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Preface

Programming language is a core topic in the undergraduate curricula of computer
science. It integrates abstract concepts in computation, programming paradigms—
styles to express formal solutions to problems; compilers; low-level execution behavior
of programs; and operating systems. As students grow their understanding of computer
science, it becomes clear to them that instructions and data representations in various
programming languages have a common purpose and features that can be abstracted—
identified using their common properties. Once provided with a deeper understanding
of abstractions, students can superimpose the syntax on top of these abstractions to learn
quickly new programming languages in the fast-changing world of computer science.

There are multitudes of powerful programming languages. Educational institutions
teach the first course in programming, and data structures in multiple languages such as
C++, Java, PHP, Python, and C. The use of different syntax for the same abstraction tends
to confuse students who are fresh from core courses in computer science. The main pur-
pose of this book is to free students from the shackles of syntax variations in languages and
biases of specific programming paradigm(s).

This classroom-tested material introduces programming language concepts at an
abstract level, freeing them from the restraints of multiple language syntax. The text is
designed for computer science/IT courses focusing on the principles or concepts of pro-
gramming languages. The book is suitable as a textbook for a semester-long course at the
sophomore/junior levels to teach concepts of programming language design and imple-
mentation. It can also be used as a textbook for an introductory graduate-level course in
programming language or as a reference book for other graduate-level courses in program-
ming languages.

The book provides background on programming language concepts and discusses
the features of various paradigms. The book teaches: (1) the common features of the pro-
gramming languages at the abstract level rather than at a comparative level; (2) the imple-
mentation model and behavior of programming paradigms at an abstract levels so that
students understand the power and limitations of programming paradigms; (3) language
constructs at a paradigm level; and (4) a holistic view of the programming language design
and behavior.

In addition to the discussion of classical topics such as syntax and semantics, imperative
programming, program structures, mechanisms for information exchange between sub-
programs, object-oriented programming, logic programming, and functional programming,
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xxii ® Preface

this book adds new topics such as dependency analysis, communicating sequential processes,
concurrent programming constructs, web and multimedia programming, event-based pro-
gramming, agent-based programming, synchronous languages, high-productivity program-
ming on massive parallel computers, and implementation models and abstract machines
used in different programming paradigms. Effort has been made to include distributed com-
puting topics such as models for mobile computing, remote procedure calls, remote method
invocation, and the corresponding parameter passing mechanisms. With multicore comput-
ers, distributed networks of computers and the pervasiveness of the Internet, many of these
topics have become relevant. Chapter 2 explains many background concepts at an abstract
level. My experience in teaching this course is that these background concepts are taught to
students at the program-writing level, when they lack the required abstract understanding.
Besides, various schools have differing syllabi. Students will find it useful to refresh their
understanding of the concepts through an abstract-level description.

This book illustrates programing constructs with intuitive reserved words instead
of dwelling on the specific syntax of some languages. However, examples from newer
representative languages such as Ada 2012, C++, C#, Haskell, Java, Lisp, Modula-3, Ruby;,
Scala, Scheme, Perl, Prolog, and Python have been included to illustrate the concepts.



Chapter Outlines

he scope of this book has been limited to the material covered in a semester-long

course that teaches principles and theory of programming languages. However, the
book has sufficient material to be used as a reference for the first course in programming
languages at the entry level in a graduate program.

It is assumed that students who read this book will have a background of two semes-
ters of programming, introductory courses in discrete structures and data structures, and
some intuition about operating systems. The book assumes that students will have knowl-
edge of at least one programming language, and capability of writing around 200 lines of
code in a program involving blocks, functions, procedures, parameter passing, and various
control structures such as if-then-else, case-statements, while-loop, do-while-loop, func-
tion, and procedure calls.

The book is divided into 15 chapters, including a concluding chapter. Concepts have
been explained in a simple, intuitive language at an abstract level. Examples and case stud-
ies using popular and newer languages have been included and explained enough to take
the sting out of understanding syntax. Owing to a multitude of languages being devel-
oped, a representative set has been chosen that in no way reflects any preference over other
languages.

Chapter 1 discusses the need for a course in programming languages and the learning
outcomes of this course. It also introduces the notion of a program, explains the differ-
ence between data and control abstractions, and explains the need for abstractions and
high-level modeling for specifying solutions to real-world problems. It describes various
problem domains and their differing requirements. It also describes briefly the software-
development cycle to emphasize the properties of good programming languages. The
conflicting natures of many of these properties are explained. A brief history of the evolu-
tion of programming languages at the programming paradigm level is explained. Finally,
the chapter describes various classifications used to categorize programming languages.

