEDIA PROGRAMMING CONSTRUCTS 468
12.5.1 Synchronization Constructs 470

12.6 CASE STUDY 470
12.6.1 Abstractions and Programming in Alice 470
12.6.2 Abstractions and Programming in SMIL 472
12.6.3 Abstractions and Web Programming in Javascript 474
12.6.4 Abstractions and Web Programming in C# 475



Contents ® xvii

12.7 SUMMARY 475
12.8 ASSESSMENT 479
12.8.1 Concepts and Definitions 479
12.8.2 Problem Solving 479
12.8.3 Extended Response 479
FURTHER READING 480
CHAPTER 13 = Other Programming Paradigms 483
13.1 EVENT-BASED PROGRAMMING 484
13.1.1 Event Model 485
13.1.2 Developing an Event-Based Program 486

13.2 AGENT-BASED PROGRAMMING 489
13.2.1 Components of an Agent-Based System 491
13.2.2 Agent Security 493
13.2.3 Fault Tolerance in Multi-Agent Systems 493

13.3 HIGH PRODUCTIVITY MASSIVE PARALLEL PROGRAMMING 494
13.3.1 Partitioned Global Address Space 495
13.3.2 Constructs for High-Productivity Computing 496

13.4 SYNCHRONOUS LANGUAGES 498
13.4.1 Synchronous Constructs in Estrel 499

13.5 SUMMARY 500
13.6 ASSESSMENT 503
13.6.1 Concepts and Definitions 503
13.6.2 Problem Solving 503
13.6.3 Extended Response 504
FURTHER READING 504
CHAPTER 14 = Scripting Languages 507
14.1 COMPONENTS OF SCRIPTING LANGUAGES 509
14.1.1 Shell-Based Programming 509
14.1.2 Data-Driven Programming 510
14.1.3 Command Scripts 510
14.1.4 Text and String Processing 511

14.2 ABSTRACTIONS IN SCRIPTING LANGUAGES 511
14.2.1 Control and Data Abstractions 512

14.2.2 Shell Variables 512



xviii m Contents

14.2.3 Type Conversions 513
14.2.4 Regular Expressions and Pattern Matching 513
14.2.5 Programming Example 513
14.3 CASE STUDY 515
14.3.1 Abstractions and Programming in Perl 515
14.3.2 Abstractions in PHP 517
14.3.3 Abstractions and Programming in Python 518
14.3.4 Script Programming in Prolog 522
14.3.5 Script Programming in Ruby 524
14.3.6 Other Scripting Languages 526
14.4 SUMMARY 526
14.5 ASSESSMENT 528
14.5.1 Concepts and Definitions 528
14.5.2 Problem Solving 528
14.5.3 Extended Response 528
FURTHER READING 529
CHapTErR 15 = Conclusion and Future of Programming Languages 531
15.1 EVOLUTION OF PROGRAMMING PARADIGMS AND
LANGUAGES 531
15.2 EVOLUTION OF IMPLEMENTATION MODELS AND
COMPILERS 536
15.3 CONSTRUCT DESIGN AND COMPREHENSION 538
15.4 FUTURE DEVELOPMENT OF PROGRAMMING LANGUAGES 538
FURTHER READING 540

APPENDIX I: Supported Paradigms in Languages, 541
APPENDIX II: Data Abstractions Summary, 543
APPENDIX III: Control Abstractions Summary, 545
APPENDIX IV: Websites for Languages, 547

APPENDIX V: Principle of Locality, 549



Contents ® xix
APPENDIX VI: Virtual Memory and Page-Faults, 551
APPENDIX VII: Program Correctness and Completeness, 553
APPENDIX VIII: Complexity of Algorithms, 555

ADDITIONAL REFERENCES, 557

© 2010 Taylor & Francis Group, LLC






Preface

Programming language is a core topic in the undergraduate curricula of computer
science. It integrates abstract concepts in computation, programming paradigms—
styles to express formal solutions to problems; compilers; low-level execution behavior
of programs; and operating systems. As students grow their understanding of computer
science, it becomes clear to them that instructions and data representations in various
programming languages have a common purpose and features that can be abstracted—
identified using their common properties. Once provided with a deeper understanding
of abstractions, students can superimpose the syntax on top of these abstractions to learn
quickly new programming languages in the fast-changing world of computer science.

There are multitudes of powerful programming languages. Educational institutions
teach the first course in programming, and data structures in multiple languages such as
C++, Java, PHP, Python, and C. The use of different syntax for the same abstraction tends
to confuse students who are fresh from core courses in computer science. The main pur-
pose of this book is to free students from the shackles of syntax variations in languages and
biases of specific programming paradigm(s).

This classroom-tested material introduces programming language concepts at an
abstract level, freeing them from the restraints of multiple language syntax. The text is
designed for computer science/IT courses focusing on the principles or concepts of pro-
gramming languages. The book is suitable as a textbook for a semester-long course at the
sophomore/junior levels to teach concepts of programming language design and imple-
mentation. It can also be used as a textbook for an introductory graduate-level course in
programming language or as a reference book for other graduate-level courses in program-
ming languages.

The book provides background on programming language concepts and discusses
the features of various paradigms. The book teaches: (1) the common features of the pro-
gramming languages at the abstract level rather than at a comparative level; (2) the imple-
mentation model and behavior of programming paradigms at an abstract levels so that
students understand the power and limitations of programming paradigms; (3) language
constructs at a paradigm level; and (4) a holistic view of the programming language design
and behavior.

In addition to the discussion of classical topics such as syntax and semantics, imperative
programming, program structures, mechanisms for information exchange between sub-
programs, object-oriented programming, logic programming, and functional programming,

Xxi



xxii ® Preface

this book adds new topics such as dependency analysis, communicating sequential processes,
concurrent programming constructs, web and multimedia programming, event-based pro-
gramming, agent-based programming, synchronous languages, high-productivity program-
ming on massive parallel computers, and implementation models and abstract machines
used in different programming paradigms. Effort has been made to include distributed com-
puting topics such as models for mobile computing, remote procedure calls, remote method
invocation, and the corresponding parameter passing mechanisms. With multicore comput-
ers, distributed networks of computers and the pervasiveness of the Internet, many of these
topics have become relevant. Chapter 2 explains many background concepts at an abstract
level. My experience in teaching this course is that these background concepts are taught to
students at the program-writing level, when they lack the required abstract understanding.
Besides, various schools have differing syllabi. Students will find it useful to refresh their
understanding of the concepts through an abstract-level description.

This book illustrates programing constructs with intuitive reserved words instead
of dwelling on the specific syntax of some languages. However, examples from newer
representative languages such as Ada 2012, C++, C#, Haskell, Java, Lisp, Modula-3, Ruby;,
Scala, Scheme, Perl, Prolog, and Python have been included to illustrate the concepts.



Chapter Outlines

he scope of this book has been limited to the material covered in a semester-long

course that teaches principles and theory of programming languages. However, the
book has sufficient material to be used as a reference for the first course in programming
languages at the entry level in a graduate program.

It is assumed that students who read this book will have a background of two semes-
ters of programming, introductory courses in discrete structures and data structures, and
some intuition about operating systems. The book assumes that students will have knowl-
edge of at least one programming language, and capability of writing around 200 lines of
code in a program involving blocks, functions, procedures, parameter passing, and various
control structures such as if-then-else, case-statements, while-loop, do-while-loop, func-
tion, and procedure calls.

The book is divided into 15 chapters, including a concluding chapter. Concepts have
been explained in a simple, intuitive language at an abstract level. Examples and case stud-
ies using popular and newer languages have been included and explained enough to take
the sting out of understanding syntax. Owing to a multitude of languages being devel-
oped, a representative set has been chosen that in no way reflects any preference over other
languages.

Chapter 1 discusses the need for a course in programming languages and the learning
outcomes of this course. It also introduces the notion of a program, explains the differ-
ence between data and control abstractions, and explains the need for abstractions and
high-level modeling for specifying solutions to real-world problems. It describes various
problem domains and their differing requirements. It also describes briefly the software-
development cycle to emphasize the properties of good programming languages. The
conflicting natures of many of these properties are explained. A brief history of the evolu-
tion of programming languages at the programming paradigm level is explained. Finally,
the chapter describes various classifications used to categorize programming languages.