Chapter 2 describes the mathematics and abstract concepts in computation needed to
understand design and implementation models of programming languages. The chapter
describes briefly properties of the von Neumann machine and its effect on programming
style, related discrete structure concepts, related data structure concepts, related operating
system concepts, and some required abstract concepts in computation. Discrete structure
concepts described are sets and set operations, relations and functions, Boolean and predi-
cate logic, functions, and types of recursion. Related data structure concepts are stacks and
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xxiv m Chapter Outlines

queues, depth-first and breadth-first search, trees and graphs, pointers and recursive data
structures. Concepts related to abstract computation are the notions of variable, expres-
sion and command, environment and store, computational state, and transitions between
computational states. Background concepts for concurrent programming such as concepts
of processes, threads, and buffers are discussed.

There is some overlap between the abstract model of computation discussed in Chapters 2
and 4. However, due to mutual dependency between syntax and semantics, explained in
Chapter 3, and abstractions in program structure and execution, part of the abstraction
needed for understanding syntax and semantics is introduced in Chapter 2.

Chapter 3 describes the syntax—techniques to validate programming constructs and
semantics—associating meanings to abstract programming constructs in programming
language. It introduces the definitions of syntax and semantics, explains how the grammar
for a programming language can be expressed and developed in the textual form needed
for parsing and the visual form needed for human comprehension. The chapter illustrates
the conversions between textual and visual forms. It describes different types of grammars,
ambiguity in grammars, their powers and limitations, and their usage in the compilation
process. It explains parsing—the process of validating sentence structure, its abstract
algorithm, and parse trees—the trees formed during the sentence structure validation.
The chapter also explains different types of semantics: operational semantics needed to
translate high-level language constructs to low-level abstract instruction sets, axiomatic
semantics (semantics based upon modeling a computational state as Boolean expressions),
denotational semantics (semantics based upon mapping syntax rules into corresponding
semantic rules in a domain), action semantics—(a practical integration of operational,
axiomatic, and denotational semantics used by the compilation process), and behavior
semantics (a semantics based upon high-level, state transition-based behavior of underly-
ing programming constructs).

Chapter 4 describes abstractions and information exchange mechanisms between pro-
gram units. The abstractions have been grouped as data abstractions and control abstrac-
tions. The chapter describes how this information can be transferred using scopes of the
variables, import/export mechanisms across modules, and parameter-passing mechanisms
between a calling and a called subprogram. The chapter also describes the mechanism of
exception-handling in programming languages for graceful handling of error conditions.
It describes the notion of nondeterministic programming style and languages. The chapter
introduces the notion of meta-programs—programs that can use other programs as data,
programs as first-class objects where a program can be developed as data at run time, and
the concept of side effect—changes in a computational state that can cause incorrectness
during program execution. The need and various techniques for interoperability between
programming languages are also discussed.

Chapter 5 describes the implementation models and an abstract machine for executing
imperative programs. The chapter describes two major models of implementation: static
implementation and an integrated model that combines static, stack-based, and heap-
based memory allocation. It discusses the limitations and advantages of the three memory
allocation models: static, stacks based, and heap based; and describes how an integrated
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model reduces limitations of individual memory-allocation schemes. The chapter also
describes how procedure calls and parameter passing can be modeled in von Neumann-
style abstract machines, and compares the implementation of different parameter-passing
mechanisms including parameter-passing mechanisms in functional programming and
distributed computing.

Chapter 6 describes the structure of a heap—a common memory space that is used to
allocate recursive and dynamic data objects. It also describes memory allocation and gar-
bage collection—the process of recycling released memory space for memory reallocation.
The chapter describes different types of garbage collection techniques grouped under four
major categories: stop-and-start garbage collection schemes that suspend programs once
garbage collection starts, incremental garbage collection schemes that allow program exe-
cution during garage collection, continuous, and concurrent garbage collection techniques.
It describes the advantages, abstract algorithms, and limitation of various approaches.