Chapter 2 describes the mathematics and abstract concepts in computation needed to
understand design and implementation models of programming languages. The chapter
describes briefly properties of the von Neumann machine and its effect on programming
style, related discrete structure concepts, related data structure concepts, related operating
system concepts, and some required abstract concepts in computation. Discrete structure
concepts described are sets and set operations, relations and functions, Boolean and predi-
cate logic, functions, and types of recursion. Related data structure concepts are stacks and

xxiii



xxiv m Chapter Outlines

queues, depth-first and breadth-first search, trees and graphs, pointers and recursive data
structures. Concepts related to abstract computation are the notions of variable, expres-
sion and command, environment and store, computational state, and transitions between
computational states. Background concepts for concurrent programming such as concepts
of processes, threads, and buffers are discussed.

There is some overlap between the abstract model of computation discussed in Chapters 2
and 4. However, due to mutual dependency between syntax and semantics, explained in
Chapter 3, and abstractions in program structure and execution, part of the abstraction
needed for understanding syntax and semantics is introduced in Chapter 2.

Chapter 3 describes the syntax—techniques to validate programming constructs and
semantics—associating meanings to abstract programming constructs in programming
language. It introduces the definitions of syntax and semantics, explains how the grammar
for a programming language can be expressed and developed in the textual form needed
for parsing and the visual form needed for human comprehension. The chapter illustrates
the conversions between textual and visual forms. It describes different types of grammars,
ambiguity in grammars, their powers and limitations, and their usage in the compilation
process. It explains parsing—the process of validating sentence structure, its abstract
algorithm, and parse trees—the trees formed during the sentence structure validation.
The chapter also explains different types of semantics: operational semantics needed to
translate high-level language constructs to low-level abstract instruction sets, axiomatic
semantics (semantics based upon modeling a computational state as Boolean expressions),
denotational semantics (semantics based upon mapping syntax rules into corresponding
semantic rules in a domain), action semantics—(a practical integration of operational,
axiomatic, and denotational semantics used by the compilation process), and behavior
semantics (a semantics based upon high-level, state transition-based behavior of underly-
ing programming constructs).

Chapter 4 describes abstractions and information exchange mechanisms between pro-
gram units. The abstractions have been grouped as data abstractions and control abstrac-
tions. The chapter describes how this information can be transferred using scopes of the
variables, import/export mechanisms across modules, and parameter-passing mechanisms
between a calling and a called subprogram. The chapter also describes the mechanism of
exception-handling in programming languages for graceful handling of error conditions.
It describes the notion of nondeterministic programming style and languages. The chapter
introduces the notion of meta-programs—programs that can use other programs as data,
programs as first-class objects where a program can be developed as data at run time, and
the concept of side effect—changes in a computational state that can cause incorrectness
during program execution. The need and various techniques for interoperability between
programming languages are also discussed.

Chapter 5 describes the implementation models and an abstract machine for executing
imperative programs. The chapter describes two major models of implementation: static
implementation and an integrated model that combines static, stack-based, and heap-
based memory allocation. It discusses the limitations and advantages of the three memory
allocation models: static, stacks based, and heap based; and describes how an integrated



Chapter Outlines = xxv

model reduces limitations of individual memory-allocation schemes. The chapter also
describes how procedure calls and parameter passing can be modeled in von Neumann-
style abstract machines, and compares the implementation of different parameter-passing
mechanisms including parameter-passing mechanisms in functional programming and
distributed computing.

Chapter 6 describes the structure of a heap—a common memory space that is used to
allocate recursive and dynamic data objects. It also describes memory allocation and gar-
bage collection—the process of recycling released memory space for memory reallocation.
The chapter describes different types of garbage collection techniques grouped under four
major categories: stop-and-start garbage collection schemes that suspend programs once
garbage collection starts, incremental garbage collection schemes that allow program exe-
cution during garage collection, continuous, and concurrent garbage collection techniques.
It describes the advantages, abstract algorithms, and limitation of various approaches.

Chapter 7 describes the theory of types. It explains the relationship of data abstraction
described in Chapter 4 and set operations, and explains the advantages of type declarations
and limitations of type theory to handle run-time errors. It describes various run-time
errors that can be caused despite type declaration in compiled languages. The chapter also
describes polymorphism—the capability to handle multiple (possible indefinite) data types
by a generic function or operator. The chapter discusses the issue of type equivalence—
when two variables of different types can be equated. The chapter describes the internal
representation of type information during compilation for statically compiled languages.
The chapter also describes the implementation models and compile-time type-inference
mechanisms for polymorphic languages. It describes a case study of type-rich languages
such as Ada 2012, Hope, and C#.