Chapter 7 describes the theory of types. It explains the relationship of data abstraction
described in Chapter 4 and set operations, and explains the advantages of type declarations
and limitations of type theory to handle run-time errors. It describes various run-time
errors that can be caused despite type declaration in compiled languages. The chapter also
describes polymorphism—the capability to handle multiple (possible indefinite) data types
by a generic function or operator. The chapter discusses the issue of type equivalence—
when two variables of different types can be equated. The chapter describes the internal
representation of type information during compilation for statically compiled languages.
The chapter also describes the implementation models and compile-time type-inference
mechanisms for polymorphic languages. It describes a case study of type-rich languages
such as Ada 2012, Hope, and C#.

Chapter 8 describes the theory of nondeterministic programming and models of con-
current programming. It describes the notion of automated parallelization of program;
program dependency graphs—a graph that shows dependency among program statements
based upon data flow and control flow; sequentiality introduced due to writing informa-
tion into shared data structures; the notion of coarse granularity—grouping the set of
statements to be executed on the same processor to reduce data transfer overhead across
processors and/or memory storage; and various programming constructs such as threads
and monitors needed for concurrent execution of programs. The chapter also discusses the
need for sequential consistency to regulate the run-time unpredictable behavior of concur-
rent programs caused by racing condition—a condition where the order of termination
of concurrent process is not predictable. The chapter discusses various synchronization
and mutual exclusion techniques including locks and transactional memory. Concepts are
illustrated using a case study of four representative languages: Ada, CSP, Emerald, and Java.

Chapter 9 describes functional programming paradigm; lambda expressions and
their evaluations; and programming constructs, implementation models for functional
programming languages, and integration of functional programming with concur-
rent programming paradigm. The concept of A-calculus—an underlying mathematical
model for the evaluation of mathematical expressions—is discussed. The concept of a
generic functional programming system (FPS) using generic kernel functions and generic
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function-forming operators to form complex functions is also introduced. Various func-
tional programs are presented to illustrate the advantages and limitations of functional
programming style that uses immutable data entities, compared to imperative program-
ming style that supports destructive update of the variable-values. The data abstractions
and control abstractions in many functional programming languages such as Lisp, Haskell,
Hope, Ruby, and Scala are discussed. The chapter discusses SECD machine—a classical
abstract machine for executing functional programs, and a graph-based abstract imple-
mentation models. Finally, the chapter describes concurrent functional programming, and
the concurrency present in the Lisp family, Haskell, and Ruby.

Chapter 10 describes logic programming paradigm, abstractions in logic programs,
and the implementation model of logic programs. It introduces the concept of forward
chaining, backward chaining, the concept of unification to equate two logical terms and
a parameter-passing mechanism in logic programs. It describes AND-OR tree as a means
for the abstract implementation of logic programs, and shows how a logical-query can be
mapped to an AND-OR tree. It describes backtracking as means to traverse the search
space to generate multiple (possibly all) solutions to a problem. It introduces Prolog as an
example of backward chaining backtracking-based language and describes simple features
of Prolog. It describes briefly the WAM (Warren abstract machine)—the primary abstract
implementation model for the efficient implementation of the AND-OR tree. It describes
briefly various extensions of the logic programming paradigm such as temporal logic pro-
gramming, constraint logic programming paradigm, higher-order logic programming.
Finally it describes various attempts to integrate logic programming with functional pro-
gramming and concurrent programming.

Chapter 11 describes the abstract concepts in the object-oriented programming par-
adigm, and briefly describes schematics to implement object-oriented programming
languages. The chapter describes class hierarchy, inheritance, encapsulation, multiple
inheritances, virtual methods, overrides, and dynamic binding. It describes a schematic
of an abstract model to implement object-oriented languages that can handle dynamic
binding, virtual methods, and multiple inheritance. It discusses inherent limitations of
multiple inheritances. The chapter takes examples from Java, C++, Ruby, and Scala to
illustrate the object-oriented programming concepts.

Chapter 12 discusses the web and multimedia programming paradigm. It discusses
theoretical aspects of code and data mobility, the related security-related issues, compila-
tion issues with the mobile code, and the need for middle-level software such as XML,
JVM—]Java Virtual Machine—and CLI: Common Language Interface. It describes XML
and .NET based specification mechanism. The chapter describes how dynamic XML can
be used to model dynamically changing graphs, 3D animated objects, and databases. It
discusses multimedia formats to represent multimedia objects such as images, texts, audio,
audio visuals, and streams. The issue of perception distortion due to the lack of synchro-
nization is discussed. Various multimedia synchronization mechanisms and constructs
are discussed. The last section provides case studies from three representative high-level
languages: Synchronous Mult