Chapter 8 describes the theory of nondeterministic programming and models of con-
current programming. It describes the notion of automated parallelization of program;
program dependency graphs—a graph that shows dependency among program statements
based upon data flow and control flow; sequentiality introduced due to writing informa-
tion into shared data structures; the notion of coarse granularity—grouping the set of
statements to be executed on the same processor to reduce data transfer overhead across
processors and/or memory storage; and various programming constructs such as threads
and monitors needed for concurrent execution of programs. The chapter also discusses the
need for sequential consistency to regulate the run-time unpredictable behavior of concur-
rent programs caused by racing condition—a condition where the order of termination
of concurrent process is not predictable. The chapter discusses various synchronization
and mutual exclusion techniques including locks and transactional memory. Concepts are
illustrated using a case study of four representative languages: Ada, CSP, Emerald, and Java.

Chapter 9 describes functional programming paradigm; lambda expressions and
their evaluations; and programming constructs, implementation models for functional
programming languages, and integration of functional programming with concur-
rent programming paradigm. The concept of A-calculus—an underlying mathematical
model for the evaluation of mathematical expressions—is discussed. The concept of a
generic functional programming system (FPS) using generic kernel functions and generic



xxvi m Chapter Outlines

function-forming operators to form complex functions is also introduced. Various func-
tional programs are presented to illustrate the advantages and limitations of functional
programming style that uses immutable data entities, compared to imperative program-
ming style that supports destructive update of the variable-values. The data abstractions
and control abstractions in many functional programming languages such as Lisp, Haskell,
Hope, Ruby, and Scala are discussed. The chapter discusses SECD machine—a classical
abstract machine for executing functional programs, and a graph-based abstract imple-
mentation models. Finally, the chapter describes concurrent functional programming, and
the concurrency present in the Lisp family, Haskell, and Ruby.

Chapter 10 describes logic programming paradigm, abstractions in logic programs,
and the implementation model of logic programs. It introduces the concept of forward
chaining, backward chaining, the concept of unification to equate two logical terms and
a parameter-passing mechanism in logic programs. It describes AND-OR tree as a means
for the abstract implementation of logic programs, and shows how a logical-query can be
mapped to an AND-OR tree. It describes backtracking as means to traverse the search
space to generate multiple (possibly all) solutions to a problem. It introduces Prolog as an
example of backward chaining backtracking-based language and describes simple features
of Prolog. It describes briefly the WAM (Warren abstract machine)—the primary abstract
implementation model for the efficient implementation of the AND-OR tree. It describes
briefly various extensions of the logic programming paradigm such as temporal logic pro-
gramming, constraint logic programming paradigm, higher-order logic programming.
Finally it describes various attempts to integrate logic programming with functional pro-
gramming and concurrent programming.

Chapter 11 describes the abstract concepts in the object-oriented programming par-
adigm, and briefly describes schematics to implement object-oriented programming
languages. The chapter describes class hierarchy, inheritance, encapsulation, multiple
inheritances, virtual methods, overrides, and dynamic binding. It describes a schematic
of an abstract model to implement object-oriented languages that can handle dynamic
binding, virtual methods, and multiple inheritance. It discusses inherent limitations of
multiple inheritances. The chapter takes examples from Java, C++, Ruby, and Scala to
illustrate the object-oriented programming concepts.

Chapter 12 discusses the web and multimedia programming paradigm. It discusses
theoretical aspects of code and data mobility, the related security-related issues, compila-
tion issues with the mobile code, and the need for middle-level software such as XML,
JVM—]Java Virtual Machine—and CLI: Common Language Interface. It describes XML
and .NET based specification mechanism. The chapter describes how dynamic XML can
be used to model dynamically changing graphs, 3D animated objects, and databases. It
discusses multimedia formats to represent multimedia objects such as images, texts, audio,
audio visuals, and streams. The issue of perception distortion due to the lack of synchro-
nization is discussed. Various multimedia synchronization mechanisms and constructs
are discussed. The last section provides case studies from three representative high-level
languages: Synchronous Mult